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Poisson Approximation to Binomial

If Y ~ binomial(n, p) with huge n and tiny p such that np
moderate, then
Y approx. ~ Poisson(np).

The following shows the values of P(Y = k), k=0,1,2,...,8 for
Y ~ Binomial(n =50, p = 0.03), and
Y ~ Poisson(A = 50 x 0.03 = 1.5).

> dbinom(0:5, size=50, p=0.03) # Binomial (n=50, p=0.03)

[1] 0.21806538 0.33721450 0.25551820 0.12644200 0.04594928 0.01307423

> dpois(0:5, lambda = 50%0.03)
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# Poisson(lambda = 50%0.03)
[1] 0.22313016 0.33469524 0.25102143 0.12551072 0.04706652 0.01411996

Review of Poisson Distributions

A random variable Y has a Poisson distribution with parameter

A>0if
k

P(Y:k):%e—k, k=0,1,2,...

denoted as
Y ~ Poisson(\).

One can show that

E[Y] =X, Var(Y)=X = SD(Y)=VA
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Example (Fatalities From Horse Kicks)

The number of fatalities in a year that resulted from being kicked
by a horse or mule was recorded for each of 10 corps of Prussian
cavalry over a period of 20 years, giving 200 corps-years worth of
datal.

# of Deaths (in a corp in a year) ‘ 0 1 2 3
Frequency ‘ 109 65 22 3

4 ‘ Total
1 ‘ 200

The count of deaths due to horse kicks in a corp in a given year
may have a Poisson distribution because

» p = P(a soldier died from horsekicks in a given year) ~ 0;
» n = # of soldiers in a corp was large (100’s or 1000's);

» whether a soldier was kicked was (at least nearly) independent
of whether others were kicked

'von Bortkiewicz (1898) Das Gesetz der Kleinen Zahlen. Leipzig: Teubner.
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Example (Fatalities From Horse Kicks — Cont'd)

» Suppose all 10 corps had the same n and p throughout the 20
year period. Then we may assume that the 200 counts all
have the Poisson distn. with the same rate A\ = np.

» How to estimate \?

» MLE for the rate A of a Poisson distribution is the sample
mean Y.

» So for the horsekick data:

# of Deaths (in a corp in a year) ‘ 0 1 2 3 4 ‘ Total
Frequency ‘ 109 65 22 3 1 ‘ 200
the MLE for \ is
3o O0x109+1x65+2x22+3x3+4x1 061
200
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When Poisson Distributions Come Up

Variables that are generally Poisson:
» # of misprints on a page of a book

» # of calls coming into an exchange during a unit of time (if
the exchange services a large number of customers who act
more or less independently.)

» # of people in a community who survive to age 100
> # of customers entering a post office on a given day

» # of vehicles that pass a marker on a roadway during a unit
of time (for light traffic only. In heavy traffic, however, one
vehicle's movement may influence another)
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Example (Fatalities From Horse Kicks — Cont'd)

The fitted Poisson probability to have k deaths from horsekicks is
P(Y = k) = e Ak /kl = e 06L(0.61)/k!, ,k=0,1,2,...

Observed  Fitted Poisson Freq.

k Frequency =200 x P(Y = k)
0 109 108.7
1 65 66.3
2 22 20.2
3 3 4.1
4 1 0.6
Total 200 199.9

> round(200*dpois(0:4, 0.61),1)
[1] 108.7 66.3 20.2 4.1 0.6
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GLMs for Poisson Response Data

Assume the response Y ~ Poisson(u(x)), where x is an
explanatory variable.
Commonly used link functions for Poisson distributions are
» identity link: p(x) = a + Bx
» sometimes problematic because p(x) must be > 0, but
a + Bx may not
> log link: log(u(x)) = a4+ Bx <= p(x) = e*5x,
» u(x) > 0 always
» Whenever x increases by 1 unit, (x) is multiplied by e

Loglinear models use Poisson with log link
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Inference of Parameters

» Wald, LR tests and Cls for 3's work as in logistic models

» Goodness of fit:

1

Deviance = G*> =2 " y;log <£> = —2(Ly — Ls)
i Hi
o2
Pearson’s chi-squared = X2 = 2 Z M
: Hi

G? and X? are approx. ~ X%—p? when all fi;'s are large (> 10),
where n = num. of observations,
and p = num. of parameters in the model.

Poisson - 9

Example (Mating and Age of Male Elephants)
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On the plot, ‘3" means there are 3 points at the same location.
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Example (Mating and Age of Male Elephants)

Joyce Poole studied a population of African elephants in Amboseli
National Park, Kenya, for 8 years?.
» Response: number of successful matings in the 8 years of 41
male elephants.
» Predictor: estimated ages of the male elephants at beginning
of the study.

Age Matings | Age Matings | Age Matings | Age Matings
27 0 30 1 36 5 43 3
28 1 32 2 36 6 43 4
28 1 33 4 37 1 43 9
28 1 33 3 37 1 44 3
28 3 33 3 37 6 45 5
29 0 33 3 38 2 47 7
29 0 33 2 39 1 48 2
29 0 34 1 41 3 52 9
29 2 34 1 42 4

29 2 34 2 43 0

29 2 34 3 43 2

Data from J. H. Poole, “Mate Guarding, Reproductive Success and Female
Choice in African Elephants”, Animal Behavior 37 (1989): 842-499.
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Example (Elephant)

Let Y = number of successful matings ~ Poisson(u);

Model 1: u = a + BAge (identity link)

> Age = c(27,28,28,28,28,29,29,29,29,29,29,30,32,33,33,33,33,33,34, 34,
34,34,36,36,37,37,37,38,39,41,42,43,43,43,43,43,44,45,47,48,52)
> Matings = c¢(0,1,1,1,3,0,0,0,2,2,2,1,2,4,3,3,3,2,1,1,2,3,
5,6,1,1,6,2,1,3,4,0,2,3,4,9,3,5,7,2,9)
> eleph.id = glm(Matings ~ Age, family=poisson(link="identity"))
> summary(eleph.id)
Coefficients:
Estimate Std. Error z value Pr(>|z])
(Intercept) -4.55205 1.33916 -3.399 0.000676 **x*
Age 0.20179 0.04023 5.016 5.29e-07 **x
Null deviance: 75.372 on 40 degrees of freedom
Residual deviance: 50.058 on 39 degrees of freedom
AIC: 155.5

Fitted model 1: 7i = & + BAge = —4.55 + 0.20 Age
» ~ [ = 0.20 more matings if the elephant is 1 year older
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Example (Elephant)

Model 2 : log(u) = o + BAge (log link)
> eleph.log = glm(Matings ~ Age, family=poisson(link="log"))

> summary (eleph.log)
Coefficients:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -1.58201 0.54462 -2.905 0.00368 *x*
Age 0.06869 0.01375  4.997 5.81e-07 *x*x*

Null deviance: 75.372 on 40 degrees of freedom
Residual deviance: 51.012 on 39 degrees of freedom

AIC: 156.46

Fitted model 2: log(z) = —1.582 + 0.0687Age

fi = exp(—1.582 + 0.0687Age) = 0.205(1.071)"ee

» expected number of matings increase by 7.1% for every extra

year of age

» for a 40 year-old male, the expected number of matings is

[ = exp(—1.582 + 0.0687(40)) ~ 3.2.
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Residuals

» Deviance residual:

d; = sign(y; — 1i)\/2 lyi log(yi/ i) — yi + il

1 . .y/' - ﬁl
» Pearson’s residual: ¢; = —
V Hi

» Standardized Pearson’s residual =

» Standardized Deviance residual = Vi
— h;
where h; = leverage of ith observation

Which Model Better Fits the Data?

AIC  Deviance df

Model 1 (identity link) | 155.50 50.058 39
Model 2 (log link) 156.46 51.012 39
10 o
» Based on AIC, — identity link .
Model 1 fits better g | 77 loglink
2 .
» Goodness of fit tests are }g
not appropriate because
g
£
» Based on scatter plot... <
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Residual Plots

plot(Age, rstandard(eleph.id),

40 45 50
Age of Male Elephants (years)

ylab="Standardized Deviance Residual", main="identity link")

abline (h=0)
plot(Age, rstandard(eleph.id, type="pearson"),
ylab="Standardized Pearson Residual", main =

abline (h=0)

identity link

"identity link")

identity link

» potential outlier if [standardized residual| > 2 or 3

» R function residuals() gives deviance residuals by default,
and Pearson residuals with option type="pearson".

» R function rstandard() gives standardized deviance residuals
by default, and standardized Pearson residuals with option

type="pearson".
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Standardized Deviance Residual
o
o
o

Standardized Pearson Residual
0

Age
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Residual Plots Models for Rates

plot(Age, rstandard(eleph.log), Sometimes y; have different bases (e.g., number murders for cities
ylab="Standardized Deviance Residual", main="log link") with different pop. sizes)
abline (h=0)
Let y = count with base t. Assume y ~ Poisson(u), where
plot(Age, rstandard(eleph.log, type="pearson"),
ylab="Standardized Pearson Residual", main = "log link") = \t
abline (h=0)

more relevant to model rate A at which events occur.

log link log link
© o < o .
3~ °o E °, Loglinear model:
7 . e g
[ i3 R o °
g . . |5 . log A = log(/t) = a + Bx
-§ o . ] B s ° o, § 5 o . : o o .
E ‘T‘ 1 ° ° ° E ° o ) ° oy Ie'
Eoq" . e A S log() — log(t) = a + Bx
5 o | o B - . log(t) is an offset.
I I I I I I I I I I . .
30 35 40 45 50 30 35 40 45 50 See pp. 82-84 of text for discussion.
Age Age
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Example (British Train Accidents over Time) > trainsl = glm(TrRd ~ I(Year-1975), offset = log(KM),

family=poisson, data=trains)

Have collisions between trains and road vehicles become more )
> summary(trainsi)

prevalent over time? Estimate Std. Error z value Pr(>lzl)
» Total number of train-km (in millions) varies from year to (Intercept)  -4.21142  0.15892 -26.50 < 2e-16 *kx
year. I(Year - 1975) -0.03292  0.01076 -3.06 0.00222 *x*

» Model annual rate of train-road collisions per million train-km

i . Null deviance: 47.376 on 28 degrees of freedom
with base t = annual number of train-km, and x = num. of

Residual deviance: 37.853 on 27 degrees of freedom

years since 1975 AIC: 133.52

> trains = read.table("traincollisions.dat", head=T) Fitted Model: lo (’):) —lo (A/t) — _4.21 — 0.0329x
> trains - 108 = loglu o ) )

Year KM Train TrRd ~ m
1 2003 518 0 3 N=E o 421700320 =421, -0.0329)x _ (0 0148)(0.968)
2 2002 516 1 3 t
Z éggé 282 (1) g » Rate estimated to decrease by 3.2% per yr from 1975 to 2003.
5 1999 505 12 » Est. rate for 1975 (x = 0) is 0.0148 per million km (15 per
billion).
arorraze 1 8 > Est. rate for 2003 (x = 28) is 0.0059 per million km (6 per
28 1976 426 2 12 -
29 1975 436 5 2 billion).
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plot(trains$Year, 1000*trains$TrRd/trains$KM,xlab="Year", Train Data _ Standardized Deviance ReSiduals
ylab="Collisions per Billion Train-Kilometers",ylim=c(1,31.4))

curve (1000*exp(trainsi$coef [1]+trainsi$coef [2] *(x-1975)), add=T)
plot(trains$Year, rstandard(trainsl),

< o o xlab="Year", ylab="Standardized Deviance Residuals")
% ™ abline (h=0)
e
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Poisson - 21 Poisson - 22
Train Data — Standardized Pearson Residuals Models for Rate Data With ldentity Link
plot(trains$Year, rstandard(trainsl,type="pearson"), For y ~ Poisson(,u) with base t. where

xlab="Year", ylab="Standardized Pearson Residuals")
abline (h=0)

w= At

o ¥ 7 ’
© the loglinear model
2o
EN— ° log A = log(u/t) = a + Bx
2
E P ° o e assumes the effect of the explanatory variable on the response to
g . Lo o © be multiplicative.
g © o° o °° Alternatively, if we want the effect to be additive,
g4 . T e
7 o0 ° A=pu/t=a+ px

N _fo

e T T T T T & p=at+ Ptx
1975 1980 1985 1990 1995 2000

vear we may fit a GLM model with identity link, using t and tx as

There were 13 train-road collisions in 1986, a lot higher than the explanatory variables and with no intercept or offset terms.

fitted 4.3 for that
ItTted mean or a yearpoisson - 03 Poisson - 24



Train Data N |dent|ty L|nk plot(trains$Year, 1000*trains$TrRd/trains$kKM,xlab="Year",
ylab="Collisions per Billion Train-Kilometers",ylim=c(1,31.4))

base t = annual num. of train-km, x = num. of years since 1975 curve (1000*exp (trainsi$coef [1]+trainsi$coef [2]*(x-1975)), add=T)
) B curve (1000xtrains2$coef [1]1+1000*trains2$coef [2] *(x-1975), add=T, lty=2)
> trains2 = glm(TrRd ~ -1 + KM + I(KM*(Year-1975)), legend("topright", c("log-linear","identity"), lty=1:2)

family=poisson(link="identity"), data=trains)

> summary(trains2) g
Estimate Std. Error z value Pr(>|z]|) @ S - ° log-linear
KM 1.426e-02 1.888e-03  7.557 4.1lde-14 *** E ° - identity
I(KM * (Year - 1975)) -3.239e-04 9.924e-05 -3.264 0.0011 *x* :lz 0
—_ c
Null deviance: Inf on 29 degrees of freedom f_é & o
Residual deviance: 37.287 on 27 degrees of freedom S °
AIC: 132.95 = <7
o
~ = o _|
Fitted Model: A =i/t = 0.0143 — 0.000324x g -
(%]
, - S o
» Estimated rate decreases by 0.00032 per million km (0.32 per 2 .
billion km) per yr from 1975 to 2003. L=C3 She | | | | |
» Est. rate for 1975 (x = 0) is 0.0143 per million km (14.3 per 1975 1980 1985 1990 1995 2000
billion km). Year
» Est. rate for 2003 (x = 28) is 0.0052 per million km (5.2 per _ _ _ o S
billion km). The loglinear fit and the linear fit (identity link) are nearly identital.
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Overdispersion: Greater Variability than Expected

v

One of the defining characteristics of Poisson regression is its
lack of a parameter for variability:

3.3.4 Overdispersion and E(Y) = Var(Y),

Negatlve Binomial Regressmn and no parameter is available to adjust that relationship

» In practice, when working with Poisson regression, it is often
the case that the variability of y; about A; is larger than what
A; predicts

» This implies that there is more variability around the model's
fitted values than is consistent with the Poisson distribution

» This phenomenon is overdispersion.
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Common Causes of Overdispersion

» Subject heterogeneity

» subjects have different p
e.g., rates of infestation may differ from location to location
on the same tree and may differ from tree to tree

> there are important predictors not included in the model

» Observations are not independent — clustering
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Example (Known Victims of Homicide)
A recent General Social Survey asked subjects,

‘Within the past 12 months, how many people have you
known personally that were victims of homicide?”

Number of Victims | 0 1 2 3 4 5 6 | Total

Black Subjects 119 16 12 7 3 2 0 159
White Subjects 1070 60 14 4 0 0 1| 1149

If fit a Poisson distribution to the data from blacks, MLE for A is
the sample mean
0-119+1-16+2-12+---+6-0 83

= = 2 ~0.522
159 159

Fitted P(Y = k) is e 10 (83) /K1, k= 0,1,2,....

> round(dpois(0:6, lambda = 83/159),3)
[1] 0.593 0.310 0.081 0.014 0.002 0.000 0.000

> round(c(119,16,12,7,3,2,0)/159, 3) # sample relative freq.

[1] 0.748 0.101 0.075 0.044 0.019 0.013 0.000
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Negative Binomial Distribution

If Y has a negative binomial distribution, with mean p and
dispersion parameter D = 1/6, then

P(Y = k) = rl((frJ(r;)g) (Mi9>9 <uie)k’ k=0,1,2,...

One can show that

2
E[Y]=n, Var(Y)=p+ % = pu+ Dy

» As D =1/60 | 0, negative binomial — Poisson.

» Negative binomial is a gamma mixture of Poissons, where the
Poisson mean varies according to a gamma distribution.

» MLE for u is the sample mean. MLE for 6 has no close form
formula.
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Example (Known Victims of Homicide)

Num. ofVictims‘ 0 1 2 3 4 5 6‘Tota| Mean Variance
Black 119 16 12 7 3 2 0 159 0.522 1.150

White 1070 60 14 4 0 O 1| 1149 0.092 0.155

Likewise, if we fit a Poisson distribution to the data from whites,
MLE for X is

~ 0-10704+1-60+2-14+---4+6-1 106
N = = — ~0.002

1149 1149

Fitted P(Y = k) is e 1 (498)% /kI, k=0,1,2, ...

> round(dpois(0:6, lambda = 106/1149), 3) # fitted Poisson prob.
[1] 0.912 0.084 0.004 0.000 0.000 0.000 0.000
> round(c(1070,60,14,4,0,0,1) /1149, 3) # sample relative freq.
[1] 0.931 0.052 0.012 0.003 0.000 0.000 0.001

» Too many 0's and too many large counts for both races than
expected if the samples were drawn from Poisson distributions.

» It is not surprising that Poisson distributions do not fit the
data because of the large discrepancies between sample mean

and sample variance. Poisson - 32



Example (Known Victims of Homicide) Example (Known Victims of Homicide)

Data: Negative binomial regression models can be fit using glm.nb
Yb1, Yb2,. .., Yb 159 answers from black subjects function in the MASS package.
Ywis Yw2, oonnn , Y 1149 answers from white subjects nvics = c¢(0:6,0:6)

Poisson Model: freq = c(119,16,12,7,3,2,0,1070,60,14,4,0,0,1)

>
> race = c(rep("Black", 7),rep("White",7))
>
> data.frame(nvics,race,freq)

Yb,j ~ POiSSO”(Mb), Yw,j ~ Poisson(,uw) nvics race freq
) 1 0 Black 119
Neg. Bin. Model: 2 1 Black 16
3 2 Black 12
Ybj ~ NB(up,0),  Ywj~ NB(pw,0) (omit)
12 4 White 0
Goa!. Test whether Hp —IIU,W. - 13 5 White 0
Equivalent to test S = 0 in the log-linear model. 14 6 White 1
) > race = factor(race, levels=c("White","Black"))
Iog(,u) —ax ﬁX X — 1 if black > hom.poi = glm(nvics ~ race, weights=freq, family=poisson)
) 0 if white, > library(MASS)

> hom.nb = glm.nb(nvics ~ race, weights=freq)

Note pp = €8, 1, = e*. So e = pp/j1y.
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Example (Known Victims of Homicide) — Poisson Fits Example (Known Victims of Homicide) — Neg. Binomial
> summary (hom.poi) > summary (hom.nb)
Call: Call:

glm.nb(formula = nvics ~ race, weights = freq, init.theta = 0.2023119205,
link = log)

glm(formula = nvics
weights = freq)

race, family = poisson, data = homicide,

Deviance Residuals:

Deviance Residuals: Min 1Q  Median 3Q Max
Min 1Q Median 3Q Max -12.754 0.000 2.086 3.283 9.114
-14.051 0.000 5.257 6.216 13.306
Coefficients:
Coefficients: Estimate Std. Error z value Pr(>|zl)
oetticlents: (Intercept) -0.6501 0.2077 -3.130 0.00175 **
Estimate Std. Error z value Pr(>|zl) raceWhite  -1.7331  0.2385 -7.268 3.66e-13 **x
(Intercept) -2.38321 0.09713 -24.54 <2e-16 **x* —-—
raceBlack 1.73314 0.14657 11.82 <2e-16 *xx (Dispersion parameter for Negative Binomial(0.2023) family taken to be 1)
(Dispersion parameter for poisson family taken to be 1) Null deviance: 471.57 on 10 degrees of freedom
Residual deviance: 412.60 on 9 degrees of freedom
AIC: 1001.8
Null deviance: 962.80 on 10 degrees of freedom
Residual deviance: 844.71 on 9 degrees of freedom Number of Fisher Scoring iterations: 1
AIC: 1122 Theta: 0.2023

Std. Err.: 0.0409

Number of Fisher Scoring iterations: 6 2 x log-likelihood: -995.7980
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> hom.nb$fit
1 2 3 4 5 6

7

0.52201258 0.52201258 0.52201258 0.52201258 0.52201258 0.52201258 0.52201258

8 9 10 11 12 13

14

0.09225413 0.09225413 0.09225413 0.09225413 0.09225413 0.09225413 0.09225413

> hom.nb$theta
[1] 0.2023119

» Fitted values given by the Neg. Bin model are simply the
sample means — 0.522 (= 33 for blacks and 0.0922

(= £2%) for whites.

» Estimated common dispersion parameter is f = 0.2023119
with SE = 0.0409.
» Fitted P(Y = k) is

F(k+ ) 7 A 8 for blacks
— — < a A> , where i = ¢ 1%, _
kKIT(@) \z+6 n+0 1129 for whites.
> Textbook uses D = 110 as the dispersion parameter,
estimated as D = 1/6 = 1/0.2023 ~ 4.94.
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Example (Known Victims of Homicide)

1 if black
Model: o =a+ Ox, x=
8lr) P {o if white,
Model | @ B SE@B) Wald 95% Cl for e = up/pua

Poisson —2.38 1.73 0.147 exp(1.73£1.96-0.147) = (4.24,7.54)

Neg. Binom.

Poisson and negative binomial models give
» identical estimates for coefficients
(this data set only, not always the case)
> but different SEs for 3 (Neg. Binom. gives bigger SE)

To account for overdispersion, neg. binom. model gives wider
Wald Cls (and also wider LR Cls).

Remark. Observe el — el 73 = 5.7 is the ratio of the two sample

means yblack/ywhite = 0522/0092
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—238 1.73 0.238 exp(1.73 4 1.96 - 0.238) = (3.54,9.03)

Example (Known Victims of Homicide)

Black Subjects
Num. of Victims | 0 1 2 3 4 5 6 | Total

observed freq. 119 16 12 7 3 2 0 159
relative freq. 0.748 0.101 0.075 0.044 0.019 0.013 O 1

poisson fit 0.593 0.310 0.081 0.014 0.002 0.000 0.000 1
neg. bin.fit 0.773 0.113 0.049 0.026 0.015 0.009 0.006 | 0.991
White Subjects:

num. of victims ‘ 0 1 2 3 4 5 6 ‘ Total
observed freq. 1070 60 14 4 0 0 1 1149
relative freq. 0.931 0.052 0.012 0.003 0.000 0.000 0.001 |0.999
poisson fit 0.912 0.084 0.004 0.000 0.000 0.000 0.000| 1
neg. bin.fit 0.927 0.059 0.011 0.003 0.001 0.000 0.000|1.001

# neg. bin fit

> round(dnbinom(0:6, size = hom.nb$theta, mu = 83/159),3) # black
[1] 0.773 0.113 0.049 0.026 0.015 0.009 0.006

> round(dnbinom(0:6,size = hom.nb$theta, mu=106/1149),3) # white
[1] 0.927 0.059 0.011 0.003 0.001 0.000 0.000
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Wald Cls

> confint.default (hom.poi)

2.5 % 97.5 %
(Intercept) -2.573577 -2.192840
raceBlack 1.445877 2.020412
> exp(confint.default (hom.poi))

2.5 % 97.5 %
(Intercept) 0.0762623 0.1115994
raceBlack  4.2455738 7.5414329

> confint.default (hom.nb)

2.5 7% 97.5 %
(Intercept) -2.612916 -2.153500
raceBlack 1.265738 2.200551
> exp(confint.default (hom.nb))

2.5 % 97.5 %
(Intercept) 0.07332043 0.1160771
raceBlack  3.54571025 9.0299848
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Likelihood Ratio Cls

> confint (hom.poi)
Waiting for profiling to be done...

2.5 % 97.5 ¥

(Intercept) -2.579819 -2.198699
raceBlack 1.443698 2.019231

> exp(confint (hom.poi))

Waiting for profiling to be donme...

2.5 % 97.5 %

(Intercept) 0.0757877 0.1109474
raceBlack 4.2363330 7.5325339

> confint (hom.nb)
Waiting for profiling to be done...

2.5 % 97.5 ¥

(Intercept) -2.616478 -2.156532
raceBlack 1.274761 2.211746

> exp(confint (hom.nb))

Waiting for profiling to be donme...

2.5 % 97.5 %

(Intercept) 0.07305976 0.1157258
raceBlack  3.57784560 9.1316443
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How to Check for Overdispersion?

2

Think about whether overdispersion is likely — e.g.,
important explanatory variables are not available, or
dependence in observations.

Compare the sample variances to the sample means computed
for groups of responses with identical explanatory variable
values.

Large deviance relative to its deviance

Examine residuals to see if a large deviance statistic may be
due to outliers

Large numbers of outliers are usually signs of overdispersion

Check standardized residuals and plot them against them
fitted values ;.
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If Not Taking Overdispersion Into Account ...

» SEs are underestimated
» Cls will be too narrow

» Significance of variables will be over stated (reported P values
are lower than the actual ones)
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Train Data Reuvisit
Recall Pearson’s residual:
7 _Aﬁi
Hi

If no overdispersion, then
Var(Y) = (v — i1)? = E(Y) = i;

So the size of Pearson’s residuals should be around 1.
With overdispersion,

Var(Y) = u+ Dp?

then the size of Pearson’s residuals may increase with p.
We may check the plot of the absolute value of (standardized)
Pearson’s residuals against fitted values fi;.
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Train Data — Checking Overdispersion Train Data — Neg. Bin. Model

> trains.nb = glm.nb(TrRd ~ I(Year-1975)+offset(log(KM)), data=trains)

plot(trainsi$fit, abs(rstandard(trainsl, type="pearson")),
> summary(trains.nb)

xlab="Fitted Values", ylab="|Standardized Pearson Residuals|")

Coefficients:
° Estimate Std. Error z value Pr(>|z]|)
< 7 (Intercept) -4.19999 0.19584 -21.446 < 2e-16 **x*
I(Year - 1975) -0.03367 0.01288 -2.615 0.00893 *x*
o -

(Dispersion parameter for Negative Binomial(10.1183) family taken to be 1

2
|
o

Null deviance: 32.045 on 28 degrees of freedom

|Standardized Pearson Residuals|

o © Residual deviance: 25.264 on 27 degrees of freedom
o
- %0 ° ° AIC: 132.69
o ° 00 °
°°o°° o Theta: 10.12
o
© —e° ° ° Std. Err.: 8.00

I I I I I I I I
30 35 40 45 50 55 6.0 6.t

Fitted Values For year effect, the estimated coefficients are similar (0.0337 for
neg. bin. model compared to 0.032 for Poisson model), but less
significant (P-value = 0.009 in neg. bin. model compared to 0.002
in Poisson model)

2 x log-likelihood: -126.69

The size of standardized Pearson’s residuals tend to increase with
fitted values. This is a sign of overdisperson.
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