Problem Set 6 due Thursday February 28

1. Suppose $X_{1}, X_{2}, X_{3}, \ldots, X_{k}$ are multinomial distributed, based upon n trials, with parameters $\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{\mathrm{k}}$, where $\Sigma \theta_{\mathrm{i}}=1$. (a) For an arbitrary $\mathrm{i}, \mathrm{j}, \mathrm{i} \neq \mathrm{j}$, find $\operatorname{cov}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)$ and correlation $\rho_{\mathrm{Xi}, \mathrm{Xj}}$. (b) Suppose all $\theta_{\mathrm{i}}=1 / \mathrm{k}$. What is the covariance of $\mathrm{X}_{\mathrm{i}}+\mathrm{X}_{\mathrm{j}}$ and $\mathrm{X}_{\mathrm{i}}-$ X_{j} ? [Hint for (a): What is the distribution of $\mathrm{Z}=\mathrm{X}_{\mathrm{i}}+\mathrm{X}_{\mathrm{j}}$? What is $\operatorname{Var}\left(\mathrm{X}_{\mathrm{i}}+\mathrm{X}_{\mathrm{j}}\right)$? Use your knowledge of $\operatorname{Var}\left(\mathrm{X}_{\mathrm{i}}\right)$ and $\operatorname{Var}\left(\mathrm{X}_{\mathrm{j}}\right)$ to find $\operatorname{cov}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)$ from this, and then find the correlation.]
2. Maximum Likelihood may not work well with many parameters and limited data.

Consider this example. The data consist of n independent pairs $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}\right)$ where each pair X_{i} and Y_{i} are also independent with the same distribution $N\left(\theta_{i}, \sigma^{2}\right)$. The means are different from pair to pair but the variances are all the same; there are then $n+1$ parameters and $2 n$ observations. It is not hard to show that the MLEs are $\left(\mathrm{X}_{\mathrm{i}}+\mathrm{Y}_{\mathrm{i}}\right) / 2$ for the n means θ_{i} and the MLE for the variance σ^{2} is $\Sigma\left(\mathrm{X}_{\mathrm{i}}-\mathrm{Y}_{\mathrm{i}}\right)^{2} /(4 \mathrm{n})$ (this may look odd but it is simply the average of the n MLEs of the variances for the separate pairs, each of those based on only two observations). (You do not need to show the work for this problem, but I suggest you verify these are the MLEs.) (a) Show that the MLE of the variance is inconsistent, meaning that it is biased and as n increases the bias does not decrease even though the variance does decrease. You may use the facts that each difference $\left(X_{i}-Y_{i}\right)$ has a $\mathrm{N}\left(0,2 \sigma^{2}\right)$ distribution and the variance of the MLE of the variance based upon one pair has itself variance $=\sigma^{4} / 2$ (see notes for Lecture 11, slide 10 (Feb 19) with $n=2$). (b) Show that this problem is easily fixed by using a simple multiple of the MLE for σ^{2}. [This is usually called the Neyman-Scott example, but it was introduced earlier by Wald.] 3. Suppose we face a pattern recognition problem, where the data consist of a single set of pixels X (where there are 16 possible pixel patterns), and there are two possible patterns θ, " 0 " and " 6 ". The model is that X has the probability function $\mathrm{p}(\mathrm{x} \mid \theta)$ depending on θ, given by the following table. Find the best test for " 0 " vs. " 6 " for which the chance of making the error of " 6 " when the pattern is " 0 " is no greater than 0.10 . What is the power of this test?
pixel pattern \# x:

$\mathrm{p}(\mathrm{x} \mid \theta):$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\theta: " 0 "$	0	0	.02	.03	.02	.03	.02	.02	.08	.12	.02	.22	.02	.23	.02	.15
$" 6 "$	0	.03	.01	.13	.08	.12	0	0	.02	.20	.01	.17	.04	.11	0	.08

4. Suppose X has a $N\left(\mu, \sigma^{2}\right)$ distribution. (a) Find the Most Powerful test for testing at level $\alpha=0.05$ the hypothesis $\mathrm{H}_{0}: \mu=6$ and $\sigma^{2}=4$ vs. $\mathrm{H}_{1}: \mu=9$ and $\sigma^{2}=4$. (b) Find the power of this test. (c) Suppose that instead of the above H_{1}, we have $\mathrm{H}_{1}: \mu=\mu_{1}$ and $\sigma^{2}=4$, where $\mu_{1}>6$. Find and graph the power function.
5. The Thick Coin. Suppose a thick coin is tossed $\mathrm{n}=100$ time and the numbers of Heads (X), Tails (Y), and Edges (Z) that come up are counted, so that $\mathrm{X}+\mathrm{Y}+\mathrm{Z}=\mathrm{n}=100$. Suppose that $\mathrm{P}(\mathrm{H})=\mathrm{P}(\mathrm{T})=\theta$, and so $\mathrm{P}(\mathrm{E})=1-2 \theta$. (a) Find the form of the Most Powerful test of the hypothesis $\mathrm{H}_{0}: \theta=1 / 4$ vs $\mathrm{H}_{4}: \theta=1 / 3$, and express this test in terms of Z [e.g. $\mathrm{Z}<\mathrm{C}$ or $\mathrm{Z}>\mathrm{C}]$. (b) What, in terms of n and θ, is the approximate distribution of Z that you would find from the Central Limit Theorem? What for example is the approximate value of $\mathrm{P}(\mathrm{Z} \leq 30)$ when H_{0} is true? (c) Find C when $\alpha=.05$. (d) Is this test Uniformly Most Powerful for H_{0} vs $\mathrm{H}_{1}: \theta>1 / 4$?
6. The following problem arises in a study in ecology. A bird's nest is selected at random as a reference point (P) in a marsh, and the largest circle is determined that has the reference point P as the center and does not include (or just barely includes, if you count the boundary) the next nearest bird's nest (N). The area of that circle is used as a measure of the population of birds in the marsh; the larger the area is, the lower the population. If the nests are randomly scattered in the marsh, then according to one model the radius X of that largest circle will have a Gamma (α, β) distribution (see text Ch. 5, p . $5-20$) with $\alpha=3$ and $\beta=1 / \lambda$; that is, its probability density is given by:

$$
\begin{aligned}
\mathrm{f}(\mathrm{x} \mid \lambda) & =\left(\frac{\lambda^{3}}{2}\right) \mathrm{x}^{2} \mathrm{e}^{-\lambda x} \quad \text { for } \mathrm{x}>0 \\
& =0 \quad \text { otherwise } .
\end{aligned}
$$

Consider the problem of testing $\mathrm{H}_{0}: \lambda=3$ vs $\mathrm{H}_{1}: \lambda=5$, based upon a sample $\mathrm{X}_{1}, \mathrm{X}_{2},, \mathrm{X}_{\mathrm{n}}$. (a) Find the form of the Most Powerful test, and explain how you could the "Additional Fact" below to find an exact, explicit 0.05 level test for a given n. (b) Use the Central Limit Theorem to specify the test in (a) approximately. [You may use the fact that for a random variable X with a Gamma distribution with this parameterization, $\mathrm{E}(\mathrm{X})=\alpha / \lambda$ and $\operatorname{Var}(\mathrm{X})=\alpha / \lambda^{2}$.]

Additional Fact about the Gamma Distribution (see Chapter 5 of text):

The Chi-squared distributions are a special case of the gamma distributions, with $\alpha=\mathrm{n} / 2$ and $\beta=2$. If $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots, \mathrm{X}_{\mathrm{m}}$ are independent random variables, each with a gamma (α, β) distribution, then $\mathrm{Z}=\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\ldots+\mathrm{X}_{\mathrm{m}}$ can be shown to have a gamma ($\mathrm{m} \alpha$, β) distribution, and the average $\bar{X}=\mathrm{Z} / \mathrm{m}$ has a gamma ($\mathrm{m} \alpha, \beta / \mathrm{m}$) distribution.

