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TOPIC. Moment generating functions. The nth moment of a
random variable X is E(Xn) (if this quantity exists); the moment
generating function (MGF) of X is the function defined by

M(t) := E(etX) (1)

for t ∈ R; the expectation in (1) exists (since etX is a nonnegative)
but may be +∞. This section shows how the MGF “generates” the
moments, and how the moments can (in certain cases) be used to
recover the MGF.

Note that if Y = a + bX for numbers a and b, then

MY (t) := E(etY ) = E(eatebtX) = eatE(ebtX) = eatMX(bt) (2)

for all t ∈ R. Consequently, given a location/scale family of distribu-
tions, it suffices to compute the MGF for one (simple) member in the
family; the MGFs of the other members follow from (2).

Example 1. The mgfs in this example are illustrated in Figure 1.

(a) Suppose X ∼ N(0, 1). Then

M(t) = E(etX) =
∫ ∞

−∞
etx e−x2/2

√
2π

dx

= et2/2

∫ ∞

−∞

e−t2/2+tx−x2/2

√
2π

dx = et2/2

∫ ∞

−∞

e−(x−t)2/2

√
2π

dx = et2/2.(3)

In particular, { t ∈ R : M(t) < ∞} = R.

(b) Suppose X ∼ Gamma(r, 1). Then

M(t) = E(etX) =
∫ ∞

0

etx xr−1e−x

Γ(r)
dx

=
1

(1− t)r

∫ ∞

0

(1− t)rxr−1e−(1−t)x

Γ(r)
dx =

1
(1− t)r

(4)

for t < 1; however M(t) = ∞ for t ≥ 1. In particular, { t ∈ R :
M(t) < ∞} = (−∞, 1).
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(c) Suppose X ∼ UF (2, 2), with density f(x) = 1/(1 + x)2 for x ≥ 0
and 0 otherwise. Then

M(t) = E(etX) =
∫ ∞

0

etx 1
(1 + x)2

dx

= e−t

∫ ∞

1

ety

y2
dy =





e−tE2(−t), if t < 0,
1, if t = 0,
∞, if t > 0;

(5)

here En(u) :=
∫∞
1

e−uy/yn dx is the value of the so-called exponen-

tial integral of order n at u. In particular, { t ∈ R : M(t) < ∞} =
(−∞, 0]. (In Maple, En(u) is Ei(n,u).)

(d) Suppose X ∼ Cauchy(0, 1). Then

M(t) = E(etX) =
∫ ∞

−∞
etx 1

π(1 + x2)
dx =

{
1, if t = 0,
∞, otherwise.

(6)

Here { t ∈ R : M(t) < ∞} = {0}. •
These examples motivate the following result.

Theorem 1. Let M be the MGF of a random variable X. Then

B := {t ∈ R : M(t) < ∞} (7)

is a (perhaps degenerate) interval containing 0. Moreover M is convex
on B.

Proof The exponential function x Ã ex is convex on R. Hence for
t1 and t2 in R and 0 ≤ α ≤ 1, we have

e(αt1+(1−α)t2)X(ω) ≤ αet1X(ω) + (1− α)et2X(ω) for all ω

=⇒ E
(
e(αt1+(1−α)t2)X

) ≤ E
(
αet1X + (1− α)et2X

)

=⇒ M
(
αt1 + (1− α)t2

) ≤ αM(t1) + (1− α)M(t2). (8)

Consequently if M(t1) < ∞ and M(t2) < ∞, then M(t) < ∞ for
all t ∈ [t1, t2]; it follows that B is an interval. B contains 0 because
M(0) = E(e0X) = E(e0) = 1. (8) says that M is convex on B.
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Figure 1: Graphs of M(t) = E(etX) for the random variables X in
Example 1.
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The derivatives of the MGF. Let X be a random variable with
MGF M . Let B = {t : M(t) < ∞} be the interval of finiteness of M ,
and let B◦ be the interior of B. With luck, we should have

d

dt
M(t) =

d

dt
E(etX) ?= E

( d

dt
etX

)
= E

(
XetX

)

for t ∈ B◦. The following theorem asserts that this is correct.

Theorem 2. Let X, M , B, and B◦ be as above, and suppose that
B◦ is nonempty. Then for each t ∈ B◦, M is differentiable at t, the
random variable XetX is integrable, and

M ′(t) = E
(
XetX

)
. (9)

Proof Let t0 ∈ B◦. Let ε > 0 be such that the points t0 − 2ε and
t0 +2ε are both in B. Let t1, t2, . . . be points in B◦ such that tn → t0
as n →∞ and 0 < |tn − t0| ≤ ε for all n. For each n

M(tn)−M(t0)
tn − t0

=
E(etnX)− E(et0X)

tn − t0
= E(Yn)

where

Yn =
etnX − et0X

tn − t0
.

As n →∞, we have

Yn → d

dt
etX

∣∣∣
t=t0

= Xet0X := Y.

According to the DCT, provided there exists

an integrable rv D such that |Yn| ≤ D for all n, (10)

the Yn’s and Y will be integrable and we will have

E(Yn) → E(Y ).

This is exactly the conclusion we want: it implies that Xet0X is inte-
grable and that M ′(t0) = E(Xet0X).
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(10): D is integrable and |Yn| ≤ D for all n. t0 ± 2ε ∈ B

We need to produce a D satisfying (10). By the mean value
theorem,

etnX − et0X = (tn − t0) Xet∗X

for some point t∗ between t0 and tn; t∗ depends on n and the implicit
sample point ω, but we don’t indicate that in the notation. Hence

|Yn| =
∣∣∣e

tnX − et0X

tn − t0

∣∣∣ = |X|et∗X ≤ |X|(e(t0−ε)X + e(t0+ε)X
)
.

Now

|X| = 1
ε
ε|X| ≤ 1

ε

(
1 + ε|X|+ ε2|X|2

2!
+

ε3|X|3
3!

+ · · ·
)

=
1
ε
eε|X| ≤ 1

ε

(
e−εX + eεX

)
.

Thus

|Yn| ≤ 1
ε

(
e−εX + eεX

) (
e(t0−ε)X + e(t0+ε)X

)

≤ D :=
1
ε

(
e(t0−2ε)X + 2et0X + e(t0+2ε)X

)
.

We have

E(D) =
1
ε

(
M(t0 − 2ε) + 2M(t0) + M(t0 + 2ε)

)
< ∞

by the choice of ε. Hence D is the integrable dominator we need.

Iterating this argument (do it!) gives

Theorem 3. Let X, M , B, B◦ be as in Theorem 2, and suppose
that B◦ is nonempty. Then M is infinitely differentiable on B◦. For
each t ∈ B◦ and each k ∈ N, XketX is integrable and

M (k)(t) = E
(
XketX

)
. (11)

In particular if 0 ∈ B◦, then for all k ∈ N, Xk is integrable and

M (k)(0) = E(Xk). (12)
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0 ∈ B◦ =⇒ M (k)(0) exists and equals E(Xk), for all k ∈ N.

Example 2. Suppose X ∼ Gamma(r, 1). By (4)

M(t) =
1

(1− t)r

for t < 1. Consequently 0 ∈ B◦ = (−∞, 1) and

E(Xk) = M (k)(0) =
dk−1

dtk−1

( r

(1− t)r+1

)∣∣∣
t=0

=
r(r + 1)(r + 2) · · · (r + k − 1)

(1− t)r+k

∣∣∣
t=0

= r(r + 1)(r + 2) · · · (r + k − 1) =
Γ(r + k)

Γ(r)
. (13) •

A related but different argument (see Exercise 5) gives this com-
panion to Theorem 3:

Theorem 4. Let X, M , B, and B◦ be as in Theorem 3. Suppose
that 0 /∈ B◦, but that there exists an ε > 0 such that [0, ε) ⊂ B. Then

for all k ∈ N, Xk is quasi-integrable and

E(Xk) = M
(k)
+ (0) := lim

t↓0
M (k−1)(t)−M

(k−1)
+ (0)

t
. (14)

M
(k)
+ (0) is called the kth right-hand derivative of M at 0; by

definition M
(0)
+ (0) = M(0) = 1. A similar result holds for the left-

hand derivatives M
(k)
− (0) of M at 0 when (−ε, 0] ⊂ B.

Example 3. Suppose X ∼ UF (2, 2) as in Example 1 (c). Since
B = (−∞, 0], we have

M
(k)
− (0) = E(Xk) =

∫ ∞

0

xk

(1 + x)2
dx = ∞.

for all k ∈ N. •
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The series expansion of the MGF. Consider the following heuris-
tic

M(t) = E(etX) = E
(∑∞

k=0

tkXk

k!

)
?=

∑∞
k=0

E(Xk)
tk

k!
. (15)

This couldn’t be true in general, because the power series on the RHS
converges to a finite value in an interval which is symmetric about 0,
whereas the domain of finiteness of M can be an asymmetric interval
about 0.

Theorem 5. Let X be a random variable with MGF M . Then the
following two statements are equivalent:

S1 Xk is integrable for all k ∈ N and the series
∑∞

k=0 tkE(Xk)/k!
has radius of convergence R > 0.

S2 R∗ := sup{ t > 0 : M(t) < ∞ and M(−t) < ∞} > 0.

If S1 and S2 hold, then

S3 R = R∗, and

S4 M(t) =
∑∞

k=0 tkE(Xk)/k! for all t such that M(t) < ∞ and

M(−t) < ∞, and in particular for all t such |t| < R∗ = R.

Example 4. (a) Suppose X ∼ Gamma(r, 1). Then B = (−∞, 1) =⇒
R∗ = 1 =⇒ R = 1 =⇒ (15) holds for |t| < 1. Note that the LHS of
(15) is defined and finite for t < −1, even though the series on the
RHS does not converge for such t’s.

(b) Suppose X ∼ N(0, 1). Then B = (−∞,∞), so R = R∗ = ∞.
Consequently Xk is integrable for all k ∈ N and

∑∞
n=0

E(Xn)
tn

n!
= M(t) = et2/2

=
∑∞

k=0

(t2/2)k

k!
=

∑∞
k=0

(2k)!
k! 2k

t2k

(2k)!
.
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S1: Xk is integrable for all k ∈ N and the series
∑∞

k=0 tkE(Xk)/k!
has radius of convergence R > 0.
S2: R∗ := sup{ t > 0 : M(t) < ∞ and M(−t) < ∞} > 0.

S3: R = R∗. S4: M(t) =
∑∞

k=0 E(Xk)tk/k! for |t| < R = R∗.

By the uniqueness of the coefficients of a power series, E(Xn) = 0 for
n odd, whereas

E(X2k) =
(2k)!
k! 2k

=
1 · 2 · 3 · · · (2k)
2 · 4 · 6 · · · (2k)

= 1 · 3 · 5 · · · (2k − 1) (16)

is the product of the odd positive integers less than 2k. In particular,

E(X2) = 1, E(X6) = 1 · 3 · 5 = 15,

E(X4) = 1 · 3 = 3, E(X8) = 1 · 3 · 5 · 7 = 105 .

Remember these formulas!

(c) Suppose S2 holds. Then M(t) =
∑∞

k=0 E(Xk)tk/k! for all t with
|t| < R = R∗. It follows from the theory of power series that M is
infinitely differentiable in the interval (−R,R) and that M (k)(0) =
E(Xk) for all k ∈ N. This gives another proof of (12). •
Proof of Theorem 5. • Step 1: If t 6= 0 and M(±t) < ∞, then

Xk is integrable for all k and M(t) =
∑∞

k=0 E(Xk)tk/k! . Indeed, we
have

E
(∑∞

k=0

∣∣∣ t
kXk

k!

∣∣∣
)

= E(e|tX|) ≤ E(etX + e−tX)

= M(t) + M(−t) < ∞.

In particular, E
(|tk||Xk|/k!

)
< ∞ =⇒ E(|Xk|) < ∞ =⇒ E(Xk)

exists and is finite, for all k ∈ N. Moreover by Fubini’s Theorem

M(t) = E
(∑∞

k=0

tkXk

k!

)
=

∑∞
k=0

tkE(Xk)
k!

.
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S1: Xk is integrable for all k ∈ N and the series
∑∞

k=0 tkE(Xk)/k!
has radius of convergence R > 0.
S2: R∗ := sup{ t > 0 : M(t) < ∞ and M(−t) < ∞} > 0.

S3: R = R∗. S4: M(t) =
∑∞

k=0 E(Xk)tk/k! for |t| < R = R∗.

• Step 2: S2 =⇒ S1 and R ≥ R∗. Suppose 0 < |t| < R∗. Then
M(t) < ∞ and M(−t) < ∞. By Step 1, Xk is integrable for all k ∈ N
and M(t) =

∑∞
k=0 tkE(Xk)/k! . Since this series converges for all t

with |t| < R∗, its radius of convergence R must be at least R∗ > 0.

• Step 3: S1 =⇒ S2 and R∗ ≥ R. Suppose 0 ≤ |t| < R. Then

M(t) + M(−t) = E(etX) + E(e−tX) = E(etX + e−tX)

= E
(∑∞

k=0

(tX)k

k!
+

∑∞
k=0

(−tX)k

k!

)

= E
(
2

∑∞
k=0

t2kX2k

(2k)!

)

= 2
∑∞

k=0

t2kE(X2k)
(2k)!

(by Fubini)

≤ 2
∑∞

n=0

|tnE(Xn)|
n!

< ∞,

the last step holding since a power series converges absolutely in the
interior of its interval of convergence. It follows that R∗ ≥ R (> 0).

• Step 4: S1 and/or S2 =⇒ S3. This follows from Steps 2 and 3.

• Step 5: S1 and/or S2 =⇒ S4. This follows from Step 1.
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Exercise 1. Suppose X1, . . . , Xn are independent random variables.
Put Sn = X1 + · · ·+ Xn. Show that

E(etSn) =
∏n

i=1
E(etXi) (17)

for all t ∈ R. ¦

Exercise 2. Suppose U ∼ Uniform(0, 1). Show that

E(etU ) =
et − 1

t
(18)

for all t (evaluate the RHS via l’Hospital’s rule for t = 0). Use (18)
and (12) (or S4) to calculate the mean and variance of U . ¦

Exercise 3. Suppose X ∼ Poisson(λ), so P [X = k] = e−λλk/k! for
k = 0, 1, 2, . . . . Show that

E(etX) = exp
(
λ(et − 1)

)
(19)

for all t ∈ R. Use (19) and (12) (or S4) to calculate the mean and
variance of X. ¦

Exercise 4. Let X be a rv with density f(x) = e−e−x
e−x for x ∈

R. (This distribution arises in the theory of extreme values.) Show
that E(etX) = Γ(1 − t) for t < 1, and = ∞ otherwise. Express the
mean and variance of X in terms of the Gamma function and its
derivatives. ¦

Exercise 5. (a) Let h:R → R be the function which maps u to
(eu − 1)/u. Show that h is nondecreasing in u. (b) Use the MCT to
prove (14) for the case k = 1. ¦
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Exercise 6. As in Example 1 (c), suppose X ∼ UF (2, 2) and put
M(t) = E(etX). Show that

1−M(−u)
u

= log(1/u) +
∫ ∞

0

log(y) e−y dy + o(1) (20)

as u ↓ 0. [Hint: Write 1 − M(−u) as M(0) − M(−u), integrate by
parts, make the change variables y = u(1+x), and integrate by parts
again.] ¦

Exercise 7. Suppose X has finite moments of all orders. Show that
the radius R of convergence of the series in (15) is given by the formula

1/R = lim supn
n
√
|E(Xn)|/n!

= lim supn e n
√
|E(Xn)| /n = lim supn e n

√
E(|X|n) /n. (21)

Hint: According to Stirling’s formula n! ∼ √
2πn nn e−n as n →∞.]¦

Exercise 8. Suppose X ∼ Gamma(r, 1). Compute the moments of
X by direct integration and use (15) to compute E(etX) for t’s within
the interval of convergence of the series. •

Let X be a random variable with MGF M(t). The function K

defined by K(t) = log
(
M(t)

)
is called the cumulant generating

function of X; it’s derivatives at 0, namely

κr := K(r)(0), r = 0, 1, 2, . . . , (22)

are called the cumulants of X (or of M); the cumulants exist if M
is finite in an open interval containing t = 0.

Exercise 9. Let X be a random variable having cumulants κ0, κ1,
κ2, . . . . Show that

κ0 = 0, κ1 = E(X), and κ2 = Var(X). (23) ¦

The exercises below explore exponential families, a topic of im-
port throughout statistical theory. The exercises are wordy, but ex-
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cept for Exercises 15 and 16, and the last parts of Exercises 11, 17,
and 18, the answers should be almost immediate.

The following setup is used throughout exercises 10–18. Let f be
a piecewise continuous density on the real line whose MGF

M(t) =
∫

etxf(x) dx

is finite for all t’s in some nonempty open interval. Denote the largest
such interval by (tl, tr), and note that tl ≤ 0 and tr ≥ 0. (tl and tr
may be infinite.) Let K(t) = log M(t) be the corresponding cumulant
generating function. Construct a one-parameter family {fθ}tr<θ<tr

of densities related to f by exponential tilting , as follows: for each
θ ∈ (tl, tr), set

fθ(x) = eθxf(x)/M(θ) = eθx−K(θ)f(x). (24)

Exercise 10. Show that: (a) fθ is a density; (b) fθ has MGF Mθ(t) =
M(t + θ)/M(θ), finite for t ∈ (tl − θ, tr − θ). ¦

Exercise 11. (a) Let f(x) = exp(−x2/2)/
√

2π for x real. What
are M , tl, and tr? Name the density corresponding to fθ. (b) Re-
peat (a) with f(x) = exp(−x) for x nonnegative. (c) Repeat (a) with
f(x) = 1/

(
π cosh(x)

)
for x real. [Hint for (c): cosh(x) := (e−x+ex)/2.

There is no common name for fθ. Show that fθ is the density of
1
2 log(F ), where F has an unnormalized F distribution; give the de-
grees of freedom.] ¦

Exercise 12. Show that (in general) the cumulant generating func-
tion Kθ of fθ satisfies

Kθ(t) = K(t + θ)−K(θ), (251)
d

dt
Kθ(t) = K ′(t + θ), (252)

dr

dtr
Kθ(t) = K(r)(t + θ), (253)
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K ′ and K(r) denoting derivatives of the function K. (In these formu-
las, t ∈ (tl − θ, tr − θ).) ¦

Exercise 13. Denote the rth cumulant of fθ by κr(θ) (so κr(θ) =
K

(r)
θ (0)). Show that

κ1(θ) = K ′(θ), κ2(θ) = K ′′(θ), (261)

κr(θ) = K(r)(θ) =
dj

dθj
κr−j(θ), (262)

the last equation holding for any r ≥ 1 and 0 ≤ j < r. ¦
Exercise 14. Show that κ2(θ) > 0 and deduce that on the interval
(tl, tr), K ′ is strictly increasing and K is strictly convex. [Hint: Use
the result of Exercise 9.] ¦
Exercise 15. Let

a = inf{x : f(x) > 0 } and b = sup{x : f(x) > 0 }
be respectively the smallest and largest points of support of f . Show
that

κ1(tl+) := lim
θ↓t1

κ1(θ) = a (271)

provided
tl = −∞ or tl > −∞ and M(tl+) = ∞;

moreover
κ1(tr−) := lim

θ↑tr
κ1(θ) = b (272)

provided
tr = ∞ or tr < ∞ and M(tr−) = ∞.

[Hints: You need only prove (272), because the argument for (271)
is similar. In the case that tr < ∞, first argue that b = ∞. In
the case that tr = ∞, first argue that if f(x) > 0 for all x in some
nonempty interval (α, β), then there exists a finite number c such that
K(t) ≥ c + αt for all t ≥ 0.] ¦
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Exercise 16. Show by example that (27) need not hold. ¦

Exercise 17. Suppose (27) holds. Show that for each ξ ∈ (a, b), the
equation

κ1(θ) = ξ (28)

has a unique root θ ∈ (tl, tr), and hence that corresponding to each
such ξ there is a unique density in the family {fθ} that has mean ξ.
(This result is of central importance to the saddlepoint approxima-
tions to which we shall return.) Solve (28) in closed form for the
densities in Exercise 11. [Hint: For the third density in Exercise 11,
you may find the formula Γ(z)Γ(1 − z) = π/ sin(πz) helpful. The
formula is valid for 0 < z < 1; you do not have to prove it.] ¦

Exercise 18. Everything in the preceding discussion applies as well
to discrete distributions that are not concentrated on a single point,
with the understanding that f is now to be interpretated as a fre-
quency function (aka probability mass function). Let f = b(n, 1/2)
be the Binomial frequency function for n trials and success proba-
bility 1/2. Find M , tl, and tr, and identify the family {fθ} as the
binomial family b(n, p), 0 < p < 1. How does the so-called “canoni-
cal parameter” θ correspond to the so-called “natural parameter” p?
Find dp/dθ as a function of p. To avoid notational confusion, let
κr,p = κr(θ) refer to the cumulants of the binomial, considered as a
function of p and θ, respectively. From the general formula (262) on
cumulant recursion and the chain rule, derive the recurrence relation

κr,p = pq
d

dp
κr−1,p. (29)

Use (29) and Maple to find the first 8 binomial cumulants. ¦
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