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TOPIC. Moment generating functions. The nt® moment of a
random variable X is E(X™) (if this quantity exists); the moment
generating function (MGF) of X is the function defined by

M(t) = B(e') (1)
for ¢t € R; the expectation in (1) exists (since ¥ is a nonnegative)
but may be 4o00. This section shows how the MGF “generates” the
moments, and how the moments can (in certain cases) be used to
recover the MGF.

Note that if Y = a + bX for numbers a and b, then

My (t) == E(etY) = E(e®e"X) = e E("X) = e Mx (bt) (2
for all ¢ € R. Consequently, given a location/scale family of distribu-
tions, it suffices to compute the MGF for one (simple) member in the
family; the MGF's of the other members follow from (2).
Example 1. The mgfs in this example are illustrated in Figure 1.
(a) Suppose X ~ N(0,1). Then

00 —:c2/2

M(t):E(etX):/_ etxem dx

00 ,—t?/2+tw—2%/2
e V2T
In particular, {t e R: M(t) < oo} =R.
(b) Suppose X ~ Gamma(r,1). Then

0 o—(z—1)%/2

o V2T

t2/2 de — et/2

— e dz = et/2.(3)

M(t) = B(eX) = /OOO etw“fr(f)x dx
B 1 0o (1 o t)rxr—le—(l—t):v e 1
= ) =Ty @)

for t < 1; however M(t) = oo for t > 1. In particular, {t € R :
M(t) < oo} = (—00,1).
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(c) Suppose X ~ UF(2,2), with density f(z) =1/(1+ z)? for z >0
and 0 otherwise. Then

> 1
M(t) = E(e"* :/ "
0)=BEN)= | e da
¢ eitEg(—t), if t <0,
Ooey
:e—t/ Cay={1, it =0, (5)
1Y .
0, if t > 0;

here E,,(u) := [ e~"¥/y" dx is the value of the so-called exponen-

tial integral of order n at w. In particular, {t € R: M(t) < o0} =
(—00,0]. (In MAPLE, E,(u) is Ei(n,u).)

(d) Suppose X ~ Cauchy(0,1). Then

o0 1 1 ift=0
M(t) = E(e'™ :/ o dr =23 ’
®) () _Ooe (1 + x2) . oo, otherwise.
Here {t e R: M (t) < oo} = {0}. o

These examples motivate the following result.
Theorem 1. Let M be the MGF of a random variable X. Then
B:={teR:M(t) <oo} (7)

is a (perhaps degenerate) interval containing 0. Moreover M is convex

on B.

Proof The exponential function z ~» e* is convex on R. Hence for
t1 and t in R and 0 < a < 1, we have

elotit(1-a)t2) X(w) < pet1 X(w) (1— a)efaX(W) for all w
_— E(e(at1+(1—a)t2)X) S E(aeth + (1 _ a>et2X)
= M (at1 + (1 — a)tz) < aM(t1) + (1 — o) M(tz). (8)
Consequently if M(t;) < oo and M (t2) < oo, then M(t) < oo for

all t € [t1,1t2]; it follows that B is an interval. B contains 0 because
M(0) = E(e"*) = E(e”) = 1. (8) says that M is convex on B. [ |
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Figure 1: Graphs of M(t) = E(e!*) for the random variables X in
Example 1.
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The derivatives of the MGF. Let X be a random variable with
MGF M. Let B = {t: M(t) < oo} be the interval of finiteness of M,
and let B° be the interior of B. With luck, we should have

d _i txy 2 itX _ tX
SM(t) = (e )_E<dte )_E(Xe )

for t € B°. The following theorem asserts that this is correct.

Theorem 2. Let X, M, B, and B° be as above, and suppose that
B° is nonempty. Then for each t € B°, M is differentiable at t, the
random variable Xe'X is integrable, and

M'(t) = E(Xe™Y). (9)
Proof Let t5 € B°. Let € > 0 be such that the points ¢ty — 2¢ and

to+2¢ are both in B. Let tq, t3, ... be points in B° such that ¢,, — tg
asn — oo and 0 < [t, —to| < € for all n. For each n

M(t,) — M(ty)  E(eX) — E(efoX)

- ~ B(Y,)
tn — 1o tn — 1o
where
v _ etnX _ otoX
t, —to
As n — 0o, we have
Y, — ietX = XeloX .= Y.
dt t=tg
According to the DCT, provided there exists
an integrable rv D such that |Y,,| < D for all n, (10)

the Y,,’s and Y will be integrable and we will have
E(Y,) — E(Y).

This is exactly the conclusion we want: it implies that X e/ X is inte-

grable and that M’(ty) = E(Xe!0X).
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(10): D is integrable and |Y;,| < D for all n. tot2ee€ B

We need to produce a D satisfying (10). By the mean value
theorem,

tnX toX

etnX — et X = (¢, — tg) Xet' X

for some point t* between tg and t,,; t* depends on n and the implicit
sample point w, but we don’t indicate that in the notation. Hence
etnX _ gtoX .
7‘ = |X]et X < ’X’(e(tO*G)X + e(to+6)X)_

— to -

‘Yn| = P
n

Now

62‘X‘2 63‘X‘3
N )

1 1
1] = —elX]| < g(1 + el x|+ 2 -

— leGIXl < l(efeX +€6X).

€ €
Thus
1
|Yn| < E(e—eX +66X) (e(to—e)X +e(t0+5)X)
<D:= 1(e(tO_QG)X + 2610 4 ((to+29X),
€
We have

E(D) = %(M(to — 2¢) + 2M (o) + M (to + 2¢)) < 00

by the choice of €. Hence D is the integrable dominator we need. N
Iterating this argument (do it!) gives

Theorem 3. Let X, M, B, B° be as in Theorem 2, and suppose
that B° is nonempty. Then M is infinitely differentiable on B°. For
each t € B° and each k € N, X*e!X is integrable and

M® (1) = B(XkeY). (11)
In particular if 0 € B®, then for all k € N, X* is integrable and
M®)(0) = B(X*). (12)
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0 € B° = M®)(0) exists and equals E(X*), for all k € N.

Example 2. Suppose X ~ Gamma(r, 1). By (4)

1
(1—2)

M(t) =

for t < 1. Consequently 0 € B® = (—o0, 1) and

E(X*) = M®(0) = i ((1 : )‘t:O

CodthT\ (1 — )t
Cr(r+ D) +2) - (r+ k1)
- (1 —t)rtk ‘t:O
:r(r—l—l)(r—f—?)---(?“—l—k—l):F(lt(j:)k). (13) ®

A related but different argument (see Exercise 5) gives this com-
panion to Theorem 3:

Theorem 4. Let X, M, B, and B° be as in Theorem 3. Suppose
that 0 ¢ B°, but that there exists an € > 0 such that [0,€¢) C B. Then
for all k € N, X is quasi-integrable and

M(kfl) t _M(kfl) 0
B(x*) = M (0) :=Tim ®) - ©

(14)

Mik)(O) is called the k' right-hand derivative of M at 0; by
definition MJ(FO) (0) = M(0) = 1. A similar result holds for the left-
hand derivatives Mik)(O) of M at 0 when (—¢,0] C B.

Example 3. Suppose X ~ UF(2,2) as in Example 1 (c¢). Since
B = (—0, 0], we have

(k) k gk
©0) =B = [ =
for all £k € N. °
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The series expansion of the MGF. Consider the following heuris-
tic

o YR\ 5 oo k
M) = B = B3 tl‘;( )iZkZOE(Xk)%. (15)

k=0

This couldn’t be true in general, because the power series on the RHS
converges to a finite value in an interval which is symmetric about 0,
whereas the domain of finiteness of M can be an asymmetric interval
about 0.

Theorem 5. Let X be a random variable with MGF M. Then the
following two statements are equivalent:

S1 X" is integrable for all k € N and the series >, o t* E(X*)/k!
has radius of convergence R > 0.

S2 R* :=sup{t>0:M(t) < oo and M(—t) < oo} > 0.
If S1 and S2 hold, then
S3 R = R*, and
S4 M(t) = S o2 o t*E(X*)/k! for all t such that M(t) < oo and
M (—t) < oo, and in particular for all t such |[t| < R* = R.

Example 4. (a) Suppose X ~ Gamma(r,1). Then B = (—c0,1) =
R*=1= R =1 = (15) holds for [t| < 1. Note that the LHS of
(15) is defined and finite for ¢ < —1, even though the series on the
RHS does not converge for such ¢’s.

(b) Suppose X ~ N(0,1). Then B = (—00,0), so R = R* = .
Consequently X is integrable for all k € N and

oo tm
S B = =

nl
s (t2/2)F o (2k)! t*
- Zk:(] T Zk:o k12~ (2k)!
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S1: X* is integrable for all k¥ € N and the series Y oo, t" E(X*)/k!
has radius of convergence R > 0.

S2: R* :=sup{t>0:M(t) <ooand M(—t) <oo} >0.
S3: R = R". S4: M(t) = > 2y E(X®)tM/K! for |t| < R = R*.

By the uniqueness of the coefficients of a power series, F(X™) = 0 for
n odd, whereas

_(2k)! 1-2-3---(2k)

2k
B(X™) = Kl'2k  2.4.6---(2k)

=1-3-5---(2k—1)  (16)

is the product of the odd positive integers less than 2k. In particular,
E(X?) =1, BE(X%) =1-3-5=15,
E(X*)=1-3=3, BE(X%)=1-3.5-7=105.

Remember these formulas!

(c) Suppose S2 holds. Then M (t) = Y22 E(X*)t*/k! for all ¢ with
|t| < R = R*. It follows from the theory of power series that M is
infinitely differentiable in the interval (—R, R) and that M®)(0) =
E(XF¥) for all k € N. This gives another proof of (12). .

Proof of Theorem 5. e Step 1: Ift # 0 and M(+t) < oo, then
X* is integrable for all k and M(t) =Y 7., E(X*)t"/k!. Indeed, we
have

E(Z::o‘ tkzj!(k D = E(l™X]) < B(eX + 7))
= M(t) + M(—t) < oco.

In particular, E([t*||X*|/k!) < co = E(|X*|) < c0o = E(X")
exists and is finite, for all k¥ € N. Moreover by Fubini’s Theorem

oo thk o tkE X*
u=p(y7 )=y PR
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S1: X* is integrable for all k¥ € N and the series Y-, tf E(X*)/k!
has radius of convergence R > 0.

S2: R* :=sup{t>0:M(t) < oo and M(—t) <oo} > 0.
S3: R = R*. S4: M(t) = S0 E(XF)tH/K! for [t < R = R,

e Step 2: S2 = S1 and R > R*. Suppose 0 < |t| < R*. Then
M(t) < oo and M(—t) < co. By Step 1, X* is integrable for all k € N
and M(t) = D2 t* E(X*)/k!. Since this series converges for all ¢
with |t| < R*, its radius of convergence R must be at least R* > 0.

e Step 3: S1 = S2 and R* > R. Suppose 0 < |t| < R. Then

M(t) + M(—t) = B(e"*) + E(e™**) = B(e!* +e7%)
o (tX) o (—tX)F
B )
0o tQkXQk
- (2 2o (2k)! )

0o t2kE X2k:
=2> EXT) (by Fubini)

k=0 (2k)!
o [t"E(X")]
<2 Zn:O n!

< 00,

the last step holding since a power series converges absolutely in the
interior of its interval of convergence. It follows that R* > R (> 0).

e Step 4: S1 and/or S2 = S3. This follows from Steps 2 and 3.

e Step 5: S1 and/or S2 = S4. This follows from Step 1. ]
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Exercise 1. Suppose X, ..., X, are independent random variables.
Put S, = X7 +---+ X,,. Show that

n

B(e'™) = E(e'™?) (17)

i=1

for all t € R. o

Exercise 2. Suppose U ~ Uniform(0,1). Show that

et —1

E(etU): -

(18)

for all ¢ (evaluate the RHS via I’'Hospital’s rule for t = 0). Use (18)
and (12) (or S4) to calculate the mean and variance of U. o

Exercise 3. Suppose X ~ Poisson()\), so P[X = k] = e *\¥/k! for
k=0,1,2,... . Show that

E(e"™) = exp(A(e' — 1)) (19)

for all t € R. Use (19) and (12) (or S4) to calculate the mean and
variance of X. o

Exercise 4. Let X be a rv with density f(z) = e ¢ e * for €
R. (This distribution arises in the theory of extreme values.) Show
that E(e!X) = I'(1 — t) for t < 1, and = co otherwise. Express the
mean and variance of X in terms of the Gamma function and its
derivatives. o

Exercise 5. (a) Let h:R — R be the function which maps u to
(e* —1)/u. Show that h is nondecreasing in u. (b) Use the MCT to
prove (14) for the case k = 1. o
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Exercise 6. As in Example 1 (c), suppose X ~ UF(2,2) and put
M(t) = E(etX). Show that

L= MY g1 /u) + /OOO log(y) e dy + o(1) (20)

as v | 0. [Hint: Write 1 — M(—u) as M(0) — M(—u), integrate by
parts, make the change variables y = u(1+ z), and integrate by parts
again. | o

Exercise 7. Suppose X has finite moments of all orders. Show that
the radius R of convergence of the series in (15) is given by the formula

1/R = limsup,, V/|E(X")|/n!
= limsup,, e V/|E(X™)| /n = limsup,, e v/ E(|X|") /n. (21)

Hint: According to Stirling’s formula n! ~ /2rnn™e™™ as n — oo.Jo

Exercise 8. Suppose X ~ Gamma(r,1). Compute the moments of
X by direct integration and use (15) to compute E(e!) for t’s within
the interval of convergence of the series. °

Let X be a random variable with MGF M (¢). The function K
defined by K(t) = log(M(t)) is called the cumulant generating
function of X; it’s derivatives at 0, namely

Ky = KM(0), r=01,2,..., (22)

are called the cumulants of X (or of M); the cumulants exist if M
is finite in an open interval containing ¢ = 0.

Exercise 9. Let X be a random variable having cumulants kg, k1,
K2, ... . Show that

ko =0, k1 = E(X), and ko = Var(X). (23) ©

The exercises below explore exponential families, a topic of im-
port throughout statistical theory. The exercises are wordy, but ex-

11-11

cept for Exercises 15 and 16, and the last parts of Exercises 11, 17,
and 18, the answers should be almost immediate.

The following setup is used throughout exercises 10-18. Let f be
a piecewise continuous density on the real line whose MGF

M(t) —/emf(x) dx

is finite for all ¢’s in some nonempty open interval. Denote the largest
such interval by (¢;,t,), and note that ¢{;, < 0 and ¢, > 0. (¢; and ¢,
may be infinite.) Let K(t) = log M (t) be the corresponding cumulant
generating function. Construct a one-parameter family {fo}:, <0<,
of densities related to f by exponential tilting, as follows: for each
0 € (t,t,), set

folw) = e f(a)/M(6) = "~ KO f(x). (24)
Exercise 10. Show that: (a) fp is a density; (b) fp has MGF My(t) =
M(t+6)/M(0), finite for t € (t; — 0,t,. — 0). o

Exercise 11. (a) Let f(z) = exp(—2%/2)/V2r for z real. What
are M, t;, and t,7 Name the density corresponding to fy. (b) Re-
peat (a) with f(x) = exp(—=) for z nonnegative. (c) Repeat (a) with
f(z) = 1/(m cosh(z)) for x real. [Hint for (c): cosh(z) := (e""+e”)/2.
There is no common name for fy. Show that fy is the density of
1log(F), where F has an unnormalized F' distribution; give the de-
grees of freedom.] o

Exercise 12. Show that (in general) the cumulant generating func-
tion Ky of fy satisfies

Ko(t) = K(t+0) — K(0), (251)
%Kg(t) = K'(t +0), (252)
%K@(t) — K(”(t +6), (253)
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K’ and K(") denoting derivatives of the function K. (In these formu-
las, t € (t; — 0,t, — 0).) o

Exercise 13. Denote the r'" cumulant of fs by #,.(0) (so x,.(0) =
K.7(0)). Show that

r1(0) = K'(0), ra(0) = K" (0), (261)
dJ
kr(0) = K(0) = g3 =3 (0); (262)
the last equation holding for any » > 1 and 0 < j < r. o

Exercise 14. Show that k2(f) > 0 and deduce that on the interval
(t1,t,), K’ is strictly increasing and K is strictly convex. [Hint: Use
the result of Exercise 9.] o

Exercise 15. Let
a=inf{z: f(z) >0} and b=sup{x: f(z) >0}

be respectively the smallest and largest points of support of f. Show
that

k1(ti+) = élftri k1(0) =a (271)
provided

tp=—o00 or t;>—o0and M(t;+) = oc;
moreover

Ki(tr—) :== élTIg: k1(0) =0 (272)
provided

t, =00 or t,<ooand M(t,—) = oc.

[Hints: You need only prove (273), because the argument for (27;)
is similar. In the case that ¢, < oo, first argue that b = co. In
the case that t, = oo, first argue that if f(x) > 0 for all x in some
nonempty interval («, ), then there exists a finite number ¢ such that
K(t) > c+atforall t > 0] o
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Exercise 16. Show by example that (27) need not hold. o

Exercise 17. Suppose (27) holds. Show that for each £ € (a,b), the
equation

k1(0) = ¢ (28)

has a unique root 6 € (t;,t,), and hence that corresponding to each
such ¢ there is a unique density in the family {fp} that has mean &.
(This result is of central importance to the saddlepoint approxima-
tions to which we shall return.) Solve (28) in closed form for the
densities in Exercise 11. [Hint: For the third density in Exercise 11,
you may find the formula I'(z)['(1 — z) = m/sin(7wz) helpful. The
formula is valid for 0 < z < 1; you do not have to prove it.] o

Exercise 18. Everything in the preceding discussion applies as well
to discrete distributions that are not concentrated on a single point,
with the understanding that f is now to be interpretated as a fre-
quency function (aka probability mass function). Let f = b(n,1/2)
be the Binomial frequency function for n trials and success proba-
bility 1/2. Find M, t;, and t,, and identify the family {fy} as the
binomial family b(n,p), 0 < p < 1. How does the so-called “canoni-
cal parameter” 6 correspond to the so-called “natural parameter” p?
Find dp/df as a function of p. To avoid notational confusion, let
Krp = Ky(0) refer to the cumulants of the binomial, considered as a
function of p and 6, respectively. From the general formula (262) on
cumulant recursion and the chain rule, derive the recurrence relation

d
Rep = pq%ﬁr—l,p- (29)

Use (29) and MAPLE to find the first 8 binomial cumulants. o
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