STAT 226 Lecture 1 \& 2

Yibi Huang

Outline

- Variable Types
- Review of Binomial Distributions
- Likelihood and Maximum Likelihood Method
- Tests for Binomial Proportions
- Confidence Intervals for Binomial Proportions

Variable Types

Regression methods are used to analyze data when the response variable is numerical.

- e.g., temperature, blood pressure, heights, speeds, income
- Covered in Stat 222 \& 224

Methods in categorical data analysis are used when the response variable are categorical, e.g.,

- gender (male, female),
- political philosophy (liberal, moderate, conservative),
- region (metropolitan, urban, suburban, rural)
- Covered in Stat 226 \& 227 (Don’t take both STAT 226 and 227)

In either case, the explanatory variables can be numerical or categorical.

Nominal and Ordinal Categorical Variables

- Nominal: unordered categories, e.g.,
- transport to work (car, bus, bicycle, walk, other)
- favorite music (rock, hiphop, pop, classical, jazz, country, folk)
- Ordinal: ordered categories
- patient condition (excellent, good, fair, poor)
- government spending (too high, about right, too low)

We pay special attention to - binary variables: success or failure for which nominal-ordinal distinction is unimportant.

Review of Binomial Distributions

Binomial Distributions (Review)

If n Bernoulli trials are performed:

- only two possible outcomes for each trial (success, failure)
- $\pi=P$ (success), $1-\pi=P$ (failure), for each trial,
- trials are independent
- $Y=$ number of successes out of n trials
then we say Y has a binomial distribution, denoted as

$$
Y \sim \operatorname{Binomial}(n, \pi) .
$$

The probability function of Y is

$$
P(Y=y)=\binom{n}{y} \pi^{y}(1-\pi)^{n-y}, \quad y=0,1, \ldots, n
$$

where $\binom{n}{y}=\frac{n!}{y!(n-y)!}$ is the binomial coefficient and
$m!=m$ factorial $=m \times(m-1) \times(m-2) \times \cdots \times 1 \quad$ Note that $0!=1$

Example: Are You Comfortable Getting a Covid Booster?

Response (Yes, No). \quad Suppose $\pi=\operatorname{Pr}($ Yes $)=0.4$.
Let $y=$ \# answering Yes among $n=3$ randomly selected people.

Example: Are You Comfortable Getting a Covid Booster?

Response (Yes, No). \quad Suppose $\pi=\operatorname{Pr}($ Yes $)=0.4$.
Let $y=$ \# answering Yes among $n=3$ randomly selected people.

$$
\begin{aligned}
& P(y)=\frac{n!}{y!(n-y)!} \pi^{y}(1-\pi)^{n-y}=\frac{3!}{y!(3-y)!}(0.4)^{y}(0.6)^{3-y} \\
& P(0)=\frac{3!}{0!3!}(0.4)^{0}(0.6)^{3}=(0.6)^{3}=0.216 \\
& P(1)=\frac{3!}{1!2!}(0.4)^{1}(0.6)^{2}=3(0.4)(0.6)^{2}=0.432 \\
& P(2)=\frac{3!}{2!1!}(0.4)^{2}(0.6)^{1}=3(0.4)^{2}(0.6)=0.288 \\
& P(3)=\frac{3!}{3!0!}(0.4)^{3}(0.6)^{0}=(0.4)^{3}=0.064
\end{aligned}
$$

Binomial Probabilities in \mathbf{R}

dbinom $(x=0$, size $=3, p=0.4)$
[1] 0.216
dbinom(0, 3, 0.4)
[1] 0.216
dbinom(1, 3, 0.4)
[1] 0.432
dbinom(x=0:3, size=3, p=0.4)
[1] 0.216 $0.432 \quad 0.288 \quad 0.064$
plot(Q:3, dbinom(0:3, 3, .4), type = "h", xlab = "y", ylab = "P(y)")

Binomial Distribution Facts

If Y is a Binomial (n, π) random variable, then

- $\mathrm{E}(Y)=n \pi$
- $\mathrm{SD}=\sigma(Y)=\sqrt{\operatorname{Var}(Y)}=\sqrt{n \pi(1-\pi)}$
- Binomial (n, π) can be approx. by $\operatorname{Normal}(n \pi, n \pi(1-\pi))$ when n is large $(n \pi \geq 5$ and $n(1-\pi) \geq 5)$.

Likelihood \& Maximum Likelihood

Estimation

A Probability Question

Let π be the proportion of US adults that are willing to get an Omicron booster.

A sample of 5 subjects are randomly selected. Let Y be the number of them that are willing to get an Omicron booster. What is $P(Y=3)$?

Answer: Y is Binomial $(n=5, \pi)$ (Why?)

$$
P(Y=y ; \pi)=\frac{n!}{y!(n-y)!} \pi^{y}(1-\pi)^{n-y}
$$

If π is known to be 0.3 , then

$$
P(Y=3 ; \pi)=\frac{5!}{3!2!}(0.3)^{3}(0.7)^{2}=0.1323
$$

A Statistics Question

Of course, in practice we don't know π and we collect data to estimate it.

How shall we choose a "good" estimator for π ?

An estimator is a formula based on the data (a statistic) that we plan to use to estimate a parameter (π) after we collect the data.

Once the data are collected, we can calculate the value of the statistic: an estimate for π.

A Statistics Question

Suppose 8 of 20 randomly selected U.S. adults said they are willing to get an Omicron booster

What can we infer about the value of

$$
\begin{aligned}
\pi= & \text { proportion of U.S. adults that are } \\
& \text { comfortable getting a booster? }
\end{aligned}
$$

The chance to observe $Y=8$ in a random sample of size $n=20$ is

$$
P(Y=8 ; \pi)=\left\{\begin{array}{ll}
\binom{20}{8}(0.3)^{8}(0.7)^{12} \approx 0.1143 & \text { if } \pi=0.3 \\
20 \\
8
\end{array}\right)(0.6)^{8}(0.4)^{12} \approx 0.0354 \quad \text { if } \pi=0.6
$$

It appears that $\pi=0.3$ is more likely to be π than $\pi=0.6$, since the former gives a higher prob. to observe the outcome $y=8$.

We say the likelihood of $\pi=0.3$ is higher than that of $\pi=0.6$.

Maximum Likelihood Estimate (MLE)

The maximum likelihood estimate (MLE) of a parameter (like π) is the value at which the likelihood function is maximized.

Example. If 8 of 20 randomly selected U.S. adults are comfortable getting the booster, the likelihood function

$$
\ell(\pi \mid y=8)=\binom{20}{8} \pi^{8}(1-\pi)^{12}
$$

reaches its max at $\pi=0.4$,
the MLE for π is $\widehat{\pi}=0.4$ given the data $y=8$.

Maximum Likelihood Estimate (MLE)

The probability

$$
P(Y=y ; \pi)=\binom{n}{y} \pi^{y}(1-\pi)^{n-y}=\ell(\pi \mid y)
$$

viewed as a function of π, is called the likelihood function, (or just likelihood) of π, denoted as $\ell(\pi \mid y)$.

It measure the "plausibility" of a value being the true value of π.

Likelihood functions $\ell(\pi \mid y)$ at different values of y for $n=20$.

Likelihood functions $\ell(\pi \mid y)$ for various values of y when $n=20$.

Likelihood functions $\ell(\pi \mid y)$ at various values of y when $n=200$.

Likelihood in General

In general, suppose the observed data $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ have a joint probability distribution with some parameter(s) called θ

$$
P\left(Y_{1}=y_{1}, Y_{2}=y_{2}, \ldots, Y_{n}=y_{n}\right)=f\left(y_{1}, y_{2}, \ldots, y_{n} \mid \theta\right)
$$

The likelihood function for the parameter θ is

$$
\ell(\theta \mid \text { data })=\ell\left(\theta \mid y_{1}, y_{2}, \ldots, y_{n}\right)=f\left(y_{1}, y_{2}, \ldots, y_{n} \mid \theta\right) .
$$

- Note the likelihood function regards the probability as a function of the parameter θ rather than as a function of the data $y_{1}, y_{2}, \ldots, y_{n}$.
- If

$$
\ell\left(\theta_{1} \mid y_{1}, \ldots, y_{n}\right)>\ell\left(\theta_{2} \mid y_{1}, \ldots, y_{n}\right),
$$

then θ_{1} appears more plausible to be the true value of θ than θ_{2} does, given the observed data y_{1}, \ldots, y_{n}.

Maximizing the Log-likelihood

Rather than maximizing the likelihood, it is often computationally easier to maximize its natural logarithm, called the log-likelihood,

$$
\log \ell(\pi \mid y)
$$

which results in the same answer since logarithm is strictly increasing,

$$
x_{1}>x_{2} \Longleftrightarrow \log \left(x_{1}\right)>\log \left(x_{2}\right)
$$

So

$$
\ell\left(\pi_{1} \mid y\right)>\ell\left(\pi_{2} \mid y\right) \quad \Longleftrightarrow \quad \log \ell\left(\pi_{1} \mid y\right)>\log \ell\left(\pi_{2} \mid y\right) .
$$

Example (MLE for Binomial)

If the observed data $Y \sim \operatorname{Binomial}(n, \pi)$ but π is unknown, the likelihood of π is

$$
\ell(\pi \mid y)=p(Y=y \mid \pi)=\binom{n}{y} \pi^{y}(1-\pi)^{n-y}
$$

and the log-likelihood is

$$
\log \ell(\pi \mid y)=\log \binom{n}{y}+y \log (\pi)+(n-y) \log (1-\pi)
$$

From calculus, we know a function $f(x)$ reaches its max at $x=x_{0}$ if

$$
\frac{d}{d x} f(x)=0 \text { at } x=x_{0}, \quad \text { and } \frac{d^{2}}{d x^{2}} f(x)<0 \text { at } x=x_{0} .
$$

Example (MLE for Binomial)

$$
\frac{d}{d \pi} \log \ell(\pi \mid y)=\frac{y}{\pi}-\frac{n-y}{1-\pi}=\frac{y-n \pi}{\pi(1-\pi)}
$$

equals 0 when

$$
\frac{y-n \pi}{\pi(1-\pi)}=0
$$

That is, when $y-n \pi=0$.
Solving for π gives the ML estimator (MLE) $\widehat{\pi}=\frac{y}{n}$.

$$
\text { and } \frac{d^{2}}{d \pi^{2}} \log \ell(\pi \mid y)=-\frac{y}{\pi^{2}}-\frac{n-y}{(1-\pi)^{2}}<0 \text { for any } 0<\pi<1
$$

Thus, we know $\log \ell(\pi \mid y)$ reaches its max when $\pi=y / n$.
So MLE of π is $\widehat{\pi}=\frac{y}{n}=$ sample proportion of successes.

MLEs for Other Inference Problems

- If $Y_{1}, Y_{2}, \ldots, Y_{n}$ are i.i.d. $N\left(\mu, \sigma^{2}\right)$,
the MLE for μ is the sample mean $\bar{Y}=\frac{\sum_{i=1}^{n} Y_{i}}{n}$.
- In simple linear regression,

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}
$$

When the errors ε_{i} are i.i.d. normal, the usual least squares estimates for β_{0} and β_{1} are the MLEs.
i.i.d. = Independent and identically distributed (same distribution each ε_{i}).

Hypothesis Tests of a Binomial Proportion

Hypothesis Tests of a Binomial Proportion

If the observed data $Y \sim \operatorname{Binomial}(n, \pi)$, recall the MLE for π is

$$
\hat{\pi}=Y / n .
$$

Recall that since $Y \sim \operatorname{Binomial}(n, \pi)$, the mean and standard deviation (SD) of Y are respectively,

$$
\mathrm{E}[Y]=n \pi, \quad \mathrm{SD}(Y)=\sqrt{n \pi(1-\pi)}
$$

The mean and SD of $\hat{\pi}$ are thus respectively

$$
\begin{gathered}
\mathrm{E}(\hat{\pi})=\mathrm{E}\left(\frac{Y}{n}\right)=\frac{\mathrm{E}(Y)}{n}=\pi, \\
\mathrm{SD}(\hat{\pi})=\mathrm{SD}\left(\frac{Y}{n}\right)=\frac{\mathrm{SD}(Y)}{n}=\sqrt{\frac{\pi(1-\pi)}{n} .} \\
\text { By CLT, as } n \text { gets large, } \frac{\hat{\pi}-\pi}{\sqrt{\pi(1-\pi) / n}} \sim N(0,1) .
\end{gathered}
$$

Hypothesis Tests for a Binomial Proportion

The textbook lists 3 different tests for testing

$$
\mathrm{H}_{0}: \pi=\pi_{0} \text { v.s. } \mathrm{H}_{a}: \pi \neq \pi_{0} \text { (or 1-sided alternative.) }
$$

- Score Test uses the score statistic $z_{s}=\frac{\hat{\pi}-\pi_{0}}{\sqrt{\pi_{0}\left(1-\pi_{0}\right) / n}}$
- Wald Test uses the Wald statistic $z_{w}=\frac{\hat{\pi}-\pi_{0}}{\sqrt{\hat{\pi}(1-\hat{\pi}) / n}}$
- Likelihood Ratio Test: we'll introduce shortly

As n gets large,

$$
\begin{aligned}
& \text { both } z_{s} \text { and } z_{w} \sim N(0,1), \\
& \text { both } z_{s}^{2} \text { and } z_{w}^{2} \sim \chi_{1}^{2}
\end{aligned}
$$

based on which, P-value can be computed.

Example (Will You Get the COVID-19 Vaccine?)

Pew Research Institute surveyed 12,648 U.S. adults during Nov. 18-29, 2020 about their intention to be vaccinated for COVID-19. Among the 1264 respondents in the 18-29 age group, 695 said they would probably or definitely get the vaccine if it's available today.

- estimate of $\pi=\hat{\pi}=\frac{695}{1264} \approx 0.55$

Example (Will You Get the COVID-19 Vaccine?)

Pew Research Institute surveyed 12,648 U.S. adults during Nov. 18-29, 2020 about their intention to be vaccinated for COVID-19. Among the 1264 respondents in the 18-29 age group, 695 said they would probably or definitely get the vaccine if it's available today.

- estimate of $\pi=\hat{\pi}=\frac{695}{1264} \approx 0.55$

Want to test whether 60\% of 18-29 year-olds in the U.S. would probably or definitely get the vaccine.

$$
\mathrm{H}_{0}: \pi=0.6 \text { v.s. } \mathrm{H}_{a}: \pi \neq 0.6
$$

- Score statistic $z_{s}=\frac{0.55-0.6}{\sqrt{0.6 \times 0.4 / 1264}} \approx-3.64$
- Wald statistic $z_{w}=\frac{0.55-0.6}{\sqrt{0.55 \times 0.45 / 1264}} \approx-3.58$

Note that the P-values computed using $N(0,1)$ or χ_{1}^{2} are identical.
P-value for the score test
2*pnorm(-3.64)
[1] 0.0002726
pchisq(3.64^2, df=1,lower.tail=F)
[1] 0.0002726
P-value for the Wald test
2*pnorm(-3.58)
[1] 0.0003436
pchisq(3.58^2, $\mathrm{df}=1$,lower.tail=F)
[1] 0.0003436

See slides L01_supp_chisq_table.pdf for more details about chi-squared distributions.

Likelihood Ratio Test (LRT)

Recall the likelihood function for a binomial proportion π is

$$
\ell(\pi \mid y)=\binom{n}{y} \pi^{y}(1-\pi)^{n-y}
$$

To test $\mathrm{H}_{0}: \pi=\pi_{0}$ v.s. $\mathrm{H}_{a}: \pi \neq \pi_{0}$, let

- ℓ_{0} be the max. likelihood under H_{0}, which is $\ell\left(\pi_{0} \mid y\right)$

Likelihood Ratio Test (LRT)

Recall the likelihood function for a binomial proportion π is

$$
\ell(\pi \mid y)=\binom{n}{y} \pi^{y}(1-\pi)^{n-y}
$$

To test $\mathrm{H}_{0}: \pi=\pi_{0}$ v.s. $\mathrm{H}_{a}: \pi \neq \pi_{0}$, let

- ℓ_{0} be the max. likelihood under H_{0}, which is $\ell\left(\pi_{0} \mid y\right)$
- ℓ_{1} be the max. likelihood over all possible π, which is $\ell(\hat{\pi} \mid y)$ where $\hat{\pi}=y / n$ is the MLE of π.

Likelihood Ratio Test (LRT)

Recall the likelihood function for a binomial proportion π is

$$
\ell(\pi \mid y)=\binom{n}{y} \pi^{y}(1-\pi)^{n-y}
$$

To test $\mathrm{H}_{0}: \pi=\pi_{0}$ v.s. $\mathrm{H}_{a}: \pi \neq \pi_{0}$, let

- ℓ_{0} be the max. likelihood under H_{0}, which is $\ell\left(\pi_{0} \mid y\right)$
- ℓ_{1} be the max. likelihood over all possible π, which is $\ell(\hat{\pi} \mid y)$ where $\hat{\pi}=y / n$ is the MLE of π.

Observe that

- $\ell_{0} \leq \ell_{1}$ always

Likelihood Ratio Test (LRT)

Recall the likelihood function for a binomial proportion π is

$$
\ell(\pi \mid y)=\binom{n}{y} \pi^{y}(1-\pi)^{n-y}
$$

To test $\mathrm{H}_{0}: \pi=\pi_{0}$ v.s. $\mathrm{H}_{a}: \pi \neq \pi_{0}$, let

- ℓ_{0} be the max. likelihood under H_{0}, which is $\ell\left(\pi_{0} \mid y\right)$
- ℓ_{1} be the max. likelihood over all possible π, which is $\ell(\hat{\pi} \mid y)$ where $\hat{\pi}=y / n$ is the MLE of π.

Observe that

- $\ell_{0} \leq \ell_{1}$ always
- Under H_{0}, we expect $\hat{\pi} \approx \pi_{0}$ and hence $\ell_{0} \approx \ell_{1}$.

Likelihood Ratio Test (LRT)

Recall the likelihood function for a binomial proportion π is

$$
\ell(\pi \mid y)=\binom{n}{y} \pi^{y}(1-\pi)^{n-y}
$$

To test $\mathrm{H}_{0}: \pi=\pi_{0}$ v.s. $\mathrm{H}_{a}: \pi \neq \pi_{0}$, let

- ℓ_{0} be the max. likelihood under H_{0}, which is $\ell\left(\pi_{0} \mid y\right)$
- ℓ_{1} be the max. likelihood over all possible π, which is $\ell(\hat{\pi} \mid y)$ where $\hat{\pi}=y / n$ is the MLE of π.

Observe that

- $\ell_{0} \leq \ell_{1}$ always
- Under H_{0}, we expect $\hat{\pi} \approx \pi_{0}$ and hence $\ell_{0} \approx \ell_{1}$.
- $\ell_{0} \ll \ell_{1}$ is a sign to reject H_{0}

Likelihood Ratio Test Statistic (LRT Statistic)

The likelihood-ratio test statistic (LRT statistic) for testing H_{0} : $\pi=\pi_{0}$ v.s. $\mathrm{H}_{a}: \pi \neq \pi_{0}$ equals

$$
-2 \log \left(\ell_{0} / \ell_{1}\right)
$$

- Here log is the natural log
- LRT statistic $-2 \log \left(\ell_{0} / \ell_{1}\right)$ is always nonnegative since $\ell_{0} \leq \ell_{1}$
- When n is large, $-2 \log \left(\ell_{0} / \ell_{1}\right) \sim \chi_{1}^{2}$.
- Reject H_{0} at level α if $-2 \log \left(\ell_{0} / \ell_{1}\right)>\chi_{1, \alpha}^{2}=$ qchisqq(1-alpha, df=1)
- P-value $=P\left(\chi_{1}^{2}>\right.$ observed LRT statistic $)$

Likelihood Ratio Test Statistic for a Binomial Proportion

Recall the likelihood function for a binomial proportion π is

$$
\ell(\pi \mid y)=\binom{n}{y} \pi^{y}(1-\pi)^{n-y}
$$

Thus

$$
\frac{\ell_{0}}{\ell_{1}}=\frac{\binom{n}{y} \pi_{0}^{y}\left(1-\pi_{0}\right)^{n-y}}{\binom{n}{y}\left(\frac{y}{n}\right)^{y}\left(1-\left(\frac{y}{n}\right)\right)^{n-y}}=\left(\frac{n \pi_{0}}{y}\right)^{y}\left(\frac{n\left(1-\pi_{0}\right)}{n-y}\right)^{n-y}
$$

and hence the LRT statistic is

$$
\begin{aligned}
-2 \log \left(\ell_{0} / \ell_{1}\right) & =2 y \log \left(\frac{y}{n \pi_{0}}\right)+2(n-y) \log \left(\frac{n-y}{n\left(1-\pi_{0}\right)}\right) \\
& =2\left\{O_{y e s} \times\left[\log \left(\frac{O_{\text {yes }}}{E_{y e s}}\right)\right]+O_{n o} \times\left[\log \left(\frac{O_{n o}}{E_{n o}}\right)\right]\right\}
\end{aligned}
$$

where $O_{y e s}=y$ and $O_{n o}=n-y$ are the observed counts of yes \& no, and $E_{y e s}=n \pi_{0}$ and $E_{n o}=n\left(1-\pi_{0}\right)$ are the expected counts of yes \& no under H_{0}.

Example (COVID-19 , Cont'd)

Among the 1264 respondents in the 18-29 age group , 695 answered "yes", 569 answered "no", so

$$
O_{y e s}=y=695, \quad O_{n o}=n-y=569 .
$$

Under $\mathrm{H}_{0}: \pi=0.6$, we expect 60% of the 1264 subjects to answer "yes" and 40% to answer "no." Don't round $n \pi_{0}$ and $n\left(1-\pi_{0}\right)$ to integers.

$$
\begin{aligned}
E_{y e s} & =n \pi_{0}=1264 \times 0.6=758.4, \\
E_{n o} & =n\left(1-\pi_{0}\right)=1264 \times 0.4=505.6 .
\end{aligned}
$$

LRT statistic $=2\left[695 \log \left(\frac{695}{758.4}\right)+569 \log \left(\frac{569}{505.6}\right)\right] \approx 13.091$
which exceeds the critical value $\chi_{1, \alpha}^{2}=\chi_{1,0.05}^{2}=3.84$ at $\alpha=0.05$ and hence H_{0} is rejected 5% level
qchisq(1-0.05, df=1)
[1] 3.841

P-value of LRT test of Porportions

Even though H_{a} is two-sided, the P-value remains to be the upper tail probability below, since a large deviation of $\widehat{\pi}=y / n$ from π_{0} would lead to a large LRT statistic, no matter $\pi_{0}>\widehat{\pi}$ or $\pi_{0}<\widehat{\pi}$.

For the COVID-19 example, the P-value is $P\left(\chi_{1}^{2}>13.09\right)$, which is
pchisq(13.09, df=1, lower.tail=F)
[1] 0.0002969

Confidence Intervals for Binomial Proportions

Duality of Confidence Intervals and Significance Tests

For a 2-sided test of θ, the dual $100(1-\alpha) \%$ confidence interval (CI) for the parameter θ consists of all those θ^{*} values that a two-sided test of $\mathrm{H}_{0}: \theta=\theta^{*}$ is not rejected at level α. E.g.,

- the dual 90% Wald Cl for π is the collection of all π_{0} such that a 2-sided Wald test of $\mathrm{H}_{0}: \pi=\pi_{0}$ having a P-value $>10 \%$

Duality of Confidence Intervals and Significance Tests

For a 2-sided test of θ, the dual $100(1-\alpha) \%$ confidence interval (CI) for the parameter θ consists of all those θ^{*} values that a two-sided test of $\mathrm{H}_{0}: \theta=\theta^{*}$ is not rejected at level α. E.g.,

- the dual 90% Wald Cl for π is the collection of all π_{0} such that a 2 -sided Wald test of $\mathrm{H}_{0}: \pi=\pi_{0}$ having a P-value $>10 \%$
- the dual 95% score Cl for π is the collection of all π_{0} such that a 2 -sided score test of $\mathrm{H}_{0}: \pi=\pi_{0}$ having a P-value $>5 \%$

Duality of Confidence Intervals and Significance Tests

For a 2-sided test of θ, the dual $100(1-\alpha) \%$ confidence interval
(CI) for the parameter θ consists of all those θ^{*} values that a two-sided test of $\mathrm{H}_{0}: \theta=\theta^{*}$ is not rejected at level α. E.g.,

- the dual 90% Wald Cl for π is the collection of all π_{0} such that a 2 -sided Wald test of $\mathrm{H}_{0}: \pi=\pi_{0}$ having a P-value $>10 \%$
- the dual 95% score Cl for π is the collection of all π_{0} such that a 2 -sided score test of $\mathrm{H}_{0}: \pi=\pi_{0}$ having a P-value $>5 \%$
E.g., If the 2 -sided P-value for testing $\mathrm{H}_{0}: \pi=0.2$ is 6%, then
- 0.2 is in the $95 \% \mathrm{Cl}$

Duality of Confidence Intervals and Significance Tests

For a 2-sided test of θ, the dual $100(1-\alpha) \%$ confidence interval
(Cl) for the parameter θ consists of all those θ^{*} values that a two-sided test of $\mathrm{H}_{0}: \theta=\theta^{*}$ is not rejected at level α. E.g.,

- the dual 90% Wald Cl for π is the collection of all π_{0} such that a 2 -sided Wald test of $\mathrm{H}_{0}: \pi=\pi_{0}$ having a P-value $>10 \%$
- the dual 95% score Cl for π is the collection of all π_{0} such that a 2 -sided score test of $\mathrm{H}_{0}: \pi=\pi_{0}$ having a P-value $>5 \%$
E.g., If the 2 -sided P-value for testing $\mathrm{H}_{0}: \pi=0.2$ is 6%, then
- 0.2 is in the $95 \% \mathrm{Cl}$
- The corresponding α for a $95 \% \mathrm{Cl}$ is 5%. As p-value $=6 \%>$ $\alpha=5 \%, \mathrm{H}_{0}: \pi=0.2$ is not rejected so 0.2 in the $95 \% \mathrm{Cl}$.

Duality of Confidence Intervals and Significance Tests

For a 2-sided test of θ, the dual $100(1-\alpha) \%$ confidence interval
(Cl) for the parameter θ consists of all those θ^{*} values that a two-sided test of $\mathrm{H}_{0}: \theta=\theta^{*}$ is not rejected at level α. E.g.,

- the dual 90% Wald Cl for π is the collection of all π_{0} such that a 2 -sided Wald test of $\mathrm{H}_{0}: \pi=\pi_{0}$ having a P-value $>10 \%$
- the dual 95% score Cl for π is the collection of all π_{0} such that a 2 -sided score test of $\mathrm{H}_{0}: \pi=\pi_{0}$ having a P-value $>5 \%$
E.g., If the 2 -sided P-value for testing $\mathrm{H}_{0}: \pi=0.2$ is 6%, then
- 0.2 is in the $95 \% \mathrm{Cl}$
- The corresponding α for a $95 \% \mathrm{Cl}$ is 5%. As p-value $=6 \%>$ $\alpha=5 \%, \mathrm{H}_{0}: \pi=0.2$ is not rejected so 0.2 in the $95 \% \mathrm{Cl}$.
- but 0.2 is NOT in the $90 \% \mathrm{Cl}$

Duality of Confidence Intervals and Significance Tests

For a 2-sided test of θ, the dual $100(1-\alpha) \%$ confidence interval
(CI) for the parameter θ consists of all those θ^{*} values that a two-sided test of $\mathrm{H}_{0}: \theta=\theta^{*}$ is not rejected at level α. E.g.,

- the dual 90% Wald Cl for π is the collection of all π_{0} such that a 2 -sided Wald test of $\mathrm{H}_{0}: \pi=\pi_{0}$ having a P-value $>10 \%$
- the dual 95% score Cl for π is the collection of all π_{0} such that a 2 -sided score test of $\mathrm{H}_{0}: \pi=\pi_{0}$ having a P-value $>5 \%$
E.g., If the 2 -sided P-value for testing $\mathrm{H}_{0}: \pi=0.2$ is 6%, then
- 0.2 is in the $95 \% \mathrm{Cl}$
- The corresponding α for a $95 \% \mathrm{Cl}$ is 5%. As p-value $=6 \%>$ $\alpha=5 \%, \mathrm{H}_{0}: \pi=0.2$ is not rejected so 0.2 in the $95 \% \mathrm{Cl}$.
- but 0.2 is NOT in the $90 \% \mathrm{Cl}$
- The corresponding α for a $90 \% \mathrm{Cl}$ is 10%. As p-value $=6 \%<$ $\alpha=10 \%, \mathrm{H}_{0}: \pi=0.2$ is rejected so 0.2 NOT in the $90 \% \mathrm{CI}$.

Wald Confidence Intervals (Wald Cls)

For a Wald test, $\mathrm{H}_{0}: \pi=\pi^{*}$ is not rejected at level α if

$$
\left|\frac{\hat{\pi}-\pi^{*}}{\sqrt{\hat{\pi}(1-\hat{\pi}) / n}}\right|<z_{\alpha / 2}
$$

so a $100(1-\alpha) \%$ Wald Cl is

$$
\left(\hat{\pi}-z_{\alpha / 2} \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}, \hat{\pi}+z_{\alpha / 2} \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}\right) .
$$

where

confidence level $100(1-\alpha) \%$	90%	95%	99%
$z_{\alpha / 2}$	1.645	1.96	2.576

- Introduced in STAT 220 and 234

Drawbacks:

- Wald Cl for π collapses whenever $\hat{\pi}=0$ or 1 .
- Actual coverage prob. for Wald CI is usually much less than $100(1-\alpha) \%$ if π close to 0 or 1 , unless n is quite large.

Score Confidence Intervals (Score Cls)

For a Score test, $\mathrm{H}_{0} \pi=\pi^{*}$ is not rejected at level α if

$$
\left|\frac{\hat{\pi}-\pi^{*}}{\sqrt{\pi^{*}\left(1-\pi^{*}\right) / n}}\right|<z_{\alpha / 2} .
$$

A $100(1-\alpha) \%$ score confidence interval consists of those π^{*} satisfying the inequality above.

Example. If $\hat{\pi}=0$, the 95% score Cl consists of those π^{*} satisfying

$$
\left|\frac{0-\pi^{*}}{\sqrt{\pi^{*}\left(1-\pi^{*}\right) / n}}\right|<1.96
$$

After a few steps of algebra, we can show such π^{*} 's are those satisfying $0<\pi^{*}<\frac{1.96^{2}}{n+1.96^{2}}$. The 95% score CI for π when $\hat{\pi}=0$ is thus

$$
\left(0, \frac{1.96^{2}}{n+1.96^{2}}\right)
$$

which is NOT collapsing!

Score CI (Cont'd)

The end points of the score Cl can be shown to be

$$
\frac{\left(y+z^{2} / 2\right) \pm z_{\alpha / 2} \sqrt{n \hat{\pi}(1-\hat{\pi})+z^{2} / 4}}{n+z^{2}} \text { where } z=z_{\alpha / 2}
$$

- midpoint of the score $\mathrm{CI}, \frac{\hat{\pi}+z^{2} / 2 n}{1+z^{2} / n}$, is between $\hat{\pi}$ and 0.5 .
- better than the Wald CI , that the actual coverage probabilities are closer to the nominal levels.

Agresti-Coull Confidence Intervals

Recall the midpoint for a $100(1-\alpha) \%$ score Cl is

$$
\tilde{\pi}=\frac{y+z^{2} / 2}{n+z^{2}}, \quad \text { where } z=z_{\alpha / 2}
$$

which looks as if we add $z^{2} / 2$ more successes and $z^{2} / 2$ more failures to the data before we estimate π.

This inspires the Agresti-Coull $100(1-\alpha) \%$ confidence interval:

$$
\tilde{\pi} \pm z \sqrt{\frac{\tilde{\pi}(1-\tilde{\pi})}{n+z^{2}}} \quad \text { where } \tilde{\pi}=\frac{y+z^{2} / 2}{n+z^{2}} \quad \text { and } z=z_{\alpha / 2}
$$

which is essentially a Wald-type interval after adding $z^{2} / 2$ more successes and $z^{2} / 2$ more failures to the data, where $z=z_{\alpha / 2}$.

95\% "Plus-Four" Confidence Intervals

At 95% level, $z_{\alpha / 2}=z_{0.025}=1.96$, the midpoint of the Agresti-Coull Cl is

$$
\frac{y+z_{\alpha / 2}^{2} / 2}{n+z_{\alpha / 2}^{2}}=\frac{y+1.96^{2} / 2}{n+1.96^{2}} \approx \frac{y+2}{n+4} .
$$

Hence some approximate the 95\% Agresti-Coull correction to the Wald Cl by adding 2 successes and 2 failures before computing $\hat{\pi}$ and then compute the Wald CI:

$$
\hat{\pi}^{*} \pm 1.96 \sqrt{\frac{\hat{\pi}^{*}\left(1-\hat{\pi}^{*}\right)}{n+4}}, \quad \text { where } \hat{\pi}^{*}=\frac{y+2}{n+4} .
$$

- This is so called the "Plus-Four" confidence interval

95\% "Plus-Four" Confidence Intervals

At 95% level, $z_{\alpha / 2}=z_{0.025}=1.96$, the midpoint of the Agresti-Coull
Cl is

$$
\frac{y+z_{\alpha / 2}^{2} / 2}{n+z_{\alpha / 2}^{2}}=\frac{y+1.96^{2} / 2}{n+1.96^{2}} \approx \frac{y+2}{n+4} .
$$

Hence some approximate the 95\% Agresti-Coull correction to the Wald Cl by adding 2 successes and 2 failures before computing $\hat{\pi}$ and then compute the Wald CI:

$$
\hat{\pi}^{*} \pm 1.96 \sqrt{\frac{\hat{\pi}^{*}\left(1-\hat{\pi}^{*}\right)}{n+4}}, \quad \text { where } \hat{\pi}^{*}=\frac{y+2}{n+4} .
$$

- This is so called the "Plus-Four" confidence interval
- Note the "Plus-Four" Cl is for 95% confidence level only

95\% "Plus-Four" Confidence Intervals

At 95% level, $z_{\alpha / 2}=z_{0.025}=1.96$, the midpoint of the Agresti-Coull Cl is

$$
\frac{y+z_{\alpha / 2}^{2} / 2}{n+z_{\alpha / 2}^{2}}=\frac{y+1.96^{2} / 2}{n+1.96^{2}} \approx \frac{y+2}{n+4} .
$$

Hence some approximate the 95\% Agresti-Coull correction to the
Wald Cl by adding 2 successes and 2 failures before computing $\hat{\pi}$ and then compute the Wald Cl :

$$
\hat{\pi}^{*} \pm 1.96 \sqrt{\frac{\hat{\pi}^{*}\left(1-\hat{\pi}^{*}\right)}{n+4}}, \quad \text { where } \hat{\pi}^{*}=\frac{y+2}{n+4} .
$$

- This is so called the "Plus-Four" confidence interval
- Note the "Plus-Four" Cl is for 95% confidence level only
- At 90% level, $z_{\alpha / 2}=z_{0.05}=1.645$, Agresti-Coull CI would add $z_{\alpha / 2}^{2} / 2=1.645^{2} / 2 \approx 1.35$ more successes and 1.35 more failures.

Likelihood Ratio Confidence Intervals (LR CIs)

A LR test will not reject $\mathrm{H}_{0}: \pi=\pi^{*}$ at level α if

$$
-2 \log \left(\ell_{0} / \ell_{1}\right)=-2 \log \left(\frac{\ell\left(\pi^{*} \mid y\right)}{\ell(\hat{\pi} \mid y)}\right)<\chi_{1, \alpha}^{2}
$$

A 100(1- α)\% likelihood ratio Cl consists of those π^{*} with likelihood

$$
\ell\left(\pi^{*} \mid y\right)>e^{-\chi_{1, \alpha}^{2} / 2} \ell(\hat{\pi} \mid y)
$$

E.g., the $95 \% \mathrm{LR} \mathrm{CI}$ contains those π^{*} with likelihood above
$e^{-\chi_{1.005}^{2} / 2}=e^{-3.84 / 2} \approx 0.0147$ multiple of the max. likelihood.

- No close form expression for end points of a LR CI
- Can use software to find the end points numerically

Likelihood Ratio Confidence Intervals Do Not Collapse at 0

Recall the LRT statistic for testing $\mathrm{H}_{0}: \pi=\pi_{0}$ against $\mathrm{H}_{a}: \pi \neq \pi_{0}$ is

$$
-2 \log \left(\ell_{0} / \ell_{1}\right)=2 y \log \left(\frac{y}{n \pi_{0}}\right)+2(n-y) \log \left(\frac{n-y}{n\left(1-\pi_{0}\right)}\right)
$$

and the $\mathrm{H}_{0}: \pi=\pi_{0}$ is rejected if $-2 \log \left(\ell_{0} / \ell_{1}\right)>\chi_{1, \alpha}^{2}$. Hence the $100(1-\alpha) \%$ LR confidence interval consists of those π_{0} satisfying

$$
2 y \log \left(\frac{y}{n \pi_{0}}\right)+2(n-y) \log \left(\frac{n-y}{n\left(1-\pi_{0}\right)}\right) \leq \chi_{1, \alpha}^{2}
$$

In particular, when $y=0$, the $95 \% \mathrm{LRCI}$ consists of those π_{0} satisfying

$$
-2 n \log \left(1-\pi_{0}\right)<\chi_{1,0.05}^{2}=3.84
$$

That is, $\left(0,1-e^{-3.84 /(2 n)}\right)$, which is NOT collapsing, either!

Example (Political Party Affiliation)

A survey about the political party affiliation of residents in a town found 4 of 400 in the sample to be Independents.

Want a $95 \% \mathrm{Cl}$ for $\pi=$ proportion of Independents in the town.

- estimate of $\pi=4 / 400=0.01$
- Wald CI: $0.01 \pm 1.96 \sqrt{\frac{0.01 \times(1-0.01)}{400}} \approx(0.00025,0.01975)$.
- 95% Score Cl contains those π^{*} satisfying

$$
\frac{0.01-\pi^{*}}{\sqrt{\pi^{*}\left(1-\pi^{*}\right) / 400}}<1.96
$$

which is the interval $(0.0039,0.0254)$.

- 95% Agresti-Coull CI: adding $z^{2} / 2=z_{0.05}^{2} / 2=1.96^{2} / 2 \approx 1.92$.

The estimate of π is $(4+1.92) /(400+3.84) \approx 0.01466$

$$
0.01466 \pm 1.96 \sqrt{\frac{0.01466 \times(1-0.01466)}{403.84}} \approx(0.00294,0.02638) .
$$

R Function "prop.test()" for Score Test and CI

The R function prop.test() performs the score test and produces the score $\mathbf{C l}$.

- It test $\mathrm{H}_{0}: \pi=0.5$ vs $\mathrm{H}_{a}: \pi \neq 0.5$ by default
- Uses continuity correction by default. prop.test $(4,400)$

```
1-sample proportions test with continuity correction
```

data: 4 out of 400 , null probability 0.5
X-squared $=382$, $\mathrm{df}=1$, p-value $<2 \mathrm{e}-16$
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
Q. 0032080.027187
sample estimates:
p
0.01

R Function "prop.test()" for Score Test and CI

To perform a score test of $\mathrm{H}_{0}: \pi=0.02$ vs $\mathrm{H}_{a}: \pi \neq 0.02$ without the continuity correction...

```
prop.test(4,400, p=0.02, correct=F)
1-sample proportions test without continuity correction
data: 4 out of 400, null probability 0.02
X-squared = 2, df = 1, p-value = 0.2
alternative hypothesis: true p is not equal to 0.02
95 percent confidence interval:
    0.003895 0.025427
sample estimates:
    p
0.01
```

The $95 \% \mathrm{Cl}$ matches the score Cl computed earlier.

R function for Other Cls of Binomial Proportions

The function binom. confint () in the package binom can produce confidence intervals for several methods.

You need to first install the binom package just once, ever.
To check if the binom package has installed on your computer, library (binom)

If you get an error message,

```
# Error in library(binom) : there is no package called 'binom'
```

that means the binom library is not installed. You can run the following command to install the binom library.

If FALSE, you can install the library using the command below

Now one can use binom. confint() to find the Cls.

```
# Wald CI
binom.confint(4, 400, conf.level = 0.95, method = "asymptotic")
    method x n mean lower upper
1 asymptotic 4 400 0.01 0.0002493 0.01975
# Score CI, also called `Wilson"
binom.confint(4, 400, conf.level = 0.95, method = "wilson")
    method x n mean lower upper
1 wilson 4 400 0.01 0.0038950.02543
# Agresti-Coull CI
binom.confint(4, 400, conf.level = 0.95, method = "ac")
    method x n mean lower upper
1 agresti-coull 4 400 0.01 0.002939 0.02638
# Likelihood-Ratio Test CI
binom.confint(4, 400, conf.level = 0.95, method = "lrt")
    method x n mean lower upper
1 lrt 4 400 0.01 0.003136 0.02308
```


Example (Political Party Affiliation) LR CI

Recall the 95\% LR confidence interval consists of those π_{0} satisfying

$$
2 y \log \left(\frac{y}{n \pi_{0}}\right)+2(n-y) \log \left(\frac{n-y}{n\left(1-\pi_{0}\right)}\right) \leq \chi_{1,0.05}^{2}=3.8415
$$

To verify the LRT confidence interval ($0.003135542,0.02307655$) given by binom. confint (), let's plug the end points in to the LRT test statistic above and see if we obtain 3.84146

```
y = 4
n = 400
pi0 = c(0.003135542, 0.02307655)
2*y*log(y/n/pi0) + 2*(n-y)*log((n-y)/n/(1-pi0))
[1] 3.806 3.841
pi0 = c(0.003115255, 0.02307735)
2*y*log(y/n/pi0) + 2*(n-y)*log((n-y)/n/(1-pi0))
[1] 3.841 3.841
```


Comparison of Wald, Score, Agresti-Coull, and LRT Cls

- End points of Score, Agresti-Coull, and LRT CIs are generally closer to 0.5 than those for the Wald Cls

Comparison of Wald, Score, Agresti-Coull, and LRT Cls

- End points of Score, Agresti-Coull, and LRT CIs are generally closer to 0.5 than those for the Wald Cls
- End points of Wald and Agresti-Coull Cls may fall outside of $[0,1]$, while those of Score and LRT CIs always fall between 0 and 1

Comparison of Wald, Score, Agresti-Coull, and LRT Cls

- End points of Score, Agresti-Coull, and LRT CIs are generally closer to 0.5 than those for the Wald Cls
- End points of Wald and Agresti-Coull Cls may fall outside of $[0,1]$, while those of Score and LRT CIs always fall between 0 and 1
- Agresti-Coull Cls always contain the Score Cls

Comparison of Wald, Score, Agresti-Coull, and LRT Cls

- End points of Score, Agresti-Coull, and LRT CIs are generally closer to 0.5 than those for the Wald Cls
- End points of Wald and Agresti-Coull Cls may fall outside of $[0,1]$, while those of Score and LRT CIs always fall between 0 and 1
- Agresti-Coull Cls always contain the Score Cls
- Score Cls are narrower than Wald Cls unless y / n is close to 0 or 1.

True Confidence Levels for Various Types of Cls When $n=12$

True Coverage Probabilities for Various Cls When $n=200$

True Confidence Levels of Various Cls

- How are true confidence levels computed? Why do the curves look jumpy? See HW2.

True Confidence Levels of Various Cls

- How are true confidence levels computed? Why do the curves look jumpy? See HW2.
- Wald CIs tend to be farthest below the 0.95 level. In fact, the true level can be as low as 0 when π is close to 0 or 1

True Confidence Levels of Various Cls

- How are true confidence levels computed? Why do the curves look jumpy? See HW2.
- Wald Cls tend to be farthest below the 0.95 level. In fact, the true level can be as low as 0 when π is close to 0 or 1
- Score Cls are closer to the 0.95 level, though it may fall below 0.95 when π is close to 0 or 1

True Confidence Levels of Various Cls

- How are true confidence levels computed? Why do the curves look jumpy? See HW2.
- Wald CIs tend to be farthest below the 0.95 level. In fact, the true level can be as low as 0 when π is close to 0 or 1
- Score Cls are closer to the 0.95 level, though it may fall below 0.95 when π is close to 0 or 1
- Agresti-Coull Cls are usually conservative (true level are above 0.95) especially when π close to 0 or 1 .

True Confidence Levels of Various Cls

- How are true confidence levels computed? Why do the curves look jumpy? See HW2.
- Wald CIs tend to be farthest below the 0.95 level. In fact, the true level can be as low as 0 when π is close to 0 or 1
- Score Cls are closer to the 0.95 level, though it may fall below 0.95 when π is close to 0 or 1
- Agresti-Coull Cls are usually conservative (true level are above 0.95) especially when π close to 0 or 1 .
- LRT Cls are better than Wald but generally not as good as Score or Agresti-Coull Cls

True Confidence Levels of Various Cls

- How are true confidence levels computed? Why do the curves look jumpy? See HW2.
- Wald CIs tend to be farthest below the 0.95 level. In fact, the true level can be as low as 0 when π is close to 0 or 1
- Score Cls are closer to the 0.95 level, though it may fall below 0.95 when π is close to 0 or 1
- Agresti-Coull Cls are usually conservative (true level are above 0.95) especially when π close to 0 or 1 .
- LRT Cls are better than Wald but generally not as good as Score or Agresti-Coull Cls
- When n gets larger, all 4 types of intervals become closer to the 0.95 level, though Wald CIs remain poor when π is close to 0 or 1

How To Compute the True Confidence Levels? (1)

Consider the true confidence level the 95% Wald Cl when $n=12$ and $\pi=0.1$, i.e., the probability that the 95% Wald confidence interval (Wald CI) below

$$
\left(\hat{\pi}-1.96 \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}, \hat{\pi}+1.96 \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}\right) \quad \text { where } \hat{\pi}=y / n
$$

contains $\pi=0.1$ when $y \sim \operatorname{Binomial}(n=12, \pi=0.1)$.
If y has a $\operatorname{Binomial}(n=12, \pi=0.1)$ distribution, the possible values of y are the integers $0,1,2, \ldots, 12$.

We can calculate the corresponding Wald CI for each possible value of y on the next page.

See also: https://yibi-huang.shinyapps.io/shiny/

```
\(\mathrm{n}=12\)
\(y=0: n\)
\(\mathrm{p}=\mathrm{y} / \mathrm{n}\)
CI.lower \(=p-1.96 * \operatorname{sqrt}(p *(1-p) / n)\)
CI.upper \(=p+1.96 * \operatorname{sqrt}\left(p^{*}(1-p) / n\right)\)
data.frame(y, CI.lower, CI.upper)
    y CI.lower CI.upper
100.000000 .0000
\(2 \quad 1\)-0.07305 0.2397
\(3 \quad 2\)-0.04420 0.3775
\(430.00500 \quad 0.4950\)
\(5 \quad 4 \quad 0.06661 \quad 0.6001\)
\(6 \quad 5 \quad 0.137720 .6956\)
\(7 \quad 6 \quad 0.21710 \quad 0.7829\)
\(8 \quad 7 \quad 0.30439 \quad 0.8623\)
\(9 \quad 8 \quad 0.399940 .9334\)
\(10 \quad 9 \quad 0.50500 \quad 0.9950\)
\(1110 \quad 0.62247 \quad 1.0442\)
\(1211 \quad 0.76029 \quad 1.0730\)
13121.000001 .0000
```

Which of the Wald intervals contain $\pi=0.1$?

```
n = 12
y = 0:n
p = y/n
CI.lower = p - 1.96*sqrt(p*(1-p)/n)
CI.upper = p + 1.96*sqrt(p*(1-p)/n)
data.frame(y, CI.lower, CI.upper)
    y CI.lower CI.upper
10 0.00000 0.0000
1 -0.07305 0.2397
2 -0.04420 0.3775
4 0.00500 0.4950
5 4 0.06661 0.6001
5 0.13772 0.6956
7 0 0.21710 0.7829
7 0.30439 0.8623
9 0.39994 0.9334
10 9 0.50500 0.9950
11 10 0.62247 1.0442
12 11 0.76029 1.0730
13121.00000 1.0000
```

Which of the Wald intervals contain $\pi=0.1$?

```
Only the Cls for y=1,2,3,4.
```

When $y \sim \operatorname{Binomial}(n=12, \pi=0.1)$,
$P(95 \%$ Wald CI contains $\pi=0.1)$
$=P(y=1)+P(y=2)+P(y=3)+P(y=4)$
$=\binom{12}{1}(0.1)^{1}(0.9)^{11}+\binom{12}{2}(0.1)^{2}(0.9)^{10}+\binom{12}{3}(0.1)^{3}(0.9)^{9}+\binom{12}{4}(0.1)^{4}(0.9)^{8}$.
The four Binomial probabilities above can be found using
dbinom(1:4, size $=12, \mathrm{p}=0.1$)
[1] 0.37657 0. 230130.085230 .02131
and hence their total is
$\operatorname{sum}(\operatorname{dbinom}(1: 4$, size $=12, p=0.1)$)
[1] 0.7132
The true confidence level of a 95% Wald Cl is just 71%, far below the nominal 95\% level.

