1. Evaluating Normal distribution probabilities. Let Z have a standard normal

 distribution $(\mathrm{N}(0,1))$ and let X be $\mathrm{N}\left(\mu, \sigma^{2}\right)$. Let $\Phi(\mathrm{z})$ be the cdf of Z . Then probabilities $\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})=\mathrm{P}(\mathrm{X}<\mathrm{b})-\mathrm{P}(\mathrm{X}<\mathrm{a})$ can be found for any a and b from any table of $\Phi(\mathrm{z})$ for $\mathrm{z}>0$ using $\Phi(\mathrm{z})=1-\Phi(-\mathrm{z})$ and the fact that $\mathrm{P}(\mathrm{X}<\mathrm{x})=\Phi((\mathrm{x}-\mu) / \sigma)$. One such table is given in Rice, page A7. There are also tables on the web; here are some examples:http://math2.org/math/stat/distributions/z-dist.htm http://itl.nist.gov/div898/handbook/eda/section3/eda3671.htm Suppose that X has a $\mathrm{N}(-2,9)$ distribution; find (a) $\mathrm{P}(X>2)$, (b) $\mathrm{P}(0<\mathrm{X}<2)$, (c) $\mathrm{P}(|\mathrm{X}+3| \geq 1.5)$, (d) $\mathrm{P}(\mathrm{X} \leq-1$ or $\mathrm{X} \geq 1)$
2. A "psychic" uses a five-card deck of cards to demonstrate psychic ability (ESP), and claims to be able to guess a card correctly with probability .5 (ordinary guessing would be right with probability $1 / 5=.2$). A single experiment consists of making five guesses, reshuffling the deck after each guess. The experiment is tried and the "psychic" guesses correctly 3 times out of five. Assuming the only two possibilities are "ESP" and "ordinary guessing", how high must the a priori probability be that the "psychic" really has ESP, in order that the a posteriori probability that the "psychic" has ESP is at least .7 ?
3. Suppose that a Bayesian statistician has a Beta $(2,1)$ prior distribution on the cure rate θ (= Probability of cure) for an experimental drug. The drug is tried (independently) on three subjects, and X are cured. Compute $\mathrm{P}(\theta \leq .2 \mid \mathrm{X}=\mathrm{k})$ and $\mathrm{E}(\theta \mid \mathrm{X}=\mathrm{k})$ for $\mathrm{k}=0,1,2,3$.
4. Laplace's rule of succession. What is the a posteriori expectation of the probability that the sun will rise tomorrow given that it has risen n days in a row and that before those n days began we had an a priori uniform distribution for the probability the sun would rise? [This is a classical problem.]
5. Suppose $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ are independent random variables, each with a standard normal distribution. We define the Chi-square distribution with n degrees of freedom as follows: it is the distribution of $\mathrm{Z}_{\mathrm{n}}=\mathrm{X}_{1}^{2}+\mathrm{X}_{2}^{2}+\mathrm{X}_{3}^{2}+\ldots+\mathrm{X}_{\mathrm{n}}{ }^{2}$. (For $\mathrm{n}=1$ this agrees with our earlier definition.) Show that $\mathrm{E}\left(\mathrm{Z}_{\mathrm{n}}\right)=\mathrm{n}$ and $\operatorname{Var}\left(\mathrm{Z}_{\mathrm{n}}\right)=2 \mathrm{n}$ by first verifying these for $\mathrm{n}=1$ by direct calculation, and then using the formulas for the expectation and variance of a sum of independent random variables. [The only hard part is to show this for $\mathrm{n}=1$; that is, that if X has a standard normal density, $\mathrm{E}\left(\mathrm{X}^{2}\right)=1$ and $\operatorname{Var}\left(\mathrm{X}^{2}\right)=2$. You may use the density of X^{2} we found earlier (see Chapter 1) and a table of integrals.]

