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We revisit in-sample asymptotic analysis extensively used in the realized volatility
literature. We show that there are gains to be made in estimating current realized
volatility from considering realizations in prior periods. The weighting schemes
also relate to Kalman-Bucy filters, although our approach is non-Gaussian and
model-free. We derive theoretical results for a broad class of processes pertaining
to volatility, higher moments, and leverage. The paper also contains a Monte Carlo
simulation study showing the benefits of across-sample combinations.

1. INTRODUCTION

Substantial progress has been made on in-sample asymptotics, against the back-
drop of increasingly available high frequency financial data. The asymptotic
analysis pertains to statistics based on samples over finite intervals involving
data observed at ever increasing frequency. The prime example is measures of
increments in quadratic variation, see Jacod (1994, 1996) and Barndorff-Nielsen
and Shephard (2002b) as well as the survey by Barndorff-Nielsen and Shephard
(2007) and monographs by Jacod and Protter (2012), Mykland and Zhang (2012),
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and Aït-Sahalia and Jacod (2014).1 The empirical measures attempt to capture
volatility of financial markets, including possibly jumps. Moreover, a richly
developed mathematical theory of semi-martingale stochastic processes provides
the theoretical underpinning for measuring volatility in the context of arbitrage-
free asset pricing models based on frictionless financial markets.

The aforementioned literature of measuring volatility has been the motivation
for a new standard two-step modeling approach. The first step consists of mea-
suring past realizations of volatility accurately over nonoverlapping intervals—
typically daily—and the second is to build models using the so-called realized
measures.

While persistence in volatility has been exploited extensively to predict future
outcomes, it has not been exploited to improve upon the measurement of current
and past realized volatility (RV). It is shown in this paper that the in-sample
asymptotics can be complemented with observations in prior intervals, that is, in-
sample statistics can benefit from across-sample observations.

While volatility is a lead example, our theory applies to many empirical
processes that are important for financial analysis. First, we can easily extend our
analysis to higher moments, beyond realized variances, such as kurtosis-related
quarticity. The latter is used for feasible asymptotic distribution theory of high
frequency data statistics. Since higher moments are known to be less precisely
estimated, our analysis becomes even more relevant with finitely sampled data.
Another prominent example is the estimation of realized betas. Our simulation
results indeed indicate that substantial improvements can be made—more so than
for RV—by exploiting information about beta in prior intervals.

We derive conditional filtering schemes, dependent on the path of the volatility
process. Our filtering is therefore time-varying, meaning it is more efficient than
unconditional filters, and most importantly cannot be by-passed or absorbed as
part of a fixed parameter prediction model. Despite being conditional, our filtering
scheme remains model-free and is based on prediction errors, rather than linear
combinations of past and present realized volatilities. The model-free aspect is
something our approach shares with Foster and Nelson (1996) and Andreou and
Ghysels (2002). The analysis in this paper is quite similar in spirit to Kalman-
Bucy filtering, with some important differences as we do not deal with a Gaussian
system, yet to remain model-free, use linear projections. Our analysis is also in
the spirit of ideas having to do with forecast combination for nested models, see
in particular Clark and McCracken (2009).

The paper is organized as follows.We start in Section 2 by deriving all our results
using a simple framework. The example is stylized for illustrative purpose—yet
turns out to be surprisingly comprehensive. Section 3 covers the asymptotic theory
for a general setting. Alternative weighting schemes are covered in Section 4.

1Other examples include measure of bi-power and power variation as well as other functional transformations
of returns sampled at high frequency (see again Barndorff-Nielsen and Shephard, 2007; Jacod and Protter, 2012;
Mykland and Zhang, 2012; or Aït-Sahalia and Jacod, 2014 for relevant references).
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Section 5 reports simulation evidence on the efficiency and forecasting gains in a
controlled environment of stylized diffusion processes and realized betas. Section
6 concludes the paper. Supplementary material is provided in the Supporting
Information Appendix. The Supporting Information Appendix (a) covers the proof
of Proposition 3.1, (b) furnishes additional volatility examples as well as examples
beyond volatility, (c) provides insights on the connection of our analysis with the
Kalman filter, and (d) discusses a forecasting example.

2. DERIVATIONS WITH A SIMPLIFIED YET COMPREHENSIVE
EXAMPLE

The purpose of this section is to start with a relatively simple example that contains
the core ideas of our analysis. Hence, the example is stylized for illustrative
purpose—yet as we will show later it turns out to be a surprisingly comprehensive
example. We start with a time index t, which we think of as daily, or weekly,
monthly, etc. For simplicity, we will assume a daily process, although the reader
can keep in mind that ceteris paribus all the derivations apply to any level
of aggregation. Henceforth, we will use “day” and “period” t interchangeably,
although the former will only be used for convenience. Moreover, while we
consider exclusively equally spaced discrete sampling, one could also think of
unequally spaced data.

Within every period t, we consider returns over short equal-length intervals (i.e.,
intra-daily). The return denoted as:

Xnt,j = pt−(j−1)/n −pt−j/n, (2.1)

where 1/n is the (intra-daily) sampling frequency and pt−(j−1)/n is the log price of a
financial asset at the end of the jth interval of day t, with j= 1, . . . ,n. For example,
when dealing with typical stock market data, we will use n = 78 corresponding
to a 5-min sampling frequency. We start with the following assumption about the
data generating process:

Assumption 2.1. Within a day (period) t, given a sequence σ 2
t,j,j = 1, . . . ,n,

the return process in equation ( 2.1) is distributed independently Gaussian for all
j= 1, . . . ,n :

Xnt,j ∼ N
(
0,
1

n
σ 2
t,j

)
. (2.2)

For every period t, the parameter of interest is:

σ 2
n,t ≡ Var(

n∑
j=1

[Xnt,j]) ≡ 1

n

n∑
j=1

σ 2
t,j (2.3)
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and consider the following ML estimators for each t :

σ̂ 2
n,t =

n∑
j=1

[Xnt,j]
2. (2.4)

Then conditional on the volatility path σ 2
t,j, j= 1, . . . ,n, we have, under Assumption

2.1, the following properties for the ML estimators: Eσ [σ̂ 2
n,t] = σ 2

n,t, Varσ [σ̂
2
n,t] =

(2/n2)
∑n

j=1 σ 4
t,j = (2/n)σ [4]

n,t , where σ
[4]
n,t = 1/n

∑n
j=1 σ 4

t,j,Eσ [·] = E[·|σ 2
t,j,∀j] and

similarly Varσ [·] = Var[·|σ 2
t,j,∀j].

2.1. Optimal Weighting Scheme in Finite Samples

The ML estimator σ̂ 2
n,t of σ 2

n,t defined in equation (2.4) is obviously endowed with
several optimal properties, both in finite samples and asymptotically when the
number n of intraday data goes to infinity. However, for a given sample size n,
we may revisit the intuition put forward by Barndorff-Nielsen et al. (2004) that
more precise estimators could be obtained by pooling neighboring time series
observations for realized variances.

It is worth keeping in mind that our goal is to improve upon a conditional MLE
σ̂ 2
n,t of σ 2

n,t given the volatility path and, therefore, the pooling issue must also be
addressed given the volatility path. In other words, even if we follow the linear
filtering strategy of Barndorff-Nielsen et al. (2004), we will be looking for an
estimator σ̄ 2

n,t of σ 2
n,t that would be an affine function of past and current real-

ized volatilities: σ̄ 2
n,t = an,t +∑H

h=0 bn,t−hσ̂
2
n,t−h, where the coefficients an,t,bn,t−h,

h= 0,1, . . . ,H are possibly functions of the volatility path. In contrast, the filtering
procedures put forward by Barndorff-Nielsen et al. (2004) only involve constant
coefficients. Of course, it would be an ill-posed problem to search for coefficients
that would be arbitrary functions of the volatility path as an obvious choice
would certainly be: an,t = σ 2

t ,bn,t−h = 0,∀h= 0,1, . . . ,H. The challenge is to look
for functions an,t,bn,t−h,h = 0,1, . . . ,H of the volatility path which would yield
feasible estimators of σ 2

n,t knowing that the various realizations of the volatility
path, using their sample counterparts, leave some room for accuracy improvements
with respect to the naive estimator σ̂ 2

n,t. In other words, some kind of shrinkage is
called for with respect to the aforementioned ill-posed problem. In the spirit of
forecast combinations, it is then natural to look for a convex combination of two
possible “forecasts”: σ̂ 2

n,t(ωt) = (1−ωt)σ̂
2
n,t +ωtσ̆

2
n,t|t−1, where only the weight ωt

would depend on the volatility path while the alternative forecast σ̆ 2
n,t|t−1 would be a

feasible function of past observations (the use of the index t|t−1 will be explained
shortly). The optimal weight ω∗

n,t should then be chosen such that it minimizes the
conditional mean square error of prediction:

ω∗
n,t = Argmin

ωt
Eσ [σ̂

2
t (ωt)−σ 2

n,t]
2 = Argmin

ωt
MSEσ (ωt) (2.5)

= Argmin
ωt

Eσ

{
σ̂ 2
n,t −σ 2

n,t −ωt(σ̂
2
n,t − σ̆ 2

n,t|t−1)
}2
.
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Note that since σ 2
n,t = Eσ (σ̂ 2

n,t), we do not want σ̆ 2
n,t|t−1 to be a forecast of σ 2

n,t−1

but of σ 2
n,t which explains why we index it by t|t−1. To make it feasible, it is then

natural to define σ̆ 2
n,t|t−1 as a forecast of σ̂ 2

n,t based on past return observations
xτ,j,τ < t,j = 1, . . . ,n. Many forecasting strategies may be worth considering,
includingMIDAS regressions to use past high frequency information to “nowcast”
the current RV σ̂ 2

n,t. While these relevant extensions would not introduce any
specific difficulty for practical implementation, we will stick, just for the sake of
notational simplicity, to a more conventional linear projection approach for the
definition of σ̆ 2

n,t|t−1 :

σ̆ 2
n,t|t−1 = cn+

H∑
h=1

ϕn,hσ̂
2
n,t−h, (2.6)

where the coefficients c,ϕh,h = 1, . . . ,H are defined as linear regression coeffi-
cients of σ̂ 2

n,t on H lagged values:

ϕ(H)
n = (ϕn,h)1≤h≤H = (Var[(σ̂ 2

n,t−h)1≤h≤H]
)−1

Cov
[
(σ̂ 2

n,t−h)1≤h≤H,σ̂ 2
n,t

]
,

cn =
(
1−

H∑
h=1

ϕn,h

)
E(σ̂ 2

n,t). (2.7)

Note that formulas (2.7) implicitly involve a stationarity assumption:

Assumption 2.2. The n-dimensional process (σ 2
t,j)1≤j≤n,t ∈ Z, is weakly

stationary.

The above assumption implies that the estimated process (σ̂ 2
n,t),t ∈ Z, is itself

weakly stationary. In particular,

E(σ̂ 2
n,t) = E(σ 2

n,t) = σ 2

Cov
[
σ̂ 2
n,t−h,σ̂

2
n,t

]= Cov[σ 2
n,t−h,σ

2
n,t] = γσ (h),h> 0

Var(σ̂ 2
n,t) = Var(σ 2

n,t)+ 2

n
E
(
σ [4]
n,t

)= γσ (0)+ 2

n
νσ,4,

where Var(σ 2
n,t) = γσ (0) and E

(
σ
[4]
n,t

)
= νσ,4, so that formulas (2.7) can be

rewritten:

ϕ(H)
n = (ϕn,h)1≤h≤H = �−1

n,H [γσ (h)]1≤h≤H

�n,H = Var[(σ 2
n,t−h)1≤h≤H]+

2

n
νσ,4IdH

cn =
(
1−

H∑
h=1

ϕn,h

)
σ 2.
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Hence, we are interested in the minimization program (2.5) for the definition (2.6)
of σ̆ 2

n,t|t−1. A straightforward derivation yields:

ω∗
n,t =

Covσ
[
σ̂ 2
n,t,σ̂

2
n,t − σ̆ 2

n,t|t−1

]
Eσ

[
σ̂ 2
n,t − σ̆ 2

n,t|t−1

]2 = Varσ [σ̂ 2
n,t]

Eσ

[
σ̂ 2
n,t − σ̆ 2

n,t|t−1

]2 . (2.8)

To summarize, our preferred estimator is:

σ̂ 2
n,t(ω

∗
n,t) = (1−ω∗

n,t)σ̂
2
n,t +ω∗

n,tσ̆
2
n,t|t−1, (2.9)

where (i) σ̆ 2
n,t|t−1 is defined by regression on H lagged values: σ̆ 2

n,t|t−1 = cn +∑H
h=1ϕn,hσ̂

2
n,t−h and (ii) optimal weights ω∗

n,t are computed according to (2.8).
It is worth keeping in mind that, given the volatility path, the consecutive

estimators σ̂ 2
n,t−h,h= 0,1,2, . . . are serially independent. This explains the second

equality in (2.8) and will be repeatedly used in computations below. Note that ω∗
n,t

is in general smaller than the conditional regression coefficient bn,t of (σ̂ 2
n,t −σ 2

n,t)

on (σ̂ 2
n,t − σ̆ 2

n,t|t−1), due to the fact that the alternative estimator σ̆ 2
n,t|t−1 for σ 2

n,t is
biased:

ω∗
n,t=

Varσ
[
σ̂ 2
n,t

]
Varσ
[
σ̂ 2
n,t − σ̆ 2

n,t|t−1

]
+
[
Eσ (σ̆ 2

n,t|t−1)−σ 2
n,t

]2 ≤ bn,t=
Varσ
[
σ̂ 2
n,t

]
Varσ
[
σ̂ 2
n,t − σ̆ 2

n,t|t−1

].
This shrinkage of the coefficients of control variables when they are biased is
well-known in the Monte Carlo literature (see, e.g., Glynn and Iglehart, 1989) and
easy to understand: (1) on the one hand, we want to replace our initial estimator
σ̂ 2
n,t = σ̂ 2

n,t(0) by σ̂ 2
n,t(ωn,t) for some positive weightωn,t because we think that some

variance reduction is allowed by combining our initial estimator σ̂ 2
n,t for σ 2

n,t with
another one σ̆ 2

n,t|t−1, while (2) on the other hand, the price to pay for this variance
reduction is the introduction of some bias since our alternative estimator σ̆ 2

n,t|t−1 of

σ 2
n,t is biased:Eσ (σ̆ 2

n,t|t−1)−σ 2
n,t = cn+∑H

h=1ϕn,hσ
2
n,t−h−σ 2

n,t =
∑H

h=0ϕn,h(σ
2
n,t−h−

σ 2),with ϕn,0 = −1, so that:

Eσ (σ̂ 2
n,t(ωn,t))−σ 2

n,t = ωn,t

H∑
h=0

ϕn,h(σ
2
n,t−h−σ 2). (2.10)

However, the optimal weight ω∗
n,t will become arbitrarily close to zero when the

bias in the estimator σ̆ 2
n,t|t−1 is large. Hence, there is little cost to applying our

optimal weighting strategy since, if the bias is not as small as one may have hoped,
the optimal weight brings us back to standard MLE. It is actually worth noting that
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optimal weight ω∗
n,t is a decreasing function of the variation coefficient kn,t of the

estimation error (σ̆ 2
n,t|t−1 −σ 2

n,t) :

Varσ
[
σ̂ 2
n,t − σ̆ 2

n,t|t−1

]= Varσ
[
σ̂ 2
n,t

]+Varσ
[
σ̆ 2
n,t|t−1

]
= Varσ

[
σ̂ 2
n,t

]+ H∑
h=1

ϕ2
n,hVarσ

[
σ̂ 2
n,t−h
]

=
[
1+

H∑
h=1

ψ2
n,h,t

]
Varσ
[
σ̂ 2
n,t

]
,

whereas, ψ2
n,h,t = ϕ2

n,h[Varσ [σ̂
2
n,t−h]]/Varσ [σ̂ 2

n,t]. Letting ψ
(H)
n,t = (ψn,h,t

)
1≤h≤H :

1

ω∗
n,t

=
Varσ
[
σ̂ 2
n,t − σ̆ 2

n,t|t−1

]
+
[
Eσ (σ̆ 2

n,t|t−1)−σ 2
n,t

]2
Varσ [σ̂ 2

n,t]

= 1+∥∥ψ(H)
n,t

∥∥2 +
[
Eσ (σ̆ 2

n,t|t−1)−σ 2
n,t

]2
Varσ [σ̂ 2

n,t]

= 1+ (1+ k2n,t)
∥∥ψ(H)

n,t

∥∥2 where k2n,t =
[
Eσ (σ̆ 2

n,t|t−1)−σ 2
n,t

]2
[∥∥∥ψ(H)

n,t

∥∥∥ 2Varσ [σ̂ 2
n,t]
]

=
[
Eσ (σ̆ 2

n,t|t−1 −σ 2
n,t)
]2

Varσ
(
σ̆ 2
n,t|t−1 −σ 2

n,t

) .
Through the underlying forecasting problem, parsimony matters. Increasing the
number H of lags in the regression (2.6) may allow to reduce the variation
coefficient of the estimation error of our alternative estimator σ̆ 2

n,t|t−1 but will

have a cost in terms of increasing the norm of the vector ψ
(H)
n,t of (rescaled)

regression coefficients. Note, however, that the initial regression coefficients
ϕn,h,h = 1,...,H have been rescaled to take into account the fact that daily
variance estimators may have different precisions. As always, the cost of lack
of parsimony will be magnified when it comes to feasible forecasting, that is when
substituting estimators into theoretical formulas. Note that the theoretical gain in
conditional MSE provided by the replacement of σ̂ 2

n,t by σ̂ 2
n,t(ω

∗
n,t) is given by:

Gσ (ω∗
n,t) = Varσ [σ̂ 2

n,t] − Eσ [σ̂ 2
n,t(ω

∗
n,t) − σ 2

n,t]
2 = (ω∗

n,t)
2Eσ

[
(σ̂ 2

n,t − σ̆ 2
n,t|t−1)

2
]
.If

we have to use an estimator ω̂∗
n,t of the theoretically optimal weight ω∗

n,t
instead of the optimal one, we will modify the quadratic estimation error by
an amount of: [σ̂ 2

n,t(ω̂
∗
n,t) − σ 2

n,t]
2 − [σ̂ 2

n,t(ω
∗
n,t) − σ 2

n,t]
2 = (ω∗

n,t − ω̂∗
n,t)(σ̂

2
n,t −

σ̆ 2
n,t|t−1)
(
σ̂ 2
n,t(ω̂

∗
n,t)+ σ̂ 2

n,t(ω
∗
n,t)−2σ 2

n,t

)
.Roughly speaking, the cost of estimation

error will not exceed the benefit inMSE as long as the estimation error (ω̂∗
n,t−ω∗

n,t)

on the optimal weight ω∗
n,t will not exceed the level of this weight. In other words,

https://doi.org/10.1017/S0266466621000359 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000359


IN-SAMPLE ASYMPTOTICS AND ACROSS-SAMPLE EFFICIENCY 77

the improvement proposed in estimation of σ 2
n,t that we propose in this section will

be real insofar as: (1) on the one hand, the optimal weight ω∗
n,t to assign to past

information (as conveyed by σ̆ 2
n,t−1) is not too small, in particular due to the bias in

σ̆ 2
n,t−1 and (2) on the other hand, the estimation error (ω̂∗

n,t −ω∗
n,t) on this optimal

weight is not too large.
It is of course an empirical issue that will be properly assessed by our simulation

study in Section 5. However, in the next subsection, we put forward a set of
arguments, based on asymptotic theory, that may enhance the likelihood of the
required property.

2.2. Asymptotic Feasibility of the Optimal Weighting Scheme

Following the discussion in the previous subsection, we want to study asymptotic
conditions such that the optimal weightω∗

n,t is not too small and the estimation error
on this weight is not too large, in order to leave room for a possible improvement.
We will denote by ω̂∗

n,t,T,t= 1,2,...,T, the estimated weights obtained from a time
series σ̂ 2

n,t,t = 1−H,...,1,2,...,T of daily observations. We will consider that the
above required conditions (optimal weight ω∗

n,t not too small and estimation error
not too large) may be fulfilled when these quantities are bounded in probability.
In other words, the purpose of this subsection is to provide primitive assumptions
ensuring the conjunction of the two following conditions: (a) 1/ω∗

n,t= OP(1) and
(b)
∣∣ω̂∗

n,t,T −ω∗
n,t

∣∣=OP(1). It is then worth rewriting the optimal weight as follows:

1

ω∗
n,t

= 1+∥∥ψ(H)
n,t

∥∥ 2 +
[
Eσ (σ̆ 2

n,t|t−1)−σ 2
n,t

]2
Varσ [σ̂ 2

n,t]
(2.11)

= 1+∥∥ψ(H)
n,t

∥∥2 + nB2
I,n(t)

2σ [4]
n,t

+ n
[
B2
F,n(t)−B2

I,n(t)
]

2σ [4]
n,t

,

where BF,n and BI,n stand, respectively, for feasible and infeasible bias:

BF,n(t) = σ 2
n,t −

H∑
h=1

ϕn,hσ
2
n,t−h−
(
1−

H∑
h=1

ϕn,h

)
σ 2

ϕ(H)
n = (ϕn,h)1≤h≤H = (Var[(σ̂ 2

n,t−h)1≤h≤H]
)−1

Cov
[
(σ̂ 2

n,t−h)1≤h≤H,σ̂ 2
n,t

]
while,

BI,n(t) = σ 2
n,t −

H∑
h=1

ϕ0
n,hσ

2
n,t−h−
(
1−

H∑
h=1

ϕ0
n,h

)
σ 2

ϕ0,(H)
n = (ϕ0

n,h)1≤h≤H = (Var[(σ 2
n,t−h)1≤h≤H]

)−1
Cov
[
(σ 2

n,t−h)1≤h≤H,σ 2
n,t

]
. (2.12)

Note that we use the word “feasible” with some abuse of language since the
formula above for BF,n(t) still entails some unknown parameters that will have
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to be estimated. However, we will note later on that this estimation part is
straightforward. Moreover, standard regularity conditions will obviously ensure

that:
∥∥∥ψ(H)

n,t

∥∥∥2 = OP(1).

Then, we deduce from the decomposition (2.11) that a pair of sufficient
conditions for the required property 1/ω∗

n,t = OP(1) is given by the following.
First,

BI,n(t)−BF,n(t) = −
H∑
h=1

(ϕ0
n,h−ϕn,h)(σ

2
n,t−h−σ 2) = OP(1/

√
n). (2.13)

Second,

BI,n(t) = OP(1/
√
n). (2.14)

Note that the conjunction of these two conditions implies in particular that:

B2
F,n(t)−B2

I,n(t) = (BF,n(t)−BI,n(t)
)(
2BI,n(t)+BF,n(t)−BI,n(t)

)= OP(1/n).

We know that by definition: �n,Hϕ(H)
n = [γσ (h)]1≤h≤H , �n,H = 
(H)+ 2

nνσ,4IdH,


(H) = [Var(σ 2
n,t−h)1≤h≤H

]
, and 
(H)ϕ0,(H)

n = [γσ (h)]1≤h≤H . Similarly, for
ϕ0,(H)
n = (ϕ0

n,h)1≤h≤H . Therefore, by difference:


(H)
[
ϕ(H)
n −ϕ0,(H)

n

]+ 2

n
νσ,4ϕ

(H)
n = 0

and hence ϕ(H)
n −ϕ0,(H)

n = (−2/n)νσ,4[
(H)]−1ϕ(H)
n = O(1/n) and by (2.13), the

required bound follows: |BI,n(t)−BF,n(t)| ≤ ‖ϕ(H)
n −ϕ0,(H)

n ‖‖(σ 2
n,t−h−σ 2

)
1≤h≤H ‖

= OP(1/n). Regarding the second condition (2.14), let us illustrate it in the case
H = 1 : σ 2

n,t = (1−ϕ0
n

)
σ 2 + ϕ0

nσ
2
n,t−1 + BI,n(t). By definition, E[(BI,n(t))2] =

Var(BI,n(t)) = [1 − (ϕ0
n)

2]Var[σ 2
n,t]. Therefore, we will ensure that BI,n =

OP(1/
√
n) if we assume that:

Assumption 2.3. Let H = 1 and ϕ0
n, defined in (2.12) satisfy:

1− (ϕ0
n)

2 = O(1/n). (2.15)

Assumption 2.3 should be interpreted as a sufficient condition for BI =
Op(1/

√
n). According to (2.11), a violation of this condition may imply that

on some specific days, 1/ω∗ is not upper bounded, so that it will sometimes be
optimal to overlook information about volatility from previous days. There is
widely documented evidence of the existence of days with jumps in price and/or
in volatility. Obviously, for these days, Assumption 2.3 is not realistic and pooling
information about the volatility process across past days might be inappropriate.
The logic for our belief that Assumption 2.3 should be relevant for most of days
rests upon the new framework of near integration as formulated by Phillips, Moon,
and Xiao (2001) (PMX hereafter) and described in the next subsection. Note that
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a similar conclusion would be easily obtained for H > 1 at the cost of more
complicated notation.

We would like to emphasize that volatility jumps may come in the form of many
small jumps, possibly of infinite activity. See, in particular, Jacod and Todorov
(2010), Todorov and Tauchen (2011), Jacod and Protter (2012), and Aït-Sahalia
and Jacod (2014). This situation represents an intermediate scenario between a
single jump and a continuous volatility process. As shown in Zhang (2007), there
may be contiguity between the probability distribution of a continuous (in this case
volatility) process and one that has infinite activity jumps, thus strengthening the
idea that such frequent jumpsmay inmany cases bemore like continuous evolution
that the situation of a single free-standing jump. A proper characterization of this
problem would be of substantial interest but is beyond the scope of this paper.

Regarding the estimation error, we have: |ω̂∗
n,t,T −ω∗

n,t| = (ω∗
n,t)(ω̂

∗
n,t,T)|(ω∗

n,t)
−1

−(ω̂∗
n,t,T)

−1| ≤ |(ω∗
n,t)

−1−(ω̂∗
n,t,T)

−1|. Since: (ω∗
n,t)

−1 = 1+‖ψ(H)
n,t ‖2+[Eσ (σ̆ 2

n,t|t−1)

− σ 2
n,t]

2/Varσ [σ̂ 2
n,t] = 1 + ‖ψ(H)

n,t ‖2 + [
∑H

h=0ϕn,h(σ
2
n,t−h − σ 2)]2/[(2/n)σ [4]

n,t ],we
will define an estimator as:

1

ω̂∗
n,t,T

= 1+
∥∥∥ψ̂(H)

n,t,T

∥∥∥2 +
[
ĉn,T +∑H

h=1 ϕ̂n,h,T σ̂
2
n,t−h− σ̂ 2

n,t

]2
2
n σ̂

[4]
n,t

= 1+
∥∥∥ψ̂(H)

n,t,T

∥∥∥2 + n

2

ν̂2
n,t,T

σ̂
[4]
n,t

, (2.16)

where, from a time series (σ̂ 2
n,t)1−H≤t≤T, we can compute the OLS estimator

(ĉn,T,ϕ̂
(H)
n,T ) in the regression equation:

σ̂ 2
n,t = cn+

H∑
h=1

ϕn,hσ̂
2
n,t−h+ vn,t,t = 1,2,...,T

and ν̂n,t,T = σ̂ 2
n,t− ĉn,T −∑H

h=1 ϕ̂n,h,T σ̂
2
n,t−h stands for the residual of this regression.

Note that we never assume in this section that the processes σ 2
t and σ̂ 2

t are AR(H)

processes. The error term vn,t is not assumed to be a white noise, but only the
residual of a regression of σ̂ 2

n,t on H lagged values. We will discuss later the way

to efficiently compute an estimator σ̂
[4]
n,t of σ

[4]
t , but obviously, the corresponding

estimation error will be OP(1/
√
n). Note that this estimation strategy will also

be relevant to compute the coefficients of the vector ψ̂
(H)
n,t,T,h= 1,...,H: ψ̂2

n,h,t,T =
(σ̂

[4]
n,t−h/σ̂

[4]
n,t )ϕ̂

2
n,h,T .

The key issue is now to assess the long-range asymptotics estimation error∣∣ω̂∗
n,t,T −ω∗

n,t

∣∣ as a function of the sample size T. By an argument similar to
the one used to get (2.11), we can write with obvious notations: (ω̂∗

t,T)
−1 = 1+

‖ψ̂(H)
n,t,T‖2 + nB̂2

I,n,T(t)/(2σ̂
[4]
n,t ) and therefore: (ω̂∗

n,t,,T)
−1 − (ω∗

n,t)
−1 = ‖ψ̂(H)

n,t,T‖2 −
‖ψ(H)

n,t ‖2 + nB̂2
I,n,T(t)/(2σ̂

[4]
n,t ) − nB2

I,n(t)/(2σ
[4]
n,t ) − n

[
B2
F,n(t)−B2

I,n(t)
]
/(2σ [4]

n,t ).
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From long range asymptotics: |‖ψ̂(H)
n,t,T‖2 − ‖ψ(H)

n,t ‖2| = OP(1/T) + OP(1/n).

In order to control the difference
[
nB̂2

I,n,T(t)−nB2
I,n(t)
]
, we will refer again

to the near integration argument (as we did for condition (2.14)), with the
illustrative case H = 1 : B̂I,n,T(t) = σ̂ 2

n,t − ĉn,T − ϕ̂n,T σ̂
2
n,t−1, so that: |B̂I,n,T(t) −

BI,n(t)| = OP(1/
√
T) +OP(1/

√
n). Moreover, |B̂I,n,T(t) + BI,n(t)| = |2BI,n(t) +

B̂I,n,T(t) − BI,n(t)| ≤ 2|BI,n(t)| + |B̂I,n,T(t) − BI,n(t)| = OP(1/
√
T) +OP(1/

√
n).

Hence, n|B̂2
I,n,T(t)−B2

I,n(t)| = n|B̂I,n,T(t)−BI,n(t)||B̂I,n,T(t)+BI,n(t)| = OP(1)+
OP (n/T)+OP

(√
n/

√
T
)
.Therefore, if we assume n = O(T), we will obtain the

required condition:

n
∣∣∣B̂2

I,n,T(t)−B2
I,n(t)
∣∣∣= OP(1).

In other words, if one uses 5-min returns in a 24-h financial market (n= 288), we
assume that more than 288 observation days are available.

2.3. A Block Local to Unity Framework for Volatility

For the sake of expositional simplicity, we focus in this subsection on the case
where only H = 1 lag is used to compute the forecast σ̆ 2

n,t−1 and the weighted
estimator. The goal is to show that a natural block-local-to-unity framework for
volatility in the spirit of PMX allows us to see the daily volatility persistence
parameter ϕ0

n as a function of n, such that the wished condition (2.15) is fulfilled:

n[1− (ϕ0
n)

2] = O(1). (2.17)

To get the main intuition, let us imagine that within each “block” or “day” t, the
volatility process σ 2

t,j,j= 1,...,n, can be embedded into a continuous time diffusion
process with linear drift:

dσ 2
t = κ
[
σ 2 −σ 2

t

]
dt+γtdWt,k > 0,

where Wt is a Wiener process and the length of a block (a day) is one unit of
time. Note that an Ornstein–Uhlenbeck-like process as put forward by Barndorff-
Nielsen and Shephard (2001) would also do the job. Indeed, our argument of
embedding a discrete time volatility process of interest into a continuous time
one is only for the purpose of studying second order moments when the sampling
frequency n goes to infinity. It does not depend on higher order characteristics
of the underlying stationary continuous time process. In particular we can apply
formulas (44) and (45) of Barndorff-Nielsen and Shephard (2001) to conclude
that the correlation coefficient between

∫ t
t−1 σ 2(u)du and

∫ t−1
t−2 σ 2(u)du is given

by: .5
[
1− exp(−κ)

]2
/
[
exp(−κ)−1+κ

]
. Note that by a Riemann integration

argument: σ 2
n,t = 1

n

∑n
j=1 σ 2

t,j −→
n→∞
∫ t
t−1 σ 2(u)du. Therefore, under standard regular-

ity conditions, we have for large n (see, e.g., Andersen, Bollerslev, and Meddahi,
2004): ϕ0

n = Corr
[
σ 2
n,t,σ

2
n,t−1

]≈ 0.5 [1−exp(−κ)]2/[exp(−κ)−1+κ]. The idea

https://doi.org/10.1017/S0266466621000359 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000359


IN-SAMPLE ASYMPTOTICS AND ACROSS-SAMPLE EFFICIENCY 81

of block local to unity is that within each day, volatility is highly persistent so
that the mean reversion parameter κ is close to zero that the n daily observations
can hardly detect its discrepancy from zero: κ ≈ c/n,c > 0. In other words,
the correlation coefficient between two values of the (squared) volatility process
separated by � units of time is equivalent to exp(−c�/n) ≈ 1− (c�/n). Then,
the correlation between two consecutive daily integrated variances will be: 0.5
[1 − exp(−κ)]2/[exp(−κ) − 1 + κ] ≈ [1− κ

2

]2 ≈ 1 − c
n . Then we obtain the

result put forward in equation (2.17): ϕ0
n ≈ 1− c

n ⇒ 1− (ϕ0
n)

2 ≈ 1− [1− c
n

]2 ≈
2 cn ⇒ n

[
1− (ϕ0

n)
2
] = O(1). Therefore, our maintained assumption appearing in

equation (2.15) is implied by the block-local-to-unity assumption of PMX. Note,
however, an important difference between the original local-to-unity asymptotics
and our use of it which is conformable to PMX. While the former near-to-unit
root literature (see Bobkoski, 1983; Chan and Wei, 1987; Phillips, 1987; Elliott,
Rothenberg, and Stock, 1996; among others) focuses on persistence parameters
going to one at rate 1/T, where T is the length of the time series, the rate of
convergence in (2.17) is governed by n, that is, the number of intradaily data. In
this respect, what is really required for our approach is in fact:

[1− (ϕ0
n)

2] = O(ϕ0
n −ϕn), (2.18)

where the notation O(.) must be understood as an upper bound. Note that [1−
(ϕ0

n)
2] and (ϕ0

n −ϕn) are two different objects and there is no obvious reason why
theywould converge at the same rate. In the sequel, the rate of convergence of (ϕ0

n−
ϕn) will sometimes be slower than 1/n. It will notably depend on the quality of the
volatility process estimator which may for example be corrupted by exogenous
phenomena such as microstructure noise. The key assumption driving equation
(2.18) is that, roughly speaking, the level of volatility persistence is at least as
good as the quality of our intradaily volatility estimator. It ensures that the squared
infeasible bias:

B2
I,n(t) = O([1− (ϕ0

n)
2]) = O(ϕ0

n −ϕn) (2.19)

does not dominate the conditional variance Varσ (σ̂ 2
n,t − σ̆ 2

n,t|t−1). Note also that
for given n, the time series (σ 2

n,t) and (σ̂ 2
n,t) are still stationary processes, albeit

highly persistent when n is large. In particular, a long time series (σ̂ 2
n,t),t= 1,...,T

allows to consistently estimate (at standard rate
√
T) the unconditional mean σ 2

and the correlation coefficient ϕn. We will always consider that the time span is
large enough to make (1/T) small compared to (1/n) (or at least O(ϕ0

n −ϕn)) in
order to make negligible the time series estimation error in the parameters σ 2 and
ϕn. For all practical purpose, our Monte Carlo experiments have confirmed that
the time series estimation error on the parameters σ 2 and ϕn is negligible in front
of O(ϕ0

n −ϕn).
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2.4. Estimating Optimal Weights

The optimal weighting scheme ω∗
n,t depends on σ

[4]
n,t and ϕn. Because of the

maintained practical assumption discussed above, we do not need to worry about
the latter, hence our focus will be on the former. The sample counterpart of σ

[4]
n,t ,

the so-called realized quarticity (see below), is known to be a very noisy estimator
and therefore, albeit root-n consistent, may be detrimental regarding our search for
efficiency gain.

Following a suggestion by Mykland and Zhang (2009), we rather consider the
MLE estimation of Varσ̂ 2

n,t = 2σ [4]
n,t /n, where, σ

[4]
n,t = 1

n

∑n
j=1 σ 4

t,j, and efficiency
gains are made possible by the following assumption:

Assumption 2.4. Assume that n is amultiple ofm≥ 1, and for (i−1)m< j≤ im,
we have:

σtj = σti i= 1, . . . ,n/m.

Given Assumption 2.4, theMLE σ̂ 2
n,t,[i] of σ

2
ti
is: σ̂n,t,[i]= n

m

∑mi
j=m(i−1)+1X

2
t,j. Then

the MLE of σ 4
n,t,[i] is such that:

σ̂ 4
n,t,[i]

σ 4
n,t,[i]

= 1

m2

[n
∑mi

j=m(i−1)+1X
2
t,j]

2

σ 4
n,t,[i]

� [χ2(m)]2

m2

with expectation (1+2/m). Hence, an unbiased estimator of σ
[4]
n,t is defined as:

σ̂ [4]
n,t = m

n

n/m∑
i=1

σ̂ 4
n,t,[i]

1+2/m
= n

m+2

n/m∑
i=1

⎡⎣ mi∑
j=m(i−1)+1

X2
t,j

⎤⎦2 , (2.20)

whereas an estimator not taking advantage of m > 1 would be the realized
quarticity:

σ̃ [4]
n,t = n

3

n∑
j=1

X4
t,j =

n

3

∑
i

σ 4
n,t,[i]

∑
j

(
Xt,j

σn,t,[i]
)4 � 1

3n

∑
i

σ 4
n,t,[i]

∑
j

(χ2(1))2.

(2.21)

In Appendix A, we compare the efficiency of the estimators σ̂ 4
n,t and σ̃ 4

n,t, showing
that whenm> 1, the formerwill bemore efficient. This efficiency gain by grouping
has a much more general validity (see Mykland and Zhang, 2009) and has been
shown to be arbitrarily close to semiparametric efficiency in a very general setting
(see Renault, Sarisoy, and Werker, 2017).

Finally, let us recall that we try to improve the estimation of σ 2
n,t using prior

day information, and in particular using σ̂ 2
n,t−1. This argument is not confined to

volatility measures. In particular, we can use the arguments spelled out so far to
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improve upon σ̂
[4]
n,t by using estimates from prior observation intervals. Namely,

we can also consider the correlation coefficient ψn of σ̂
[4]
n,t on σ̂

[4]
n,t−1:

ψn = Cov(σ̂ [4]
n,t ,σ̂

[4]
n,t−1)

Var(σ̂ [4]
n,t )

(2.22)

and develop a filtering procedure for σ
[4]
n,t similar to the one proposed above for

σ 2
n,t.
Finally, it should also be noted that our way to take advantage of past information

is quite similar in spirit to the Kalman-Bucy filter but with a couple of important
differences which are explained in Supporting Information Appendix Section
OA.4.

3. ASYMPTOTIC ANALYSIS FOR GENERAL ESTIMATORS

The example in the previous section—where we started with a relatively simple
case of a piecewise constant volatility process—is surprisingly comprehensive.
The purpose of the present section is to aim for generality.

3.1. The Case of No Leverage and Drift

We start by replacing the specification of the data generating process in Assump-
tion 2.1 with:

Assumption 3.1. We suppose that Xs is an Itô-semimartingale, either without
jumps

dXs = μ(s)ds+σ(s)dW(s),

or with jumps that are removed (see footnote 2). We also assume for the moment—
but relax later—that μ(s) ≡ 0 and that the volatility σ(s), is independent of the
Brownian motion W(s).

In the case of jump diffusions, we will leave unspecified how a researcher
goes about removing jumps.2 Next, we consider the generic setting examined by
Mykland and Zhang (2017), namely one seeks to estimate:

�t =
∫ t

t−1
θ(s)ds, (3.1)

where {θ(s)} is a spot parameter process, such as squared spot volatility, leverage,
an instantaneous regression parameter, among others.

2Such as, for example, by (1) using bi- and multi-power methods (Barndorff-Nielsen and Shephard; Mykland,
Shephard, and Sheppard (2012)), or (2) by truncation (Aït-Sahalia and Jacod (2007, 2008, 2009, 2012); Jacod and
Todorov (2010); Jing et al. (2012); Lee and Mykland (2008, 2012); Mancini (2001)), or (3) with the help of the
empirical characteristic functions (Jacod and Todorov (2014, 2018)).
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Similar to the analysis in the previous section, we have n discretely sampled data
points which yield an estimator �̂n,t, for which we have the following properties:

Assumption 3.2. As n→ ∞ :

(i) The estimator �̂n,t is consistent.

(ii) A CLT applies, namely nα(�̂n,t −�t)
L→V1/2

t N(0,1) in law, conditionally on
the process σ(s), and Vt is a measurable function of the process (θ(s))t−1<s≤t.

In the remainder of this section, we consider various estimators �̂n,t proposed in
the literature, which we intend to generalize to estimators of the type appearing in
equation (2.9), denoted �̂n,t(ω

∗
t ), using the arguments advanced in the previous

section. In addition to Assumptions 3.1 and 3.2, we also need an assumption
akin to the block local to unity framework discussed in Section 2.3. Because the
generic setting for �t covers a wide variety of cases, we cannot state this as a
generic assumption. For example, in the case of volatility related applications, it
will require that the volatility process is sufficiently persistent (not specified in
Assumption 3.1). In other applications, such as leverage, the persistence actually
applies to μ(s) in Assumption 3.1.3

Throughout, we study the case of equidistant sampling, ti − ti−1 = �ti = 1/n.
We may observe Xti at times ti, i = 0, . . . ,n spanning (t− 1,t].4 Alternatively, if
there is microstructure noise, the observations are of the form

Yti = Xti + εti, (3.2)

where the noise is either i.i.d., or is stationary with fast mixing dependence.
To provide a few initial examples of estimators satisfying Conditions [i] and [ii],

consider the following (nonexhaustive list of) volatility estimators. Here, θ(s) =
σ 2(s).

Example 1 (Realized Volatility, No Microstructure Noise). The convergence
rate is α = 1/2. If X is continuous case, the baseline estimator for the

∫ t
t−1 θ(s)ds

is the standard RV,
∑

t−1<ti+1≤t(Xti+1 − Xti)
2 (Andersen et al., 2001a, 2001b;

Barndorff-Nielsen and Shephard, 2002a). The consistency and stable convergence
has been shown by Jacod and Protter (1998) using discretization.

Example 2 (Bipower Variation, No Microstructure Noise). The bipower varia-
tion �̂n,t = π

2

∑
t−1<ti≤t |�Xti−1 ||�Xti | (and more generally, multipower variation,

Barndorff-Nielsen and Shephard, 2004b, Barndorff-Nielsen and Shephard, 2006)
estimates the integrated volatility in a way that is robust to jumps (where we
specify that dXs = μ(s)ds + σ(s)dW(s) + dJ(s), where J(s) is a pure jump
semimartingale). The convergence rate is α = 1/2. Consistency and stable conver-
gence has been shown in the papers by Barndorff-Nielsen and Shephard (2004b),

3For specific cases, we will discuss the equivalence of equation (2.18). See for example equations (3.9) (3.24) and
later in this section.
4Note that henceforth we use notation slightly different from equation (2.1) and the previous section—as it is more
convenient to do so henceforth.
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Barndorff-Nielsen and Shephard (2006), Barndorff-Nielsen et al. (2006a), and
Barndorff-Nielsen et al. (2006b).

Starting with Example 1, when the sampling frequency increases, that is, n →
∞, then the realized variance converges uniformly in probability to the increment
of the quadratic variation, that is, limn→∞ �̂n,t →p

∫ t
t−1 θ(s)ds. The criterion to

minimize will be the conditional mean squared error:

Eσ

[
�̂n,t(ωt)−�t

]2 = Eσ

{
�̂n,t −�t −ωt

(
�̂n,t − �̆n,t|t−1

)}2
. (3.3)

Then, the problem to solve is obviously nearly identical to the one considered in
Section 2, so that:

�̂n,t(ω
∗
n,t) = �̂n,t −ω∗

n,t

(
�̂n,t − �̆n,t|t−1

)
(3.4)

will be an optimal improvement of �̂n,t ifω∗
n,t is defined according to the following

control variable formula:

ω∗
n,t =

Cov�
[
�̂n,t,�̂n,t − �̆n,t|t−1

]
E�

[
�̂n,t − �̆n,t|t−1

]2 = Var�[�̂n,t]

E�

[
�̂n,t − �̆n,t|t−1

]2 . (3.5)

Note thatω∗
n,t has been shrunk with respect to the conditional regression coefficient

�̂n,t on (�̂n,t − �̆n,t|t−1). This is due to the need to take into account the nonzero
mean of (�̂n,t − �̆n,t|t−1) given the volatility path.

PROPOSITION 3.1. For Example 1, the standard RV, obtained by summing
squared intra-daily returns, yielding the so called realized variance, namely:

�̂n,t =
∑

t−1<ti+1≤t
(Xti+1 −Xti)

2. (3.6)

Then, under Assumptions 3.1 and 3.2, in analogy with equation (2.11), the optimal
weight can be written as:

1

ω∗
n,t

= 1+ϕ2
n

Vt−1

Vt
+n

B2
F,n(t)−B2

I (t)

Vt
+n

B2
I (t)

Vt
+o

(
1

n

)
(3.7)

BI(t) = �t −ϕ0�t−1 − (1−ϕ0)E [�t]

ϕ0 = Cov [�t,�t−1]

Var (�t)
= ϕn+O

(
1√
n

)
,

where Vt = 2
∫ t
t−1 σ(s)4ds is called (twice) the integrated quarticity and BF,n(t) =

�t−ϕn�t−1−(1−ϕn)E [�t]with ϕn =Cov(�̂n,t,�̂n,t−1)/Var(�̂n,t−1), in the case
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of an AR(1) prediction model. For Example 2, using bi-power variation (BPV)
defined as:

�̂n,t(k) = π

2

n∑
j=k+1

∣∣∣Xn,tj ∣∣∣ ∣∣∣Xn,tj−k ∣∣∣, (3.8)

without loss of generality, setting k = 1, it will be an optimal improvement of �̂n,t

whenω∗
t is again defined according to the control variable formula (3.5) where QV

is replaced by BPV . Note that we do not assume the same temporal dependence
for QV and BPV, as the projection of QV on its past (one lag) and that of BPV on
its own past (one lag) in general do not coincide.

Given the similarity with the analysis in the previous section, we skip the details
here, as they appear in the Supporting Information Appendix. In order to estimate
volatility on day t, we attach a nonzero weight ω∗

t to volatility information on
day t− 1. This weight increases as the relative size of the asymptotic variance
Vt/n of �̂n,t is large in comparison to both (1) the asymptotic variance Vt−1/n of
�̂n,t−1 as well as (2) the squared forecast biasB2

F,n(t). However, for a given nonzero
asymptotic bias BI(t), the term n B2

I (t) goes to infinity when n goes to infinity,
likely pushing to zero the optimal weight ω∗

n,t. The reason is fairly straightforward:

since �̂n,t is a consistent estimator of
∫ t
t−1 θ(s)ds, forecasting

∫ t
t−1 θ(s)ds from�t−1

becomes irrelevant when n becomes infinitely large: even a small forecast error
has more weight than a vanishing estimation error. However, in practice, n is never
infinitely large and there likely is a sensible trade-off between estimation error as
measured by the asymptotic variance Vt and the asymptotic bias BI(t). Similarly
to the formal analysis developed in Section 2.3, we can capture this trade off by
considering that volatility is so highly persistent that a block local to unity model
may be relevant. In this case, as seen in Section 2.2, we will have:

BI(t) = OP
(
1/

√
n
)

(3.9)

so that 1/ω∗
n,t = OP(1).

So far, we presented the limit theorems andmain results in terms of the infeasible
estimators. There are various ways this can be converted into a feasible limit theory.
For example, in the absence of jumps a feasible asymptotic distribution is obtained
by replacing Vt with a sample equivalent, namely, V̂n,t = 2

∑
t−1<ti+1≤t(Xn,ti+1 −

Xn,ti)
4. Improved estimation of integrated quarticity can be derived in the spirit of

Section 2.4 (see Mykland and Zhang, 2009).5

Besides the estimation of integrated quarticity, we face another problem, namely
the estimation of the forecast bias. We do not only observe the infeasible bias BI(t),

5It should also parenthetically be noted that Vt can be estimated via several methods, including bootstrap proposed
by Gonçalves and Meddahi (2009), subsampling by Kalnina and Linton (2007) and Kalnina (2011), or the observed
AVAR approach of Mykland and Zhang (2017) as well as the examples discussed in Sect. 7 of the latter paper.
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but we even do not observe the feasible bias BF,n(t). The only thing we can actually
compute is the following sample counterpart of BF,n(t):

B̂F,n(t) = �̂n,t − ϕ̂n,T�̂n,t−1 − ĉn,T, (3.10)

where ϕ̂n,T and ĉn,T are OLS estimators in the time series regressions: �̂n,t = cn+
ϕn�̂n,t−1 +un,t,t = 1, . . . ,T .

Note that the estimator (3.10) is essentially identical to the estimator considered
in Section 2.2, which implies that our implied estimated optimal weights ω̂∗

n,t
should be of sensible use, under similar assumptions regarding sample sizes n
and T as well as volatility persistence (block local to unity). Strict application
of the formulas developed in Section 2.2 suggests the following natural sample

counterpart of (3.7): (ω̂∗
n,t)

−1 = 1+[ϕ̂2
n,T V̂n,t−1]/V̂n,t+n

[
B̂F,n(t)
]2

/V̂n,t. However,

it is worth keeping in mind that our block local to unity framework leads us to
consider that:

1− (ϕ0)2 = O(1/n).

In these circumstances, there is no point to use the estimator ϕ̂2
n,T for the estimated

optimal weights since the associated estimation error is of the same order of mag-
nitude as the distance to unity. This is the reason why our preferred (approximated)
optimal weight will be throughout:

1

ω̂∗
n,t

= 2+ V̂n,t−1 − V̂n,t

V̂n,t
+n

[
B̂F,n(t)
]2

V̂n,t
. (3.11)

As noted before, the optimal weights are time varying. This sets our analysis
apart from previous work only involving time invariant, or unconditional weighting
schemes.6 The comparison with unconditional schemes will be discussed at length
in the next section. The fact that Vt is a stationary process implies that ω∗

t is
stationary as well. It is also worth noting that the weight increases with Vt (relative
to Vt−1). This is also expected as the measurement error is determined by Vt. High
volatility leads to high Vt in fact. Hence, on high volatility days, we expect to put
more weight on the past to extract volatility.

To conclude, it should be noted that so far we confined our analysis to projec-
tions on one lag. We may consider higher order projections. In particular, it may be
useful to think of the Beveridge–Nelson representation to accommodate the local-
to-unity asymptotics (see, e.g., Phillips and Solo, 1992, Lem. 2.1 among others).
We leave this for future research.

Finally, in Supporting Information Appendix Section OA.2, we discuss
some additional volatility estimator examples, including Two-Scales RV and

6In the context of volatility forecasting, Bollerslev, Patton, and Quaedvlieg (2016) have recently proposed time-
varying weights that are pretty much conformable with our strategy of increasing the weight ω∗

n,t of past observation
when current estimation error Vt is high with respect to the former one.
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Multi-Scale and Kernel RV, among others. Moreover, in Supporting Information
Appendix Section OA.3, we discuss a set of examples which go beyond
measures of quadratic variation, in particular: (a) estimation of Covariance from
Asynchronous Observations and (b) block estimation of higher powers of volatility
and high frequency regression, and ANOVA.

3.2. The Case with Leverage Effect, and Nonzero μ

Weconsider the question of how to build a theory in the casewhere there is leverage
effect. This means that the caveats at the beginning of Section 3.1 can be removed.
In particular, Assumptions 3.1 and 3.2 are replaced by:

Assumption 3.3. We suppose that Xs is an Itô-semimartingale, either without
jumps

dXs = μ(s)ds+σ(s)dW(s),

or with jumps removed (see footnote 2 in Section 3.1). The drift μ can vary quite
freely (see Remark 1 below), and we allow for dependence between σ(s) and (a)
the jump sizes on the one hand, and (b) the driving Brownian motion and Poisson
process on the other.

Assumption 3.4. As n→ ∞ :

(i) The estimator �̂n,t is consistent;

(ii) A CLT applies, namely nα(�̂n,t −�t)
L→V1/2

t N(0,1) stably in law, where Vt
is a (potentially random) asymptotic variance, and where Vt is adapted to the
filtration Ft, which represents the history of underlying processes, including
X,σ, and θ .

In the no-leverage case, that is, under Assumptions 3.1–3.2, one can condition
on the σt process and then find the optimal estimator in terms of mean squared
error. In the case with leverage, that is, under Assumption 3.4, there is no general
way of doing the conditioning for a fixed sample size. However, we show below
that the asymptoticMSE (conditionally on the data, where the conditioning is done
after the limit-taking) only depends on the σt process. The postlimit conditioning,
therefore, gives rise to exactly the same formula that comes out of the quite
different procedure used in the no-leverage case. Therefore, stable convergence
saves the no-leverage result for the general setting.

The approach below can be used in many other settings, see, in particular, the
results on estimation of the leverage effect in Example 4.

Remark 1 (Nonzero μ). Once one is in the domain of stable convergence, all
arguments go through for locally bounded drift process μ(s), cf. Mykland and
Zhang (2009, pp. 1407–1409). We can therefore assume that μ ≡ 0 in Assumption
3.1.

https://doi.org/10.1017/S0266466621000359 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000359


IN-SAMPLE ASYMPTOTICS AND ACROSS-SAMPLE EFFICIENCY 89

To proceed without conditioning, the point of departure is that the convergence
in Assumption 3.2 remains valid even under leverage effect, as documented in our
examples in Section 3.1. The underlying filtration is generated by a p-dimensional
local martingale (χ(1), . . . ,χ(p)). It is then the case that

nα/2(�̂n,t −�t)
d→ Zt
√
Vt, (3.12)

where Zt is standard normal, and the convergence is joint with (χ(1), . . . ,χ(p))

(where this is a constant sequence). Zt is independent of (χ(1), . . . , χ(p)) (the latter
also occurs in the limit, since the sequence is constant as a function of n). This is
known as stable convergence, see the papers cited, and also Rényi (1963), Aldous
and Eagleson (1978), and Hall and Heyde (1980). It permits, for example, Vt to
appear in the limit, while being a function of the data. As discussed in Sect. 5 of
Zhang, Mykland, and Aït-Sahalia (2005), the convergence also holds jointly for
days t = 0, . . . ,T . In this case, Z0, . . . ,ZT are i.i.d.

With the convergence appearing in (3.12) in hand, one can now condition the
asymptotic distribution on the data (i.e., (χ(1), . . . ,χ(p))), and obtain that Zt

√
Vt

is (conditionally) normal with mean zero and variance Vt. One can then develop
the further theory based on asymptotic rather than small sample variances and
covariances. Recall that it is convenient to make the persistence a function of n,
hence ϕ(n) (cf. equation (2.17) and the analogy with PMX). To distinguish small
sample and asymptotic results, let us denote Ut by Ut(n) as well and write:

�t = ϕ0
n�t−1 +

√
1− (ϕ0

n)
2Ut(n)+ (1−ϕ0

n)E(�t). (3.13)

One supposes that in the limit as n → ∞, �̂n,t−1 and Ut(n) are uncorrelated. A
similar, feasible, equation is then written as

�̂t = ϕ(n)�̂n,t−1 +
√
1−ϕ(n)2Ut(n)+ (1−ϕ(n))E(�t). (3.14)

Specifically, in analogy with (2.17),

nα(1− (ϕ0
n)

2) = γ 2
0 and nα(1−ϕ(n)2) = γ 2. (3.15)

Note that

1−ϕ(n) = n−α 1

2
γ 2(1+op(1)) = Op(n

−α). (3.16)

Under the stationarity assumption, both Ut(n) and Ut(n) have limits in law, which
we denote by Ut and Ut. If one subtracts (3.13) from (3.14), and then multiplies
by nα/2, (3.12) yields

nα/2(�̂n,t −�n,t) = ϕnn
α/2(�̂n,t−1 −�n,t−1)+nα/2(ϕn−ϕ0

n)�n,t−1

+nα/2
√
1−ϕ2

nUn,t −nα/2
√
1− (ϕ0

n)
2Un,t −nα/2(ϕn−ϕ0

n)E(�n,t)

→√Vt−1Zt−1 +γUt −γ0Ut, (3.17)
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whence

γUt +
√
Vt−1Zt−1 = γ0Ut +

√
VtZt, (3.18)

hence Ut is not even asymptotically observable. Under this setup, from (3.16),

nα/2(�̂n,t −ϕ(n)�n,t−1) → γUt. (3.19)

Consider the best linear forecast of �̂n,t using (only) �̂n,t−1 : �̆n,t|t−1 = ϕn�̂n,t−1+
(1−ϕn)E(�), so that from (3.16)

nα/2(�̂n,t − �̆n,t|t−1) → γUt.

The final estimate is now �̂n,t(ωt) = �̂n,t −ωt(�̂n,t − �̆n,t|t−1), hence

nα/2(�̂n,t(ωt)−�n,t) = nα/2(�̂n,t −�n,t)−ωtn
α/2(�̂n,t − �̆n,t|t−1) (3.20)

→√VtZt −ωtγUt = (1−ωt)
√
VtZt

−ωt

[
−√Vt−1Zt−1 +γ0Ut

]
by (3.18). Hence, the asymptotic mean squared error (AMSE; conditional on
the data; the conditioning is done after taking the limit, which is the sequence
consistent with stable convergence) is AMSE = (1−ωt)

2Vt +ω2
t

[
Vt−1 +γ 2

0U
2
t

]
.

The stable convergence (3.12) remains valid even in this triangular array setup
(where �n,t depends on n). For RV, this is explicitly proved in Mykland and Zhang
(2006, pp. 1951–1952). For our other examples, the validity in the triangular array
setting follows because all the cited papers use martingale central limit theorems
which remain valid for triangular arrays.7

Using equation (3.13), one can therefore do the same calculations as before, but
on asymptotic quantities. The asymptotic mean squared error (conditional on the
data) of the overall estimateQVt(ωt) is minimized by ω∗

t = Vt/[Vt+Vt−1+γ 2
0U

2
t ].

This is the same expression as equation (3.4). The further development is the same
as in the no-leverage case.

3.3. Realized Betas

Another application of our theory would be to the case of realized betas, see in
particular Barndorff-Nielsen and Shephard (2004a), Mykland and Zhang (2009,
Sect. 4.2), and Aït-Sahalia, Kalnina, and Xiu (2020). To streamline the discussion
we assume that there are equidistant synchronous observations, no microstructure
noise, and no jumps (hence no need for truncation). Absent jumps, the method-
ologies of the two latter papers are similar; both use nonoverlapping blocks, the
former fixed size blocks, the latter asymptotically increasing size blocks. We here

7See, for example, Thm. IX.7.19 or Thm. IX.7.28 of Jacod and Shiryaev (2003), Thm. B.4 of Zhang (2001) or Thm.
2.28 ofMykland and Zhang (2012). See also the books by Jacod and Protter (2012), and Aït-Sahalia and Jacod (2014).
A summary discussion of technical tools can be found in Mykland and Zhang (2017, Sect. 7.2).
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use a fixed block size M.8 Mykland and Zhang (2009) provides a small sample
interpretation under a contiguous probability distribution.

We are concerned with processes X(1)
t,s ,...,X

(p)
t,s and Yt,s observed on each day t at

equidistant times 0 = tn,0 < tn,1 < · · · < tn,n1 = T , and related through

dYt,s =
p∑
i=1

β(k)
t,s dX

(k)
t,s +dZt,s, with 〈X(k),Z〉t,s = 0 for all t, s and k, (3.21)

where we let s be time s on day t. To relate to the notation of the current paper,
the integrated β

(k)
t,s is �

(k)
t = ∫ tt−1β

(k)
t,s . Blocks are defined by τn,i−1 < tn,j ≤ τn,i,

9

where the τn,i correspond to every Mth observation time tn,Mi. The estimator
(β̂

(1)
t,n,τn,i−1

,...,β̂(p)
t,n,τn,i−1

) of (β
(1)
t,τn,i−1

,...,β(p)
t,τn,i−1

) is the regular least squares estima-

tor (without intercept) based on the observables (�X(1)
t,n,tn,j,...,�X

(p)
t,n,tn,j,�Yt,n,tn,j)

inside the block from τn,i−1 to τn,i. The overall estimate of the vector of �
(k)
n,t ’s is

then

�̂(k)
n,t =
∑
i

β̂(k)
t,n,τn,i−1

M�t. (3.22)

The asymptotic covariance matrix is given by Vt = MT
M−p−1

∫ T
0 〈Z,Z〉′s(〈X,X〉′s)−1

dt, for s-values on day t (so Z = Zt,·, and similarly for X), and where T is the
notional length of the time period from t− 1 to t, often one day. This is from
Mykland and Zhang (2009, eq. (72), p. 1426). It is consistent with Aït-Sahalia
et al. (2020, Thm. 2, p. 91), with correction for fixed M and for normalization by
n1/2 rather than �t−1/2.

Depending on taste (and with the same outcome), the estimator of covariance is
obtained from regression considerations, or as approximations to the asymptotic
values. Let RSSt,n,i be the residual sum of squares in the (no-intercept) regression
in block i on day t with sample size n, that is,

RSSt,n,i =
∑

τn,i−1<tn,j≤τn,i

(�̂Zt,n,tn,j)
2.

Similarly, let RVi be the RV (sum of squares) matrix in block # i. Since RSSt,n,i ≈
〈̂Z,Z〉t,τn,i −〈̂Z,Z〉t,τn,i−1

and RVt,n,i ≈ 〈̂X,X〉t,τn,i −〈̂X,X〉t,τn,i−1
(or following the

cited papers),

V̂t,n = MT
M−p−1

M�t
∑
i

RSSt,n,iRVt,n,i
−1.

Once again, recall that there is a different block i for each time period t. The
remaining coefficients follow from equations 3.10–3.11, where we recall that ϕ̂n,T

8The extension of the estimator to rolling blocks is straightforward, but would complicate the presentation given the
already complex nature of the current setup.
9On each day t. We have not marked the dependence of τn,i−1 and tn,j on day t, to reflect an idealized situation where
the times are the same on each day. In a more realistic situation, these quantities depend also on day number; we have
avoided this here in the interest of simplicity of notation. On the other hand, β̂(1)

t,n,τn,i−1
will differ depending on day t

and sample size n, and is marked accordingly.
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and ĉn,T are OLS estimators in the time series regressions: �̂n,t = cn+ϕn�̂n,t−1 +
un,t,t = 1, . . . ,T .

3.4. Ill-Posed Estimation Problems

We have so far considered the relatively well-posed problem of estimating volatil-
ity from high frequency data. The use of multi-day data, however, really comes
even more into play when trying to estimate less well-posed quantities. In partic-
ular, we consider:

the volatility of volatility: �t = 〈σ,σ 〉t −〈σ,σ 〉t−1

the (instantaneous) leverage effect: �t = 〈p,σ 〉t −〈p,σ 〉t−1. (3.23)

Estimators of the volatility of volatility have been proposed by Mykland et al.
(2012), whereas instantaneous leverage effect estimators are covered by Wang
and Mykland (2014). Such estimators can account for leverage effects at multiple
horizons, and are closely related to news impact curves (Chen and Ghysels, 2011;
Engle and Ng, 1993). Nonparametric estimation of the leverage effect is developed
in Wang and Mykland (2014).10

For brevity, we give a summary account of how our theory extends to such situ-
ations. The generalization is straightforward but the details would be notationally
heavy. For simplicity, we consider the no-jump case, which can be undone as
in Aït-Sahalia et al. (2017). Specifically, dWt = ρtdW1t +

√
1−ρ2

t dW2t, and the
system is given by dpt =μtdt+σtdWt and dσ 2

t = νtdt+γtdW1t.
To define estimators for the parameters in (3.23), we need a block size Mn,

determined by the econometrician, held to satisfy n−1/2Mn → c, as n → ∞. Let
τi = τn,t,i be the iMnth observation time on day t. The number of blocks on the
form (τi−1,τi] is given by nM = �n/Mn�. For each block, define a local RV as
RVi =∑τi−1<tj≤τi

(�ptj)
2, i = 1, . . . ,nM . In the absence of microstructure noise,

σ̂ 2
τn,i

= [Mn × �t]−1RVi is a consistent estimator of spot volatility (Comte and
Renault, 1998; Foster and Nelson, 1996; Mykland and Zhang, 2008).

Example 3 (Estimation of Volatility of Volatility (No Microstructure Noise)).
We follow Mykland et al. (2012) (MSS), in particular their Sect. 6.11 Define
blocked bipower variation and edge corrected RV as, respectively,

BVM,n = n

(nM −1)(E(χ2
Mn

)1/2)2

nM∑
i=2

(RVi−1RVi)
1/2

ECRV(2)
n = 1

2
RV1 +

nM−1∑
i=2

RVi+ 1

2
RVnM,

10The concept of leverage effect is used to cover several concepts, cf. the review in the Introduction to the cited
papers.
11An alternative estimator can be found in Vetter (2015).
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where χ2
M is a χ2 random variable with M degrees of freedom. Define the

intra-day based estimator as �̂n,t = 〈̂σ,σ 〉(n) = c−1 3
K−1n

1/2
(
ECRV(2)n −BVM,n

)
.

Following Coroll. 2 (Sect. 6.2) in MSS, (3.12) is now valid with α = 1/4 and Vt=
27
16

∫ t
t−1 c

−3
(
2σ 2

s + c2〈σ,σ 〉′s
)2
ds. The discussion inMSS also extends to estimators

of 〈σ,σ 〉 based on multipower variation.

Example 4 (Estimation of Leverage Effect (No Microstructure Noise)). We
follow Wang and Mykland (2014) (WM), in particular their Sect. 2.2–2.3.12

Define the intra-day based estimator as θ̄t = 〈̂X,σ 〉(n) = 2
∑Mn−2

i=0 (Xτn,i+1 −Xτn,i)

((σ̂ 2
τn,i+1

)1/2 − (σ̂ 2
τn,i

)1/2). Following Thm. 1 (Sect. 2.3) in WM, (3.12) is now valid

with α = 1/4 and Vt = 4
c

∫ t
t−1 σ 4

t dt+ c
∫ t
t−1 σ 2

t ( 443 f
2
t + 32

3 g
2
t )dt where ft = γtρt and

gt = γt(1−ρ2
t )

1/2.

Example 5 (Estimation In the Presence ofMicrostructure). We refer to the more
complex discussions in Sect. 6.1.3–6.1.4 of MSS (Volatility of Volatility) and Sect.
4.1 ofWM (Leverage Effect).With suitable definitions of�t andVt, (3.12) remains
valid with α = 1/8.

As seen from our examples, the following is typically the case. When there
is no microstructure, variances, covariances, regression coefficients, etc., can be
estimated as rate α = 1/2, whereas more ill-posed quantities (such as leverage
effect and volatility of volatility) will at best be estimable at rate α = 1/4. When
there is microstructure noise, both of these rates are halved, to α = 1/4 and
α = 1/8, respectively.

Recall that α is the convergence rate in Conditions [ii] in Assumption 3.2 and
[ii] in Assumption 3.4. The closer α is to zero, the more ill-posed the problem,
and hence the greater the gains of our proposed procedure. To see this replace
Assumption (2.18) by

n2β(1− (ϕ0
n)

2) = γ 2
0 and n2β(1−ϕ(n)2) = γ 2, (3.24)

where we can think of β as measuring the persistence of the underlying system.
Note that so far we have identified the two rates to get a balanced asymptotic
expression.

As documented in our simulations, there is gain for volatility estimation from
across-day inference, and so the choice β = 1/2 is meaningful for the most well-
posed case when α = 1/2. For the estimators with slower convergence, α < 1/2,
and with the same choice β = 1/2, the across-day information dominates the
intraday information. Therefore, for ill-posed estimators, our theory is at its most
effective. This is consistent with the comment in Wang and Mykland (2014, pp.
205–207), to the effect that a day was thought to be a slightly too short time period
to estimate leverage effect.

12WM’s F function is here chosen as F(x) = x1/2. Other choices of F provide estimators of skewness (F(x) = x) and
regression of σ 2 on X (F(x) = log(x)). In both these cases, our theory of across-day estimation remains valid.
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4. ALTERNATIVE WEIGHTING SCHEMES

The topic of this paper was originally considered in earlier work by Andreou and
Ghysels (2002) who tried to exploit the continuous record asymptotic analysis of
Foster and Nelson (1996) for the purpose of improving RV measures. At the time
the paper by Andreou and Ghysels (2002) was written the in-sample asymptotics
was not taken into account by the authors, as their paper was concurrent to that of
Barndorff-Nielsen and Shephard (while the early work of Jacod was discovered
only much later). Therefore, Andreou and Ghysels (2002) failed to recognize that
increased accuracy of in-sampling will diminish the need to use past data. This
does not occur in the context of Foster and Nelson (1996) who study instantaneous
or spot volatility. In the latter case, persistence will remain relevant to filter
current spot volatility, which is the key difference between continuous record
and in-sample asymptotics. An early draft of Meddahi (2002) included a section
which discussed the same question and where it was recognized that optimal filter
weights should depend on the in-sample frequency and ultimately become zero
asymptotically. There are many important differences between the analysis in the
current paper and the filtering approach pursued by Andreou and Ghysels and
Meddahi. The most important difference is that we derive conditional filtering
schemes, dependent on the path of the volatility process, whereas Andreou,
Ghysels, andMeddahi only consider unconditional, that is time-invariant, filtering.

In this section, we walk step-by-step from the unconditional to the optimal
model-free weighting scheme we introduced in the previous section. We
start by noting that equations 3.10–3.11 suggest two feasible weighting
schemes: (ω∗

vt)
−1 = 2 + .5[n2αVar(�̂t − �̂n,t|t−1)]/V̂n,t + [V̂n,t−1 − V̂n,t]/V̂n,t =

2+ .5[n2αVar(Ut)]/V̂n,t+ [V̂n,t−1− V̂n,t]/V̂n,t,where we use the v subscript to refer
to the unconditional variance of U, and the subscript u relates to the actual value
of Ut, yielding: (ω∗

ut)
−1 = 2+ .5[n2α(�̂t − �̂n,t|t−1)

2]/V̂n,t + [V̂n,t−1 − V̂n,t]/V̂n,t =
2+ .5[n2α(Ut)

2]/V̂n,t+ [V̂n,t−1− V̂n,t]/V̂n,t. When α = 1/2, in the case of quadratic
variation, we have:

(ω∗
vt)

−1 = 2+ nVar(�̂n,t − �̂n,t|t−1)

2V̂n,t
+ V̂n,t−1 − V̂n,t

V̂n,t
(4.1)

(ω∗
ut)

−1 = 2+ n(�̂n,t − �̂n,t|t−1)
2

2V̂n,t
+ V̂n,t−1 − V̂n,t

V̂n,t
, (4.2)

where V̂n,t = n(π/2)2
∑n

j=4 |Xn,tjXn,tj−1Xn,tj−2Xn,tj−3 | in the case of BPV . The
distinction between (4.1) and (4.2) will be important when we turn to processes
with leverage effect, as will be discussed in Supporting Information Appendix
Section 3.2.

These two weighting schemes will be compared with unconditional schemes
at first and a conditional scheme, while suboptimal, provides a natural link
between the unconditional and conditional schemes (4.2) and (4.1). To discuss
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unconditional weighting schemes we drop time subscripts to the weights ω∗
t in

equation (3.4) and consider the generic class of estimators:

�̂n,t(ω) = �̂n,t −ω(�̂n,t − �̂n,t|t−1). (4.3)

Recall that
∫ t
t−1 θ(s)ds− �t|t−1 = √1− (ϕ0

n)
2Ut and that the relevant trade-off

is captured by the product nα(1 − (ϕ0
n)

2), which resulted in the local-to-unity
asymptotics. The analysis of Andreou and Ghysels (2002) did not recognize these
trade-offs and it is perhaps useful to start with their rule-of-thumb approach which
consisted of setting ϕ0 = ϕ = 1, de facto a unit root case, and therefore �̆n,t|t−1 =
�̂n,t−1. Moreover, their approach is unconditional and therefore overlooks the
difference between Vt and Vt−1. The unit root case yields the weighting scheme
ωr−th = .5 (substituting ϕ0 = ϕ = 1 in equation (4.2) with Vt = Vt−1), and the
rule-of-thumb estimator:

�̂n,t(ω
r−th) = .5�̂n,t + .5�̂n,t−1. (4.4)

This is the first of two unconditional weighting schemes. Unlike Andreou and
Ghysels (2002), Meddahi recognized the trade-off captured by the product nα(1−
(ϕ0

n)
2), and constructed a model-based weighting scheme, denoted by ωunc and

which is characterized as ωunc = [2+2λ]−1 with:

λ = nα[1−ϕ2
n]
Var[�t|t−2]

E(Vt)
� γ 2

4

Var[�t|t−1]

E(Vt)
. (4.5)

It should be noted that Meddahi used the unconditional variance of the estimation
error of quadratic variation, that is using our notation E(Vt/2)/nα .13 Moreover,
he assumed an explicit data generating process to compute the weights, hence a
model is needed to be specified (and estimated) to compute theweights.14 To obtain
a feasible scheme, we will use unconditional sample means of �t and Vt. In this
respect, we deviate from the model-based approach of Meddahi, namely we do not
use any explicit model to estimate the weighting schemes. The above derivation
suggests the second unconditional scheme:

(ωunc)−1 = 2+ nVar(�t −�t|t−1)

2E(Vt)
= 2+γ 2Var[Ut]

2E(Vt)
,

which again does not depend on t, and where in practice the term (γ 2Var[QV])/
E(Q) will be computed as the ratio of (1 − ϕ2)Var[QV] and the asymptotic
(unconditional) varianceE(Q/(nα)) of the estimation error for integrated volatility.

13It should be noted that Andersen et al. (2005, footnote 9) provided a solution for a model-free estimation.
14To clarify the difference between our model-free approach and Meddahi, it should be noted that the weights in our
analysis are not based on a specific model. Moreover, the prediction formula in our analysis is nothing but a projection
and does not involve any AR model.
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Table 1. Inverse weighting schemes

QV BPV

(ωunc)−1 2+γ 2 Var[Ut]
2E(Vt)

2+ nVar[�̂n,t−�̂n,t|t−1]
νE(Vt)

(ωhc
t )−1 2+HVt +γ 2 Var[Ut]

2E(Vt)
2+ nVar[�̂n,t−�̂n,t|t−1]

νE(Vt)
+ V̂n,t−1−V̂n,t

V̂n,t

(ω∗
vt)

−1 2+HVt +γ 2 Var[Ut]
2Vt

2+ nVar[�̂n,t−�̂n,t|t−1]

νV̂n,t
+ V̂n,t−1−V̂n,t

V̂n,t

(ω∗
ut)

−1 2+HVt +γ 2 U
2
t

2Vt
2+ n(�̂n,t−�̂n,t|t−1)

2

νV̂n,t
+ V̂n,t−1−V̂n,t

V̂n,t

Note: In addition to the above weighting schemes ωr−th = 1/2. Moreover, in the above
Ut = �̂n,t − �̂n,t−1.

To appraise the differences between conditional and unconditional weighting
schemes we also compare:

(ωunc)−1 � 2+γ 2Var[Ut]

2E(Vt)
(4.6)

with our optimal estimator slightly rewritten as:

[ω∗
t ]

−1 � (2+γ 2Var(Ut)

2Vt
)+HVt, (4.7)

where HVt = (V̂n,t−1 − V̂n,t)/V̂n,t which we referred to as a heteroskedasticity
correction. An approach intermediate between (4.7) and (4.6), that is unconditional
up to heteroskedasticity correction yields:

(ωhc
t )−1 = 2+ V̂n,t−1 − V̂n,t

V̂n,t
+γ 2Var[Ut]

E(Vt)
= 2+HVt +γ 2Var[Ut]

2E(Vt)
. (4.8)

The above weighting schemes provide a progression towards the optimal (con-
ditional) weighting scheme. Starting with the rule-of-thumb scheme ωr−th, we
progress to ωunc where unconditional moments are used, followed by the het-
eroskedasticity correction embedded in ωhc

t . To summarize, we have five possible
weights, focusing only on QV and BPV appearing in Table 1.

From the above analysis we can make several observations:

• The unconditional formula of Meddahi gives a weight to past RV smaller than
the rule-of-thumb weight of (1/2).15

• This unconditional formula does not take into account the conditional het-
eroskedasticity that is due to the (asymptotic) estimation error of RV. For
instance, when V̂n,t > V̂n,t−1 that is a larger estimation error on current integrated
volatility estimation than on the past one, we may be led to choose a weight
larger than (1/2) for past RV. Typically, taking the term HVt into account

15Moreover, as noted before, the weight diminishes with n.
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should do better in the same way WLS are more accurate than OLS in case
of conditional heteroskedasticity.

• Besides the heteroskedasticity correctionHVt we also observe thatVar[Ut]/E(Vt)
is replaced by Var[Ut]/Vt in optimal weighting schemes.

Finally, in the same spirit as the rule-of-thumb approach we also consider a
common industry practice, known as RiskMetrics, which is characterized as:

�̂n,t(ω
rm) = ωrm�̂n,t + (1−ωrm)�̂n,t−1, (4.9)

where |ωrm| < 1. Note that the Andreou and Ghysels rule-of-thumb estimator is a
special case with ωrm = .5. We will consider ωrm = .9 in our analysis, although we
also experimented with slightly higher and low values in the [.8,.95] range.

5. A SIMULATION STUDY

The purpose of the simulation is two-fold. First, we want to assess the efficiency
gains of the optimal weighting schemes. This will allow us to appraise how much
can be gained from filtering. Second, wewould like to compare the feasible optimal
weighting schemes ω∗

t with the rule-of-thumb scheme ωr−th, the unconditional
scheme ωunc and the heteroskedasticity correction embedded in ωhc

t . This will
allow us to appraise the difference between conditional and unconditional filtering
as well as the relative contribution of the natural progression towards the optimal
(conditional) starting with the rule-of-thumb scheme ωr−th, to ωunc, followed by
the heteroskedasticity correction embedded in ωhc

t . Finally, we also consider the
RiskMetrics approach featuring ωrm discussed in equation (4.9). While the simu-
lations used empirically plausible data generating processes, we also conducted a
small empirical study that yielded similar results. An extensive empirical study is
beyond the scope of the present paper and left for future research.

5.1. Simulation Design

We consider 1,000 replications of samples each consisting of 500 and 1,000 “days”
with in-sample (intra-daily sampling) sizes n= 288 and 144 (following a first 500
days burn-in presample). These correspond to the use of 5-min and 10-min returns
in a 24-h financial market. We treat the 1-min quantities as the “truth,” hence they
provide us with a benchmark for comparison. Every simulation has a 1,000 days
burn-in presample period to eliminate starting value problems.

The simulations pertain to, respectively, (a) volatility and (b) betas. A subsection
is devoted to each separately.

5.1.1. Volatility. The first class of models we simulate is based on Andersen,
Bollerslev, and Meddahi (2005) and consists of:

d logSt = μdt+σt

[
ρ1dW1t −ρ2dW2t +

√
1−ρ2

1 −ρ2
2dW3t

]
. (5.1)
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When μ = ρ1 = ρ2 = 0, we obtain:

d logSt = σtdW3t. (5.2)

The dynamics for the instantaneous volatility is one of the following (with the
specific parameter values taken from Andersen et al., 2005):

dσ 2
t = .035(.636−σ 2

t )dt+ .144σ 2
t dW1t, (5.3)

which is a GARCH(1,1) diffusion, or a two-factor affine model:

dσ 2
1t = .5708(.3257−σ 2

1t)dt+ .2286σ 2
1tdW1t, (5.4)

dσ 2
2t = .0757(.1786−σ 2

2t)dt+ .1096σ 2
2tdW2t,

with σ 2
t = σ 2

1t + σ 2
2t. All of the above models satisfy the regularity conditions of

the Jacod (1994) and Barndorff-Nielsen and Shephard (2002b) asymptotics. We
also considered cases with nonzero μ,ρ1, and/or ρ2. Hence, these are diffusions
with drift and leverage. We do not report those results as they were similar to the
no-drift/leverage results.

We also include a third class of processes involving jump diffusions based on
Huang and Tauchen (2006). They analyze a stochastic volatility jump diffusion
model, labeled as SV1FJ:

d logSt = μdt+ exp (β0 +β1σt)(ρdW1t + (1−ρ)dW2t +dLt, (5.5)

dσt = αvdt+dW2t,

where Lt is a Compound Poisson Process with constant jump intensity λ and
random jump size distributed as N(0,σ 2

jmp). The model SV1FJ has one stochastic
volatility factor and a jump, hence the acronym. The parameter values are taken
from Huang and Tauchen (2006, Tab. 1) and are based on prior empirical results,
most notably Chernov et al. (2002) and Andersen, Benzoni, and Lund (2002).
In particular, we select the empirically most plausible values from Huang and
Tauchen (2006, Tab. 1), and set αv = −0.1 and λ = 0.058 and σ 2

jmp = 1.50. The
simulation of the jump process is exactly as it is described in Huang and Tauchen
(2006).16

For the continuous-path process simulations we consider weights for QV, with
(ω∗

vt)
−1 appearing in equation (4.1), (ω∗

ut)
−1 appearing in equation (4.2), and

(ωhc
t )−1 from equation (4.8), and (ωunc)−1 from equation (4.6). For the jump

diffusion we consider the BPV weighting schemes as specified in Table 1.
Finally, for the purpose of constructing the weights, AR(1) prediction schemes

are used. Hence, all our simulations consider looking at the previous day’sQV only.
To assess estimation uncertainty we also consider cases where (ω∗

vt)
−1, (ωhc

t )−1 and
(ωunc)−1 are based on sample moments which are perturbed by extra noise.

16We are grateful to Xin Huang for sharing the simulation code with us.
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5.1.2. Betas. Our final simulation design pertains to CAPM betas. We start
from equation (3.21) and assume that the single factor is the market return process
which we assume to obey the law of motion of the process appearing in equation
(5.2) with instantaneous volatility dynamics appearing in (5.4).

To complete the model we need to specify the beta dynamics. Here we follow
Aït-Sahalia et al. (2020) and use an Ornstein–Uhlenbeck process for the time
variation of the market betas, namely:

dβt = κ(μ−βt)dt+σbdWt, (5.6)

where we take the parameter values similar to those in Aït-Sahalia et al. (2020, Tab.
1). In particular, we take for DGP1 κ = 2, μ = 1.0, with σb = 3, for DGP2 κ = 2,
μ = 0.10 and σb = 0.03, for DGP3 κ = 1, μ = 1.0 and σb = 0.03. The DGPs are
different with respect to (a) persistence, that is, κ, (b) unconditional betas, that is,
μ and (c) noise of the innovations represented by σb. The CAPM equation has no
intercept, meaning it pertains to excess returns, and the idiosyncratic error variance
equals one. All returns are sampled at 1- and 5-min intervals with sample size T =
500.17 The weighting schemes are those appearing in Table 2.

5.2. Simulation Results

Table 2 reports the first set of simulation results. The table consists of three panels,
corresponding to, respectively, the GARCH diffusion, two-factor SV diffusion,
and Jump diffusion. For each we report the mean of the gains in MSE relative to
a standard QV or BPV estimator using the same frequency data. The results in the
table pertain to 5- and 10-min sampling. We focus our analysis in particular on the
10-min sampling as this is arguably the most relevant one regarding across-sample
efficiency gains.We consider three time-varying weighting schemes, namely those
driven by ω∗

ut,ω
∗
vt and ωhc

t , and the fixed weighting schemes, namely ωunc and ωrm.
We also report the mean and variance of the weights obtained from the simulations.
We report the results for T = 500 as they are representative for the two sample sizes
(T = 500 and 1,000) we considered.

We observe that overall the weighting schemes based on ω∗
ut and ω∗

vt appear to
be consistently among the best weighting schemes in terms of MSE improvement
across all three DGPs considered and the difference between schemes ω∗

ut and ω∗
vt

is insignificant. It is worth recalling that ω∗
vt is more closely related to what would

be the Kalman filter weights.
The results for the GARCHdiffusion indicate that the optimal weighting scheme

is the best, in terms of average MSE improvements. The two-factor diffusion and
jump diffusion cases yield less impressive MSE gains for the optimal weighting
schemes, and the latter are particularly challenged by the RiskMetrics approach
which in both cases does either marginally better (two-factor DGP) or substantially

17We also considered T = 1,000 but are not reported due to the similarity to those reported here.
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Table 2. MSE improvements and weights for GARCH, two factor and jump
diffusion models

GARCH diffusion

ω∗
ut ω∗

vt ωhc ωunc ωrm ωr−th

Mean

MSE impr.

5 min 0.87 0.85 0.95 0.95 0.86 0.87

10 min 0.82 0.82 0.93 0.93 0.83 0.83

ω

5 min

Mean 0.04 0.05 0.17 0.01 – –

Ave. var 0.02 0.01 0.01 0.00 – –

10 min

Mean 0.07 0.07 0.23 0.01 – –

Ave. var 0.03 0.01 0.03 0.00 – –

Two-factor SV model

Mean

MSE impr.

5 min 0.91 0.91 0.96 0.96 0.88 1.13

10 min 0.87 0.87 0.94 0.94 0.85 1.19

ω

5 min

Mean 0.03 0.02 0.14 0.11 – –

Ave. var 0.01 0.00 0.01 0.00 – –

10 min

Mean 0.06 0.06 0.19 0.18 – –

Ave. var 0.01 0.00 0.03 0.02 – –

Jump diffusion

Mean

MSE impr.

5 min 0.99 0.99 0.99 0.99 0.89 0.94

10 min 0.98 0.98 0.99 0.99 0.87 0.89

ω

5 min

Mean 0.01 0.01 0.04 0.03 – –

Ave. var 0.00 0.00 0.00 0.01 – –

(continues)
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Table 2. (continued)

10 min

Mean 0.01 0.01 0.08 0.07 – –

Ave. var 0.00 0.00 0.02 0.01 – –

Note: The design is detailed in Section 5. The data generating processes appear in equations (5.1)
through (5.4). More specifically, they are, respectively, referred to as a GARCH diffusion, two-factor
SV diffusion, and Jump diffusion. For the former two, the entries pertain to QV, with (ω∗

ut)
−1 appearing

in equation (4.2), (ω∗
vt)

−1 appearing in equation (4.1) and (ωhc
t )−1 taken from equation (4.8), whereas

(ωunc)−1 is taken from equation (4.6). For the data generating process involving jumps the entries
pertain to BPV and the weighting schemes appear in Table 1. The entries in the top panels are the
ratios of MSE of the various estimators vis-à-vis the MSE of a standard RV/BPV estimator using the
same frequency data. The lower panels report statistics of the weighting schemes (inverse to be more
precise).

Table 3. MSE improvements and weights for realized betas

ω∗
ut ω∗

vt ωhc ωunc ωrm

Panel A: MSE improvements

DGPs Sampling

1 1 min 0.82 0.75 0.80 0.80 0.83

5 min 0.74 0.71 0.74 0.75 0.82

2 1 min 0.82 0.75 0.80 0.79 0.80

5 min 0.77 0.71 0.75 0.76 0.81

3 1 min 0.81 0.75 0.80 0.80 0.83

5 min 0.80 0.72 0.75 0.75 0.82

Panel B: Mean weighting schemes

1 1 min 0.16 0.11 0.12 0.13 –

5 min 0.21 0.13 0.15 0.15 –

2 1 min 0.17 0.11 0.11 0.12 –

5 min 0.20 0.13 0.14 0.15 –

3 1 min 0.18 0.10 0.11 0.11 –

5 min 0.20 0.13 0.14 0.15 –

Note: The design detailed in Section 5 pertains to CAPM betas as in equation (3.21) with the market
return process according to equation (5.2) with instantaneous volatility dynamics appearing in (5.4).
The betas follow an Ornstein–Uhlenbeck process as in equation (5.6). We consider three DGPs. In
particular, we take for DGP1 κ = 2, μ = 1.0, with σb = 3, for DGP2 κ = 2, μ = 0.10 and σb = 0.03,
for DGP3 κ = 1, μ = 1.0 and σb = 0.03. The weighting schemes are those appearing in Table 2. All
entries pertain to 1- and 5-min sampling schemes with sample size T = 500. The entries are the ratios
of MSE of the various estimator vis-à-vis the MSE of a standard realized beta. In Panel B, we report
the mean of the weights.
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better (jump-diffusion). The other weighting schemes do not perform very well in
comparison to the optimal and the RiskMetrics one.

Finally, we turn to Table 3 where we report the results pertaining to realized
betas. The entries are the ratios of MSE of the various estimators vis-à-vis the
MSE of a standard realized beta and the mean of the weights. The gains in terms of
MSE improvements are much more substantial this time compared to the volatility
examples—particularly the two-factor SV and jump diffusion cases. Starting with
the 5-min sampling we see gains of about 25% for the first DGP and 20%when we
look at the high volatility of beta innovations in the third DGP. Not surprisingly,
we note from the second DGP that the level of beta has very little impact. Among
the weighting schemes we note that ω∗

vt appears to be consistently the best, with
only small differences between ω∗

ut,ω
hc
t , and ωunc. It is interesting to note that even

at the 1-min sampling scheme we still see gains that are substantial. The mean of
the weights are as high as 20%, as reported in Panel B of the table, for the 5-min
sampling scheme.

6. CONCLUSIONS

We revisited the widely used in-sample asymptotic analysis extensively used in
the RV literature and showed that there are gains to be made in estimating current
realized volatility from considering realizations in prior periods. Themain focus on
the paper was establishing the theory and showing its potential importance. There
are still many implications of our results for hypothesis testing which were not
covered in our paper. In particular, discriminating between jumps-diffusions and
diffusions, that is, testing for the presence of jumps is an important example. Since
such tests rely on various data-driven high frequency statistics, including higher
order moment-based ones, there is scope for improving their sampling properties
with our approach. We leave this topic for future research.

APPENDIX

A. A Comparison of Two Estimators

The unbiased estimator defined in equation (2.20) can be rewritten as,

σ̂
[4]
n,t = m

n

m/n∑
t=1

σ̂ 4
n,t,[i]

1+2/m
= n

m+2

n/m∑
i=1

[
j=mi∑

j=m(i−1)+1

X2t,j]
2. (A.1)

The above estimator can be compared with the naive estimator appearing in (2.21). To do

so we need to derive the conditional variance of σ̂
[4]
n,t . Note that we can rewrite the estimator

(2.20) as:

σ̂
[4]
n,t = 1

(m+2)n

∑
i

σ 4
n,t,[i][
∑
j

(
Xt,j

σn,t,[i]/
√
n
)2]2 = 1

(m+2)n

∑
i

σ 4
n,t,[i][χ

2
i (m)]2.
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Since E
[
[χ2
i (m)]p/2

]
= 2p/2
((p + m)/2)/
(m/2), therefore E[χ2

i (m)]4 = 24
(4 +
m/2)/
(m/2) = 24(3+m/2)(2+m/2)(1+m/2)m/2. Consequently, E[χ2

i (m)]4 = (m+
6)(m + 4)(m + 2)m. Along similar lines, one has E[χ2

i (m)]2 = m(m + 2). Therefore,

Var[χ2
i (m)2] = (m+6)(m+4)(m+2)m−m2(m+2)2 = 8m(m+2)(m+3). This yields:

Varσ [σ̂
[4]
n,t ] = 1

n2(m+2)2

∑
i

σ 8
n,t,[i]8m(m+2)(m+3) = 8m(m+3)

n2(m+2)

∑
i

σ 8
n,t,[i].

We now turn our attention to the naive estimator written as in equation (2.21):

σ̃
[4]
n,t = 1

3n

∑
i

σ 4
n,t,[i]

∑
j

(
Xt,j

σn,t,[i]
)4 = 1

3n

∑
i

σ 4
n,t,[i]

∑
j

(χ2(1))2.

Therefore, Var(σ̃ [4]
n,t ) = 1

9n2
∑

i σ
8
n,t,[i]Var((χ

2(1))2) × m = 32m
3n2
∑

i σ
8
n,t,[i]. From these

results we can deduce that there will be efficiency improvements provided that (m+3)/(m+
2) < 4/3, or 3m+9 < 4m+8, that is m> 1.

To conclude, we compute the unconditional variance of σ̂ 4
n,t. First, note that

σ̂ 4
n,t =

1

n(m+2)

m/n∑
i=1

σ 4
n,t,[i]ε

2
i (A.2)

with ε2i ∼ χ2(m). Therefore, the unconditional variance of σ̂ 4
n,t can be written as:

Var[σ̂ 4
n,t] = n2

n2(n+2/n)2

m/n∑
i=1

Var[σ 4
n,t,[i]](E[ε

2
i ])

2 +2(Var[ε2i ])E[σ
8
n,t,[i]]. (A.3)

Given the definition of ε2i , we have that Eε2i = 1+ 2/m, and Var[ε2i ] = 8m(m+ 2)(m+
3)/m4. Therefore,

Var[σ̂ 4
n,t] = m2

n2

m/n∑
i=1

Var[σ 4
n,t,[i]]+2

8m(m+3)

n2(m+2)

m/n∑
i=1

E[σ 8
n,t,[i]]

= Var[σ 4
n,t]+2

8m(m+3)

n2(m+2)

m/n∑
i=1

E[σ 8
n,t,[i]] (A.4)

and hence, ψ = ψ0/

[
1+ 16

n2
m(m+3)
m+2

∑m/n
i=1 E[σ

8
n,t,[i]]

Var(σ 4)

]
.
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