
Computer Algebra in Statistics

An Introduction to Maple

Michael J. Wichura
Department of Statistics

The University of Chicago

Email: wichura@galton.uchicago.edu

c© M. J. Wichura, 1995.

October, 1995

Preface

Course notes for Statistics 304.

Comments and corrections are welcome. Please address email correspondence to the author at
wichura@galton.uchicago.edu.

Michael J. Wichura,
University of Chicago,
October, 1995.

i

Contents

Preface i

1 Introduction 1

1.1 References . 1

1.2 Getting in, getting help, and getting out . 1

2 The Change of Variable Formula 3

2.1 Three examples . 3

2.1.1 The logistic distribution . 3

2.1.2 The Pareto-Beta connection . 3

2.1.3 The Chisquare distribution with one degree of freedom 5

2.2 Automating the procedure: the one-dimensional case 6

2.3 The multi-dimensional case . 12

2.4 Example: the Gamma-Beta-Chisquare-F-T connection 18

Index 21

ii

Introduction 1

1 Introduction

Maple is an interactive computer algebra system that can be used to analyze mathematical prob-
lems using a combination of symbolic, numerical, and graphical tools. Among other things its
features include: arbitrary precision arithmetic; routines for doing differential and integral calcu-
lus, both symbolically and numerically; infinite and finite series, limits, and products; expansion
and factoring of algebraic equations; linear algebra; solutions of systems of equations; pattern
matching; special functions; and two- and three-dimensional graphing.

Maple has a simple and effective programming language. Loops, conditionals, and user-defined
functions are available. Results can be saved to and retrieved from files, and can be incorporated
into Fortran and C programs or LATEX documents. Libraries/packages of special routines can be
added to the environment to extend Maple’s capabilities.

Maple will greatly enhance your ability to manipulate mathematical expressions. It can save you a
lot of time and effort, by quickly and accurately performing a task that would otherwise be tedious,
cumbersome, and prone to errors.

Maple is an on-going project of the Symbolic Computation Group at the University of Waterloo
in Ontario, Canada. The system is available on a large number of machines, including most Unix
workstations, the Macintosh, 386-based PCs, and the NeXT. These notes were developed using
Maple on a Unix workstation at the University of Chicago.

1.1 References

A good way for a you to learn Maple in depth is to first work through the on-line tutorial and
then read First Leaves: A Tutorial Introduction to Maple V published by Springer-Verlag. These
notes are intended only as a brief introduction, to illustrate some of Maple’s capabilities in the
context of some case studies.

Additional references are the Maple V Language Reference Guide and the Maple V Library Ref-
erence Manual , also published by Springer-Verlag. Much of the information in these manuals is
available through the on-line help facility.

1.2 Getting in, getting help, and getting out

To get started, enter maple in response to your operating system’s prompt:

tcsh: maple
|\^/| Maple V Release 2 (University of Chicago)

._|\| |/|_. Copyright (c) 1981-1993 by the University of Waterloo.
\ MAPLE / All rights reserved. Maple and Maple V are registered
<____ ____> trademarks of Waterloo Maple Software.

| Type ? for help.

>

The “>” is Maple’s prompt for you to enter your first command.

21:38 10/19/1998

2 Introduction

To find out about a Maple feature, use the extensive on-line help command ?. Here is what part
of what ? has to say about itself:

> ?

FUNCTION: help - descriptions of syntax, datatypes, and functions

CALLING SEQUENCE:
?topic or ?topic,subtopic or ?topic[subtopic] or
help(topic) or help(topic,subtopic) or help(topic[subtopic])

SYNOPSIS:
?intro introduction to Maple
?library Maple library functions and procedures
?index list of all help categories
?index,<category> list of help files on specific topics
?<topic> explanation of a specific topic
?<topic>,<subtopic> explanation of a subtopic under a topic
?distribution for information on how to obtain Maple
?copyright for information about copyrights

- Note 1: The recommended way to invoke help is to use the question
mark.

In the following lectures I present many Maple commands with only a brief explanation as to what
they do. You should make a habit of using ? to get the full story.

Beginners are well-advised to work through the on-line tutorial:

> ? tutorial

HELP FOR: tutorial - on-line tutorial introduction to Maple

CALLING SEQUENCE:
tutorial()
tutorial(n)

PARAMETERS:
n - an integer

SYNOPSIS:
- The function tutorial() takes the user through a beginning level, on-line

tutorial for Maple. This tutorial is not meant to be a replacement for the
Maple manuals (First Leaves, etc.) or the on-line help files, but is instead
meant to offer a quick method for getting started with Maple.

- There are 14 chapters in the on-line tutorial. tutorial(n) skips the standard
welcoming text for the tutorial and starts the user at chapter n.

- Most chapters have question and answer sections and there are two quizzes
included. There is a main menu, from which the reader can begin any of the
chapters, which can be accessed from any break in the text.

Important: The commands you type to Maple may extend over several physical lines and must
be terminated by a semi-colon (to display the result) or colon (to suppress the display), not a
carriage return. (Maple won’t see the line until you type a carriage return.) An important
point to remember is “No (semi-)colon, no computation!” The help command ? is one of the few
exceptions to this rule.

To start afresh, without leaving Maple, give the command restart; this will erase all your current
variables, functions, etc. To end your Maple session, you may enter either quit, stop, or done.

21:38 10/19/1998

The Change of Variable Formula 3

2 The Change of Variable Formula

Let X be a random variable with density fX and let Y = h(X) be obtained from X via a transfor-
mation h. If h has a continuous non-zero derivative, then Y has a density given by

fY (y) = fX(h−1(y))
∣∣∣dh−1(y)

dy

∣∣∣ = fX(x)
∣∣∣dx

dy

∣∣∣, (1)

where x = h−1(y). I am going to illustrate how Maple can be used to evaluate fY .

2.1 Three examples

2.1.1 The logistic distribution

Let’s find the density of Y = log(X/(1 −X)) when X has a uniform distribution on (0, 1). First
we need to solve the equation y = log(x/(1− x)) = h(x) for x = h−1(y):

> solve (y = log(x/(1-x)), x);
exp(y)

exp(y) + 1

Terminating the solve command with a semicolon caused the result to be displayed. Next find the
derivative of this with respect to y:

> diff (", y);
2

exp(y) exp(y)
---------- - -------------
exp(y) + 1 2

(exp(y) + 1)

The double quote operator " returns the most recently computed expression, whatever that may
be; here it’s the solution exp(y)/(exp(y) + 1) to the equation. (Similarly "" returns the second
most recently computed expression, and """ the third.) Now simplify the derivative:

> simplify(");
exp(y)

2

(exp(y) + 1)

This is dx/dy. Since it is clearly continuous and positive, so is h′ = dy/dx and formula (1) applies.
Since fX(x) = 1, Y has density fY (y) = fX(x)|dx

dy | = ey/(ey + 1)2, for −∞ < y < ∞. Y is said to
be distributed according to the standard logistic distribution. We’re all done with this calculation,
so reinitialize Maple:

> restart;

2.1.2 The Pareto-Beta connection

The Pareto distribution with location parameter k > 0 and shape parameter α > 0 has density

f(x) =
αkα

xα+1
for x ≥ k. (2)

21:38 10/19/1998

4 The Change of Variable Formula

This distribution is sometimes used to model certain long-tailed socio-economic variates, such as
city size, personal income, etc. Suppose X is a random variable with density (2). What is the
density of Y = k/X?

To find out write y = k/x, solve for x in terms of y, and find dx
dy :

> solve (y = k/x, x);
k/y

> diff (", y);
k

- ----
2
y

Next introduce the Pareto density fX(x):
> f := alf * k^alf / x^(alf + 1);

alf
alf k

f := ----------
(alf + 1)

x

The “:=” operator assigned the expression αkα/xα+1 to the variable f. Note that assignments are
specified by := in Maple, not by = as in Fortran or C. Now use the substitution command subs
to replace the x in fX(x) by the solution k/y, which was computed three steps earlier:

> subs (x = """, f);
alf

alf k

(alf + 1)
(k/y)

The command
subs(eqn, expr)

returns the result of applying the substitution specified by the equation eqn to the expression expr.
Multiply fX(x) by |dx

dy | to get fY (y):

> simplify (" * abs("""));
(alf - 1)

alf y abs(k)

k

Tell Maple that k is positive:
> assume (k > 0);
> ";

(alf - 1)
alf y

Note that here " refers back to the result of the simplify command, since assume didn’t compute
anything. It follows that Y has density fY (y) = αyα−1, for 0 < y ≤ 1; that is, Y has a Beta
distribution with parameters α and 1.

Maple has a history command that will automatically assign labels to each output expression.
This enables you to easily refer back to any previous result, but there are some disadvantages —
see the help page. An alternative approach to back referencing is to selectively assign your own
labels; this approach is illustrated in the next section.

21:38 10/19/1998

2.1 Three examples 5

2.1.3 The Chisquare distribution with one degree of freedom

Now let’s find the density of Y = h(X) := X2 when X is standard normal. Since the transformation
h maps each of the intervals (−∞, 0) and (0,∞) monotonically onto (0,∞), the density for Y is
given by

fY (y) = fX(x1)
∣∣∣dx1

dy

∣∣∣ + fX(x2)
∣∣∣dx2

dy

∣∣∣

with x1 = −√y and x2 = +
√

y, for y > 0. To evaluate this in Maple, begin by solving the
equation y = x2 for x:

> solutions := solve (y = x^2, x);
1/2 1/2

solutions := - y , y

Note that Maple found two solutions, and returned them as a sequence of comma-separated
expressions — a datatype Maple calls an expression sequence. Convert the solutions to a list, so
that we can easily access its nth component using the subscript operator “[n]”:

> solutions := [solutions];
1/2 1/2

solutions := [- y , y]

> solutions[2];
1/2

y

Maple uses the notation “[. . .]” for a list of elements; e.g., [1,2,3] is a list whose elements are
the numbers 1, 2, and 3. Introduce the density

fX(x) =
1√
2π

exp(−x2/2)

of the “old” random variable X:
> old_f := exp(-x^2/2) / sqrt (2*Pi);

2 1/2
exp(- 1/2 x) 2

old_f := 1/2 ------------------
1/2

Pi

Pi is Maple’s symbol for the number π. Get the contribution to the density of Y from the branch
x = −√y of the inverse transformation:

> sol := solutions[1];
1/2

sol := - y
> dx_dy := diff (sol, y);

1
dx_dy := - ------

1/2
2 y

> assume (y > 0);
> contrib1 := subs (x = sol, old_f) * abs(dx_dy);

1/2
exp(- 1/2 y~) 2

contrib1 := 1/4 ------------------
1/2 1/2

Pi y~

21:38 10/19/1998

6 The Change of Variable Formula

Note that Maple attaches a ~ to a variable (here y) when something has been assumed about it.
Now repeat the computations, using the branch x = +

√
y of the inverse transformation:

> sol := solutions[2]:
> dx_dy := diff (sol, y):
> contrib2 := subs (x = sol, old_f) * abs(dx_dy);

1/2
exp(- 1/2 y~) 2

contrib2 := 1/4 ------------------
1/2 1/2

Pi y~

Here I used terminating colons instead of semicolons to suppress printing the results of the first two
commands; those invisible results nonetheless could have been accessed by the " and "" operators.
Finally add the two contributions to get the density of the “new” variable Y :

> new_f := contrib1 + contrib2;
1/2

exp(- 1/2 y~) 2
new_f := 1/2 ------------------

1/2 1/2
Pi y~

We have found the density of Y to be

fY (y) =
1√
2πy

exp(−y/2), (3)

for y > 0. This is the density of the so-called Chisquare distribution with one degree of freedom.

2.2 Automating the procedure: the one-dimensional case

Now I am going to automate the procedure illustrated by the preceding examples. Suppose Y =
h(X). Put g = h−1 and rewrite equation (1) as

fY (y) = fX(g(y)) |g′(y)|. (4)

For the time being suppose the inverse transformation g is given, i.e., it is known how to write X
in terms of Y . I am going to exhibit a function chng vars1 such that

chng vars1 (f(x), y, x = g(y))

returns the density of Y when X = g(Y) has density f(x). (The “1” in chng vars1 stands for
“one-dimensional.”) Before we can compute g′(y) we will need to peel off g(y) from the right hand
side of the equation x = g(y); that is easily done using the function rhs:

> rhs (x = g(y));
g(y)

> ‘%g’(y)%‘ := diff (", y);
d

%g’(y)% := ---- g(y)
dy

Maple treats a string of characters enclosed in back quotes (‘) as the name of a variable; this
notation must be used if the name includes any non alphanumeric characters (i.e., characters other
than letters, digits, and underscore). Here I used this feature to create a self-identifying label for
g′(y). Maple doesn’t require the enclosing %’s; they’re there to remind me that when I see %g’(y)%
in Maple’s output I’m looking at a name, not an expression.

21:38 10/19/1998

2.2 Automating the procedure: the one-dimensional case 7

Here is the definition of chng vars1 :

>
chng_vars1_ := proc (‘%f(x)%‘, y, ‘%x=g(y)%‘)

chng_vars1_ (some expression f(x) in x, y, x = g(y)) returns
the density of y when x = g(y) has density f(x)
local ‘%g’(y)%‘;
‘%g’(y)%‘ := diff (rhs(‘%x=g(y)%‘), y);
simplify (subs (‘%x=g(y)%‘, ‘%f(x)%‘) * abs (‘%g’(y)%‘))

end:

Like Splus, Maple treats any text after “#” as a comment. The procedure definition

proc (parm1, . . . , parmi) local var1, . . . , var j; statement1; . . . ; statementk end

is analogous to defining a function in C or a subroutine in Fortran. The parms are the formal
parameter names. The vars are variables that are local to (i.e., known only in) the procedure.
The statements are Maple commands involving the parms and the vars and perhaps some global
variables as well, separated by semicolons. When the procedure is called, the actual arguments
are evaluated and substituted for the parms throughout the statements. The statements are then
performed one at a time, with the last value computed being the value returned.

Let’s test out chng vars1 , first in general:

> chng_vars1_ (f(x), y, x = g(y));
d

f(g(y)) abs(---- g(y))
dy

and then on a specific case:

> f := alf * k^alf / x^(alf + 1):
> assume (k > 0);
> chng_vars1_ (f, y , x = k/y);

(alf - 1)
alf y

To see how Maple arrived at this result I asked it to redo the calculation while tracing the execution
of chng vars1 . Tracing a procedure displays the entry to and exit from it as well as the results of
each statement :

> trace (chng_vars1_):
> chng_vars1_ (f, y, x = k/y);
{--> enter chng_vars1_, args = alf*k~^alf/(x^(alf+1)), y, x = k~/y

k~
%g’(y)% := - ----

2
y

(alf - 1)
alf y

<-- exit chng_vars1_ (now at top level) = alf*y^(alf-1)}
(alf - 1)

alf y
> ‘%g’(y)%‘;

%g’(y)%
> untrace (chng_vars1_):

21:38 10/19/1998

8 The Change of Variable Formula

Note that the --> line shows the actual arguments passed to the procedure, and that the local
variable %g’(y)% doesn’t have a value once the procedure is finished. untrace turns off tracing,
so that subsequent calls won’t generate any diagnostic output.

The preceding discussion assumed that the transformation g from Y back to X was given. However,
transformation-of-variables problems are usually stated in terms of the transformation h from X
to Y . To deal with this situation I’m going to exhibit a function chng vars1 such that

chng vars1(f(x), x, y = h(x))

returns the density of Y = h(X) when X has density f(x). The basic idea is to first use solve to
obtain g = h−1 from h and to then call chng vars1 on g. If g has several branches, chng vars1
calls chng vars1 on each branch and accumulates the results.

>
chng_vars1 := proc (‘%f(x)%‘, x, ‘%y=h(x)%‘)

preliminary version
chng_vars1 (some expression f(x) in x, x, y = h(x)) returns
the density of y = h(x) when x has density f(x)
local solutions, y, ‘%f(y)%‘, ‘%g(y)%‘, ‘%x=g(y)%‘, contrib;
solutions := solve (‘%y=h(x)%‘, x);
y := lhs (‘%y=h(x)%‘);
‘%f(y)%‘ := 0;
for ‘%g(y)%‘ in [solutions] do

‘%x=g(y)%‘ := x = ‘%g(y)%‘;
contrib := chng_vars1_ (‘%f(x)%‘, y, ‘%x=g(y)%‘);
‘%f(y)%‘ := ‘%f(y)%‘ + contrib

od;
simplify (‘%f(y)%‘)

end:

The construction
for variable in expression do statements od

performs a loop: the semicolon-separated statements are repeatedly executed, with variable running
over the operands of the expression. (Maple’s for statement can take a number of other forms,
e.g., for var from start by change to finish do . . . od.) To illustrate:

> solutions := [solve (y = x^2, x)];
1/2 1/2

solutions := [- y , y]
> for solution in solutions do print (solution) od;

1/2
- y

1/2
y

> for summand in a + b + c*d do print (summand) od;
a
b

c d

The function print displays its arguments.

Let’s test out chng vars1, first on the Pareto example:

21:38 10/19/1998

2.2 Automating the procedure: the one-dimensional case 9

> chng_vars1 (alf * k^alf / x^(alf + 1), x, y = k/x);
(alf - 1)

alf y

and then on the Chisquare example; in this case I asked Maple to trace the execution of chng vars1:

> assume (y > 0):
> trace (chng_vars1):
> chng_vars1 (exp(-x^2/2) / sqrt (2*Pi), x, y = x^2);
{--> enter chng_vars1, args = 1/2*exp(-1/2*x^2)*2^(1/2)/Pi^(1/2), x, y~ = x^2

1/2 1/2
solutions := - y~ , y~

y := y~
%f(y)% := 0

1/2
%x=g(y)% := x = - y~

1/2
exp(- 1/2 y~) 2

contrib := 1/4 ------------------
1/2 1/2

Pi y~
1/2

exp(- 1/2 y~) 2
%f(y)% := 1/4 ------------------

1/2 1/2
Pi y~

1/2
%x=g(y)% := x = y~

1/2
exp(- 1/2 y~) 2

contrib := 1/4 ------------------
1/2 1/2

Pi y~
1/2

exp(- 1/2 y~) 2
%f(y)% := 1/2 ------------------

1/2 1/2
Pi y~

1/2
exp(- 1/2 y~) 2

1/2 ------------------
1/2 1/2

Pi y~
<-- exit chng_vars1 (now at top level) = 1/2*exp(-1/2*y~)*2^(1/2)/Pi^(1/2)/y~^(
1/2)}

1/2
exp(- 1/2 y~) 2

1/2 ------------------
1/2 1/2

Pi y~
> untrace (chng_vars1);

The way chng vars1 handles multiple branches of g is somewhat näıve. It can happen that g has
a single branch over part of its domain, two branches over another part, three branches over yet
another part, and so on. Since chng vars1 (and perhaps solve itself) is not designed to handle
such a complex situation, it should print out a warning message whenever multiple branches are

21:38 10/19/1998

10 The Change of Variable Formula

detected, to remind the user to think about whether the algorithm employed is appropriate for the
case at hand. The following code segment shows how this may be accomplished:

> solutions := [solve (y = x^2, x)];
1/2 1/2

solutions := [- y~ , y~]

>
if nops(solutions) > 1 then

print (‘Warning: transformation is many to one‘);
print (map (proc (expr, var) var = expr end, solutions, x))

fi;

Warning: transformation is many to one
1/2 1/2

[x = - y~ , x = y~]

Maple’s nops function returns the number of operands, or components, of an expression:

> nops (solutions);
2

> nops (a + b + c*d);
3

The if statement is used for conditional execution:

if condition1 then statements1 elif condition2 then statements2 . . . else statementsk fi

returns the result of executing the semicolon-separated statements1 if condition1 is true, otherwise
the semicolon-separated statements2 if condition2 is true, . . . , and otherwise the result of the
semicolon-separated statementsk. The elif and else clauses may be omitted if they are not needed.
The function map is used to apply a procedure to each operand of an expression. The construction

map (fun, expr, arg2, . . . , argn)

produces a new expression of the same type as the old expression expr, but in which each operand
op of expr is replaced by fun(op, arg2, . . . , argn). For example

> map (f, [1, 2, 3], a, b);
[f(1, a, b), f(2, a, b), f(3, a, b)]

> map (proc (x) x^2 end, a + b + c*d);
2 2 2 2

a + b + c d

Note the use of the back quotes (‘) as the string delimiters for the message “Warning ...”; this is
a common idiom in Maple.

There is another issue that needs to be confronted — what chng vars1 should do when solve is
unsuccessful in computing the inverse function g, as in the following example:

> solve (y = sin(x) + x, x);
>

When a Maple builtin function realizes that it can’t complete its assigned task, it typically sim-
ply returns the command that invoked it. (solve is an exception to this rule.) So that’s what
chng vars1 ought to do in cases like the above. The following code segment shows how that may
be accomplished:

21:38 10/19/1998

2.2 Automating the procedure: the one-dimensional case 11

>
checker := proc (var, equation)

local solutions;
solutions := solve (equation, var);
if solutions = NULL then

RETURN (’procname (args)’);
else

RETURN (solutions);
fi

end:

> checker (x, y = k/x);
k~

y~

> checker (x, y = sin(x) + x);
checker(x, y~ = sin(x) + x)

The symbol NULL stands for the empty expression sequence, which is what solve returns when it
is unsuccessful. RETURN(expr) causes an immediate return from a procedure, with expr as the
return value. When a procedure is executed the special names procname and args get replaced
respectively by the name by which the procedure was invoked and the sequence of arguments
with which it was invoked. Enclosing an expression within single quotes (’) tells Maple that the
expression stands for itself, rather than for its value. For example

> x := 5;
x := 5

> x;
5

> ’x’;
x

The single quotes around “procname (args)” in checker are needed to keep checker from calling
itself recursively, in an infinite loop.

solve can exhibit some other anomalous behaviors, but I propose to ignore them for now. Here
then are the final versions of chng vars1 and chng vars1. I have these functions stored in a disk
file, so that they can be easily modified with a standard text editor:

tcsh: cat chvars1

chng_vars1_ := proc (‘%f(x)%‘, y, ‘%x=g(y)%‘)
chng_vars1_ (some expression f(x) in x, y, x = g(y)) returns
the density of y when x = g(y) has density f(x)
local ‘%g’(y)%‘;
‘%g’(y)%‘ := diff (rhs(‘%x=g(y)%‘), y);
simplify (subs (‘%x=g(y)%‘, ‘%f(x)%‘) * abs (‘%g’(y)%‘))

end:

chng_vars1 := proc (‘%f(x)%‘, x, ‘%y=h(x)%‘)
chng_vars1 (some expression f(x) in x, x, y = h(x)) returns
the density of y = h(x) when x has density f(x)
local solutions, y, ‘%f(y)%‘, ‘%g(y)%‘, ‘%x=g(y)%‘, contrib;
solutions := solve (‘%y=h(x)%‘, x);
if solutions = NULL then

RETURN (’procname (args)’)
fi;

21:38 10/19/1998

12 The Change of Variable Formula

solutions := [solutions];
if nops (solutions) > 1 then

print (‘Warning: transformation is many to one‘);
print (map (proc(expr, var) var = expr end, solutions, x))

fi;
y := lhs (‘%y=h(x)%‘);
‘%f(y)%‘ := 0;
for ‘%g(y)%‘ in solutions do

‘%x=g(y)%‘ := x = ‘%g(y)%‘;
contrib := chng_vars1_ (‘%f(x)%‘, y, ‘%x=g(y)%‘);
‘%f(y)%‘ := ‘%f(y)%‘ + contrib

od;
simplify (‘%f(y)%‘)

end:

A file of Maple commands can be loaded using the read command; the file name must be back-
quoted if contains any non alphanumeric characters, such as period or slash.

> restart;
> read (‘./chvars1‘);
> assume (y > 0);
> chng_vars1 (exp(-x^2/2) / sqrt (2*Pi), x, y = x^2);

Warning: transformation is many to one
1/2 1/2

[x = - y~ , x = y~]
1/2

exp(- 1/2 y~) 2
1/2 ------------------

1/2 1/2
Pi y~

> chng_vars1 (6*x*(1-x), x, y = sin(x) + x);
chng_vars1(6 x (1 - x), x, y~ = sin(x) + x)

2.3 The multi-dimensional case

Suppose Y = (Y1, . . . , Yk) and X = (X1, . . . , Xk) are each k-dimensional random vectors, related
by the equation Y = h(X). Under appropriate regularity conditions on the transformation h, the
analogue of formula (4) is

fY (y) = fX(g(y)) |Jg(y)| (5)

where now y = (y1, . . . , yk) and Jg denotes the Jacobian of g = h−1, i.e., the determinant of the
matrix

∂x1
∂y1

∂x1
∂y2

. . . ∂x1
∂yk

∂x2
∂y1

∂x2
∂y2

. . . ∂x2
∂yk

...
...

. . .
...

∂xk
∂y1

∂xk
∂y2

. . . ∂xk
∂yk

.

The standard regularity conditions on h are that it be a one-to-one map of an open set X onto an
open set Y, that the partial derivatives ∂xi/∂yj be continuous in y for y ∈ Y, and that Jg(y) be
non-zero for each y ∈ Y.

21:38 10/19/1998

2.3 The multi-dimensional case 13

The new feature here is Jg. To see what’s involved in calculating it in Maple, suppose that k = 2,
X := {(x1, x2) : x1 > 0, x2 > 0 } and h is the transformation

y1 = x1 + x2

y2 = x1/(x1 + x2).

We first need to solve these equations for the inverse transformation g:

> solutions := solve ({y1 = x1 + x2, y2 = x1/(x1 + x2)}, {x1, x2});

{x1 = y2 y1, x2 = y1 - y2 y1}

This says that g is the transformation

x1 = y1y2

x2 = y1(1− y2)

and it follows that Y = {(y1, y2) : y1 > 0, 0 < y2 < 1 }. In the case of simultaneous equations the
arguments to solve have to be expressed as a set of equations and a set of variables (this syntax
can also be used for a single equation); moreover solve returns each of the various solutions it finds
as a set of equations. In Maple sets are expressed by curly braces: {a, b, c} is the set whose
elements are a, b, and c. Sets are different from lists in that the order of the elements is irrelevant
and there are no duplicate elements.

The jacobian Jg = det
(
(∂xi

∂yj
)1≤i≤2, 1≤j≤2

)
may now be computed as follows. Take the right hand

sides y2y1 and y1 − y2y1 of the equations for x1 and x2 and arrange them in a list:

> map (rhs, solutions);
{y2 y1, y1 - y2 y1}

> xs := convert (", list);

xs := [y2 y1, y1 - y2 y1]

Maple’s convert procedure is used to convert from one data type to another — here from a set to
a list. Use the with command to load the jacobian and determinant routines from Maple’s linear
algebra package:

> with (linalg, jacobian, det);
[det, jacobian]

Compute the matrix of partial derivatives of x1 and x2 with respect to y1 and y2:

> ys := [y1, y2];
ys := [y1, y2]

> jacobian (xs, ys);
[y2 y1]
[]
[1 - y2 - y1]

Finally, get Jg by computing the determinant y2(−y1)− y1(1− y2) = −y1 of this matrix:

> det (");
- y1

The arguments to Maple’s jacobian procedure have to be lists (or vectors), not sets. Contrary to
what its name would suggest, the procedure returns the matrix of partial derivatives rather than

21:38 10/19/1998

14 The Change of Variable Formula

its determinant. Note that in our example the partial derivatives ∂xi/∂yj are in fact continuous
functions of y = (y1, y2) and Jg(y) 6= 0 for all y ∈ Y.

We are nearly ready to define multi-dimensional versions of chng vars1 and chng vars1. It would
be wise for these functions to run some sanity checks on their arguments. To illustrate how this
may be done, here is a procedure which expects its one and only one argument to be either an
equation or a set of equations.

>
arg_checker := proc (a)

if nargs <> 1 then
ERROR (‘expecting 1 argument but got‘, nargs)

fi;
if not (type (a, equation) or type (a, set(equation))) then

ERROR (‘argument‘, a, ‘not an equation or a set of equations‘)
fi;
‘OK‘

end:

> arg_checker (y = k/x);
OK

> arg_checker ({y1=x1+x2, y2=x1/(x1+x2)});
OK

> arg_checker (x1, y1);
Error, (in arg_checker) expecting 1 argument but got, 2
> arg_checker (x1 + y1);
Error, (in arg_checker) argument, x1+y1, not an equation or a set of equations

Within a procedure the special name nargs has as its value the number of arguments with which
the procedure was called. “<>” is Maple’s notation for “not equal”. The ERROR function
causes an immediate return to top-level Maple. The boolean operators not and or have their
usual meanings in logic. The command

type (expr, type name)

returns true if the expression expr is of type type name, and false otherwise. type name may be
either a single type name, or a set of type names:

> type (x = g(y), equation);
true

> type (x = g(y), list);
false

> type ({y1=x1+x2, y2=x1/(x1+x2)}, {equation, list});
false

> type ({y1=x1+x2, y2=x1/(x1+x2)}, {equation, set(equation)});
true

There is actually a simpler way to do type checking on the arguments to a procedure. If you define
a procedure with

proc (. . . , argi : type namei, . . .) . . . end

then each time the procedure is invoked Maple will abort the procedure call with an appropriate
error message if arg i isn’t of type type namei. Here then is a better way to write arg checker:

21:38 10/19/1998

2.3 The multi-dimensional case 15

>
arg_checker := proc (a : {equation, set(equation)})

if nargs <> 1 then
ERROR (‘expecting 1 argument but got‘, nargs)

fi;
‘OK‘

end:

> arg_checker (y = k/x);
OK

> arg_checker (x1 + y1);
Error, arg_checker expects its 1st argument, a, to be of type {equation,
set(equation)}, but received x1+y1

Now we can define multi-dimensional versions of chng vars1 and chng vars1:

chng vars (old density, {y1, . . . , yk}, {x1 = g1(y1, . . . , yk), . . . , xk = gk(y1, . . . , yk)})
chng vars (old density, {x1, . . . , xk}, {y1 = h1(x1, . . . , xk), . . . , yk = hk(x1, . . . , xk)})

Both functions should return the density of y = (y1, . . . , yk) when x = (x1, . . . , xk) has density
given by old density , which is to be expressed in terms of x. chng vars is to be used when
x is written as g(y), while chng vars is to be used when y is written as h(x). When k = 1 it
is convenient to allow the simpler calling sequences chng vars (old density, y, x = g(y)) and
chng vars (old density, x, y = h(x)).

enset := proc (s)
return s if s is a set, otherwise return the set consisting of s
if type (s, set) then s else {s} fi

end:

chng_vars_ := proc(‘%f(x)%‘, y:{name, set(name)}, ‘%x=g(y)%‘:{equation, set(equation)})
local ‘%{y}%‘, ‘%{x=g(y)}%‘, exprs, vars, J;

check arguments, and express them as sets if need be
if nargs <> 3 then

ERROR (‘expected 3 arguments but got‘, nargs);
fi;

‘%{y}%‘ := enset (y);
‘%{x=g(y)}%‘ := enset (‘%x=g(y)%‘);

if nops(‘%{y}%‘) <> nops(‘%{x=g(y)}%‘) then
ERROR (‘arguments‘, y, ‘and‘, ‘%x=g(y)%‘, ‘are of unequal length‘);

fi;

compute J, the determinant of the matrix of partial derivatives
exprs := convert (map (rhs, ‘%{x=g(y)}%‘), list);
vars := convert (‘%{y}%‘, list);
J := simplify (linalg[det] (linalg[jacobian] (exprs, vars)));

if J = 0 then
ERROR (‘singular transformation‘)

fi;

express the old density in terms of the new variables and multiply by
the absolute value of J
simplify (subs (‘%{x=g(y)}%‘, ‘%f(x)%‘) * abs(J))

end:

Note that Maple’s relational operator for equality is “=”, not “==” as in C or Splus. chng vars
refers to the det and jacobian procedures from the linalg package by their “long” names —
linalg[det] and linalg[jacobian] — so that these procedures don’t have to be preloaded by with.

21:38 10/19/1998

16 The Change of Variable Formula

chng_vars := proc (‘%f(x)%‘, x:{name, set(name)}, ‘%y=h(x)%‘:{equation, set(equation)})
local ‘%{x}%‘, ‘%{y=h(x)}%‘, ‘%{y}%‘, solutions, ‘%{x=g(y)}%‘,

‘%f(y)%‘, contrib;

check arguments
if nargs <> 3 then

ERROR (‘expected 3 arguments but got‘, nargs);
fi;

‘%{x}%‘ := enset (x);
‘%{y=h(x)}%‘ := enset (‘%y=h(x)%‘);
‘%{y}%‘ := map (lhs, ‘%{y=h(x)}%‘);

if nops(‘%{x}%‘) <> nops(‘%{y=h(x)}%‘) then
ERROR (‘arguments‘, x, ‘and‘, ‘%y=h(x)%‘, ‘are of unequal length‘);

fi;

solve the equations for the old variables in terms of the new ones
solutions := solve (‘%{y=h(x)}%‘, ‘%{x}%‘);
if solutions = NULL then

RETURN (’procname (args)’)
fi;
if nops([solutions]) > 1 then

print (‘Warning: transformation is many to one‘);
print (solutions);

fi;

accumulate the contributions to the new density from the various
branches of the solution (each branch is a set of equations)
‘%f(y)%‘:= 0;
for ‘%{x=g(y)}%‘ in [solutions] do

contrib := chng_vars_ (‘%f(x)%‘, ‘%{y}%‘, ‘%{x=g(y)}%‘);
‘%f(y)%‘:= ‘%f(y)%‘ + contrib

od;
simplify (‘%f(y)%‘);

end:

The functions chng vars1 and chng vars1 of the preceding section are no longer needed, since
chng vars and chng vars do everything they did. For example:

> chng_vars (exp (-x^2/2)/sqrt(2*Pi), x, y=x^2);
Warning: transformation is many to one

1/2 1/2
{x = - y~ }, {x = y~ }

1/2
exp(- 1/2 y~) 2

1/2 ------------------
1/2 1/2

Pi y~

The same disk file that holds the source for these procedures also has the corresponding help
information, specified using the construction

‘help/text/function‘ := TEXT(‘text str1‘, ‘text str2‘ , . . . , ‘text strn‘):

When the user types “? function”, Maple prints each of the text strings text strs in the TEXT
data structure ‘help/text/function‘ on a separate line, stripped of the leading and trailing back
quotes. For example, here is part of the help text for chng vars:

21:38 10/19/1998

2.3 The multi-dimensional case 17

‘help/text/chng_vars‘ := TEXT (
‘FUNCTION: chng_vars - find the density resulting from a change of variables‘,
‘ ‘,
‘CALLING SEQUENCE:‘,
‘ chng_vars (‘‘%f(x)%‘‘, x, ‘‘%y=h(x)%‘‘)‘,
‘ ‘,
‘PARAMETERS:‘,
‘ ‘‘%f(x)%‘‘ - an expression‘,
‘ x - a name or set of names‘,
‘ ‘‘%y=h(x)%‘‘ - an equation or set of equations‘,

...

‘SEE ALSO: chng_vars_‘
):

Notice that to get a back quote into a text string you have enter it as two consecutive back quotes.
The help page for a Maple function typically has the following categories:

• HELP FOR (or FUNCTION) — the procedure under discussion;

• CALLING SEQUENCE — how to invoke the procedure;

• PARAMETERS — what each parameter must or can be;

• SYNOPSIS — a brief description what the function does;

• EXAMPLES — examples of the use of the procedure;

• SEE ALSO — related items for which help is available.

Here is how the help page for chng vars looks when Maple prints it out:

> ? chng_vars
FUNCTION: chng_vars - find the density resulting from a change of variables

CALLING SEQUENCE:
chng_vars (‘%f(x)%‘, x, ‘%y=h(x)%‘)

PARAMETERS:
‘%f(x)%‘ - an expression
x - a name or set of names
‘%y=h(x)%‘ - an equation or set of equations

SYNOPSIS:
- chng_vars computes the density of a random variable/vector y which is the

transformation of some random variable/vector x having a known density. The
parameter ‘%y=h(x)%‘ specifies the transformation - the way y depends on x -
as an equation of the form y=h(x), or as a set of such equations, one for
each of the components y1,...yk of y, in terms of the components x1,...,xk
of x. The density ‘%f(x)%‘ of x must be expressed in terms of the components
of x.

EXAMPLE:
> assume (k > 0):
> chng_vars (a * k^a / x^(a+1), x, y = k/x);

(a - 1)
a y

21:38 10/19/1998

18 The Change of Variable Formula

> assume (y1 > 0):
> dgamma := (x, r, la) -> la^r * x^(r-1) * exp(-la*x) / GAMMA(r):
> chng_vars (dgamma(x1,r1,la)*dgamma(x2,r2,la), {x1,x2}, {y1=x1+x2, y2=x1/(x1+x2)}):
> simplify (factor ("));

(r1 + r2) (r1 - 1) (r1 + r2 - 1) (r2 - 1)
la y2 y1~ (1 - y2) exp(- la y1~)
--

GAMMA(r1) GAMMA(r2)

SEE ALSO: chng_vars_

The last example is discussed in the next subsection.

2.4 Example: the Gamma-Beta-Chisquare-F-T connection

I am going to use the tools we have developed to study some important distributions in statistics.
The gamma distribution G(r, λ) with shape parameter r > 0 and scale parameter λ > 0 has density

gr,λ(x) = λrxr−1e−λx/Γ(r) (6)

for x > 0. Suppose X1 and X2 are independent random variables with X1 ∼ G(r1, λ) and X2 ∼
G(r2, λ). Put

Y1 = X1 + X2,

Y2 = X1/(X1 + X2).

Let’s use chng vars to find the joint density of Y1 and Y2. To begin, do:
> restart;
> read (‘chvars‘);
> dgamma := (x, r, la) -> la^r * x^(r-1) * exp(-la*x) / GAMMA(r);

r (r - 1)
la x exp(- la x)

dgamma := (x,r,la) -> ------------------------
GAMMA(r)

GAMMA is Maple’s notation for the Gamma function. The construction

vars -> result

is short for “proc(vars) result end”. Here vars is a single variable name or a sequence of variable
names enclosed in parentheses, and result is a single statement specifying the result of the procedure
acting on vars. dgamma is the name of my user-defined function for the gamma density. Continue
with

> assume (y1 > 0);
> chng_vars (dgamma(x1,r1,la)*dgamma(x2,r2,la), {x1,x2}, {y1=x1+x2,y2=x1/(x1+x2)});

(r1 + r2) (r1 - 1) r1 (r2 - 1)
la y2 y1~ (y1~ - y2 y1~) exp(- la y1~)

GAMMA(r1) GAMMA(r2)

> simplify(factor("));
(r1 + r2) (r1 - 1) (r1 + r2 - 1) (r2 - 1)

la y2 y1~ (1 - y2) exp(- la y1~)
--

GAMMA(r1) GAMMA(r2)

21:38 10/19/1998

2.4 Example: the Gamma-Beta-Chisquare-F-T connection 19

This is the joint density of Y1 and Y2, the formula being valid for all y1 > 0 and 0 < y2 < 1.
Dividing by gr1+r2,λ(y1) produces

> "/dgamma(y1, r1+r2, la);
(r1 - 1) (r2 - 1)

y2 (1 - y2) GAMMA(r1 + r2)
--

GAMMA(r1) GAMMA(r2)

It follows that

Y1 and Y2 are independent, (7a)
Y1 ∼ G(r1 + r2, λ), and (7b)

Y2 has the Beta distribution B(r1, r2), (7c)

with density
br1,r2(y) = yr1−1(1− y)r2−1/B(r1, r2) (8)

for 0 < y < 1; here B(r1, r2) = Γ(r1)Γ(r2)/Γ(r1 + r2) is the usual Beta function.

The Chisquare distribution χ2(n) with n degrees of freedom is the distribution of

SS = Z2
1 + Z2

2 + · · ·+ Z2
n,

the Zi’s being independent standard normal random variables. It follows formula (3) that Z2
i ∼

G(1/2, 1/2) and from (7b) that SS ∼ G(n/2, 1/2), with density

χ2
n(x) = gn/2,1/2(x) =

1
Γ(n/2)2n/2

xn/2−1e−x/2. (9)

We could use -> to define a Maple function to compute this, but it is easier to say
> dchisq := unapply (simplify (dgamma(x, n/2, 1/2)), x, n);

(- 1/2 n) (1/2 n - 1)
2 x exp(- 1/2 x)

dchisq := (x,n) -> ------------------------------------
GAMMA(1/2 n)

In general the result of
unapply (expr, vars)

is a function having the variables vars as its parameters and the expression expr as its return value.

The unnormalized F -distribution UF (n1, n2) with n1 and n2 degrees of freedom is the distribution
of

F = SS 1/SS 2

where SS 1 and SS 2 are independent Chisquare variables with n1 and n2 degrees of freedom respec-
tively. Since

B :=
F

1 + F
=

SS 1

SS 1 + SS 2
,

(7c) implies that B ∼ B(n1/2, n2/2). We can get the density of F from the density of B with
chng vars :

21:38 10/19/1998

20 The Change of Variable Formula

> dbeta := (y, r1, r2) -> y^(r1-1) * (1-y)^(r2-1) / Beta(r1, r2);

(r1 - 1) (r2 - 1)
y (1 - y)

dbeta := (y,r1,r2) -> -------------------------
Beta(r1, r2)

> duf := unapply (chng_vars_ (dbeta (b, n1/2, n2/2), f, b = f/(1+f)), f, n1, n2);

(1/2 n1 - 1) (- 1/2 n1 - 1/2 n2)
f (1 + f)

duf := (f,n1,n2) -> --
Beta(1/2 n1, 1/2 n2)

Beta is Maple’s notation for the Beta function. My function dbeta computes the beta density
(8), and duf computes the density

φn1,n2(f) =
1

B(n1/2, n2/2)
fn1/2−1

(1 + f)(n1+n2)/2
(10)

of F ; this formula is valid for f > 0.

The unnormalized t distribution UT (n) with n degrees of freedom is the distribution of

T = Z/
√

SS

where Z and SS are independent, with Z ∼ N(0, 1) and SS ∼ χ2(n). Evidently

F := T 2 = Z2/SS ∼ UF (1, n).

chng vars gives the density f|T |(t) of
|T | =

√
F

over (0,∞):

> assume (abs_t > 0):
> chng_vars (duf(f, 1, n), f, abs_t = sqrt(f));

2 (- 1/2 - 1/2 n)
(1 + abs_t~)

2 ----------------------------
Beta(1/2, 1/2 n)

By symmetry, the density of T itself is fT (t) = f|T |(|t|)/2, for −∞ < t < ∞:

> subs (abs_t^2 = t^2, "/2);
2 (- 1/2 - 1/2 n)

(1 + t)

Beta(1/2, 1/2 n)

This says that T has density

τn(t) =
1

B(1/2, n/2)
1

(1 + t2)(n+1)/2
, (11)

for −∞ < t < ∞. Make this into a Maple function with
> dut := unapply (", t, n):

21:38 10/19/1998

2.4 Example: the Gamma-Beta-Chisquare-F-T connection 21

For n = 1 we get the density

τ1(t) =
1

B(1/2, 1/2)
1

(1 + t)2
=

1
π

1
(1 + t)2

(12)

of the standard Cauchy distribution:

> dcauchy := unapply (dut(x, 1), x);

1
dcauchy := x -> -----------

2
(1 + x) Pi

To finish off this Maple session, do
> save dgamma, dchisq, dbeta, duf, dut, dcauchy, ‘densities‘;
> save dgamma, dchisq, dbeta, duf, dut, dcauchy, ‘densities.m‘;

to save the definitions of dgamma, . . . , dcauchy into the text file densities and the Maple internal
format file densities.m. By convention, files in internal format have names ending in .m; they can
be loaded into Maple at high speed by read and with, but they are not human-readable.

21:38 10/19/1998

Index

" (last expression), 3
"" (second last expression), 3
""" (third last expression), 3, 4
’ (prevent evaluation), 11
* (multiplication), 4
-> (function definition), 18
.m (file name suffix), 21
: (type checking), 14
: (command terminator), 2, 6
; (command terminator), 2, 3
<> (not equal), 14
= (equality), 15
? (help command), 2
[. . .]

as list notation, 5
as subscript operator, 5

ˆ (exponentiation operator), 4
‘ (back quote), 6, 10, 17
{. . . } (set notation), 13
(comment), 7

abs, 4
alphanumeric characters, 6
args, 11
arguments, 8
assignment operator, see :=
assume, 4

back quote, see ‘
back referencing, see ", "", """, history
Beta, 20
Beta function, 19
by, 8

change of variables formula
multi-dimensional, 12–21
one-dimensional, 3–12

chng vars, 15
chng vars , 15
chng vars1, 8, 11, 16
chng vars1 , 6, 11, 16
comment, see #
conditional execution, see if

convert, 13

dbeta, see densities, dbeta
dcauchy, see densities, dcauchy
densities

dbeta, 20
dcauchy, 21
dgamma, 18
duf (unnormalized F), 20
dut (unnormalized t), 20

det, 13
dgamma, see densities, dgamma
diff, 3
differentiation, see diff
distributions

Beta, 4, 19
Cauchy, 21
Chisquare

with n degrees of freedom, 19
with one degree of freedom, 6

gamma, 18
logistic, 3
Pareto, 3
unnormalized F , 19
unnormalized t, 20

do, 8
done, 2
duf, see densities, duf
dut, see densities, dut

elif, 10
else, 10
end, 7
equation, 4
ERROR, 14
exp, 3
exponentiation, see ˆ
expression sequence, 5

empty, see NULL

factor, 18
false, 14
fi (match to if), 10

22

INDEX 23

files
Maple internal format, 21
loading, see read, with
user format, 21

for, 8
from, 8
function

checking the type of arguments, 14
debugging of, 7
defining a, see ->, proc, unapply
failure to complete task, 10
saving a, 21

GAMMA (gamma function), 18

help, see ?
help page

writing a, 16, 17
history, 4

if, 10
in, 8

Jacobian, 12
jacobian, 13

LATEX, 1
linalg, 13
list

extracting an element, 5
mapping a function over a, 10
notation, 5

local, 7
log, 3
logical relations, see =, <>
long names, 15
loops, 8

manuals, 1
map, 10
Maple

overview, 1

nargs (number of arguments), 14
nops (number of operands), 10
not, 14
not equal

see<>, 14
NULL (empty expression sequence), 11

od (match to do), 8
operand, 8
or, 14

package
loading, see with

parameter, 7
Pi (the number π), 5
preceding expressions, see ", "", """
print, 8
proc (procedure definition), 7

with argument checking, 14
procname, 11
prompt, 1

quit, 2
quotes, see , ’, ‘

read, 12
reference manuals, 1
restart, 2
RETURN, 11
return values, 7

save, 21
set, 13
simplify, 3
sin, 10
single quote, see ’
solve, 3

anomalous behaviors, 11
case of simultaneous equations, 13
multiple solutions, 5, 10
no solutions, 10, 11

sqrt, 5
starting Maple, 1

afresh, 2
statement, 7
stop, 2
string, 6
string delimiter, see ‘
subs, 4

with sets of equations, 15
subscript operator, 5

21:38 10/19/1998

24 INDEX

terminating Maple, 2
TEXT, 16
then, 10
to, 8
trace, 7
true, 14
tutorial, 2
type, 14

unapply (function definition), 19
untrace, 8

with, 13
avoiding use of, 15

21:38 10/19/1998

