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The leverage effect has become an extensively studied phenomenon that describes the (usually) negative relation between stock returns
and their volatility. Although this characteristic of stock returns is well acknowledged, most studies of the phenomenon are based on
cross-sectional calibration with parametric models. On the statistical side, most previous works are conducted over daily or longer return
horizons, and few of them have carefully studied its estimation, especially with high-frequency data. However, estimation of the leverage
effect is important because sensible inference is possible only when the leverage effect is estimated reliably. In this article, we provide
nonparametric estimation for a class of stochastic measures of leverage effect. To construct estimators with good statistical properties, we
introduce a new stochastic leverage effect parameter. The estimators and their statistical properties are provided in cases both with and
without microstructure noise, under the stochastic volatility model. In asymptotics, the consistency and limiting distribution of the estimators
are derived and corroborated by simulation results. For consistency, a previously unknown bias correction factor is added to the estimators.
Applications of the estimators are also explored. This estimator provides the opportunity to study high-frequency regression, which leads to
the prediction of volatility using not only previous volatility but also the leverage effect. The estimator also reveals a theoretical connection
between skewness and the leverage effect, which further leads to the prediction of skewness. Furthermore, adopting the ideas similar to the
estimation of the leverage effect, it is easy to extend the methods to study other important aspects of stock returns, such as volatility of
volatility.

KEY WORDS: Consistency; Discrete observation; Efficiency; Itô process; Microstructure noise; Realized volatility; Skewness; Stable
convergence.

1. INTRODUCTION

The leverage effect has become an extensively studied empir-
ical phenomenon in the form of the (usually negative) correla-
tion between (current) returns and (current and future) volatil-
ity (Engle and Ng 1993; Zakoian 1994; Wu and Xiao 2002,
etc.). It is one of the many stylized facts of the security re-
turn distribution, along with the well-known fat tails, skew-
ness, excess kurtosis, and heteroscedasticity. The discovery of
leverage effect closely relates to the study of stochastic volatil-
ity. Although for very low frequency data, such as monthly or
yearly asset returns, the assumption of homogeneity seems not
to be entirely unreasonable (Mandelbrot 1963; Fama 1965; Of-
ficer 1973), the increasing frequency of observed data in stud-
ies suggests heterogeneity in volatility, in other words, time-
varying volatility (Engle 1982; Bollerslev 1986; Andersen and
Bollerslev 1998; Engle 2000; Andersen et al. 2001). This finding
has had profound implications in both the theory and practice
of financial economics and econometrics. It has inspired new
model building, such as the emergence of ARCH models and the
later stochastic volatility models. Modeling volatility as a sepa-
rate process allows the study of its relation with the associated re-
turn process, which leads to the discovery of asymmetric volatil-
ity. Time varying volatility is also of substantial importance in
modeling for options pricing, as in Hull and White (1987), Stein
and Stein (1991), Heston (1993), and Ball and Roma (1994).

Black (1976) and Christie (1982) were among the first to
document the volatility asymmetry, and gave an explanation
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based on the “leverage effect” hypothesis: A drop in the value
of the stock (negative return) increases the financial leverage
(debt-to-equity ratio), which makes the stock riskier and in-
creases its volatility. Since then, leverage effect has been taken
to be synonymous with asymmetric volatility. Financial lever-
age itself, however, seems not enough to explain either the large
magnitude of the effect of declines in current price on future
volatility (Figlewski and Wang 2001), or the phenomenon that
the asymmetry of market index returns is generally larger than
that of individual stocks (Kim and Kon 1994; Tauchen and
Zhang 1996; Andersen et al. 2001). In another point of view,
the asymmetric nature of volatility to return shocks simply re-
flects time-varying risk premium (Pindyck 1984; French et al.
1987; Campbell and Hentschel 1991). This explanation is of-
ten referred to as the “volatility feedback effect”: If volatility is
priced, an anticipated increase in volatility raises the required
return on equity, leading to an immediate stock price decline.

Many later works either compare the two effects or seek
to argue that they can both be at work (Nelson 1991; Engle
and Ng 1993; Glosten et al. 1993; Bekaert and Wu 1997; Wu
2001; Hasanhodzic and Lo 2011). While there is little agreement
concerning the fundamental causes behind the leverage effect,
that is not the focus of this article.

As most early studies are conducted over daily or longer
time horizons, it is worthwhile to examine this phenomenon
with high frequency data, which provides the opportunity to
explore more closely the relation between stock price and its own
volatility. Some recent work has demonstrated that the volatility
asymmetry still appears over fairly small time intervals. But
some new aspects are added as both very good and bad news
increase volatility, with the latter having a more severe effect
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(Barndorff-Nielsen et al. 2008b; Chen and Ghysels 2011). Also,
the leverage effect decays exponentially as the time lag between
return and volatility increases. In the literature, the peak effect
is obtained at the instantaneous correlation between return and
volatility (Bouchaud et al. 2001; Bollerslev et al. 2006).1 This
corresponds to our definition of the leverage effect as being
instantaneous. For further discussion of this effect; see the end
of Section 2.2.

Although many papers deal with the source or new properties
of the leverage effect, few have tried to rigorously estimate it,
which is critical for supporting any conclusive claims. Simple
correlation estimators may be applied to the estimation of the
leverage effect with caution. Those estimators lose consistency
with high-frequency data (Aı̈t-Sahalia et al. 2013). It is the
purpose of this article to construct nonparametric estimators
of leverage effects in the stochastic volatility model. To study
the estimation, we define a new leverage effect parameter as
the covariance (a covariation, to be precise) between the stock
return and a function of its volatility. To construct the estimator
for the new parameter, we first study the classical equi-distant
sampling case without microstructure noise as the foundation
for the study (later in the article) of more complicated cases,
such as the case with microstructure noise. As is emphasized
in several studies (Mykland and Zhang 2006; Barndorff-Nielsen
et al. 2008a; Renault and Werker 2011), it is more natural to work
with irregularly spaced data in practice. Based on the results
in equidistant cases, the extension of estimators to irregularly
spaced data can be constructed in a similar way, with some
adaptations.

Even with equidistant observations without microstructure
noise, we discover a previously unknown bias correction factor.
This bias correction factor is critical to obtaining consistency.
The factor may have a substantial impact on the estimated value
since it functions as a magnifier, especially when estimates are
close to zero. The bias correction factor may play an even more
important role in the estimation, when the situation becomes
more complicated as market microstructure noise is present. In-
deed, in the case with microstructure noise, the bias correction
factor is found to be bigger than that in the case with uncontam-
inated continuous price paths.

Statistical properties such as consistency and asymptotic dis-
tribution are carefully studied in different settings. The theo-
retical findings of these statistical properties are corroborated
by the simulation results. These asymptotic properties have ap-
plications to hypothesis testing (e.g., for model checking) and
constructing confidence intervals.

There are many ways to apply the estimators of the leverage
effect depending on the practical purpose. One way to explore
the potential application of the estimators is embedded in the
definition of the stochastic parameter of the leverage effect. Ac-
cording to the definition, one specific choice of the function
imposed on volatility gives rise to a unique relation between the
leverage effect and skewness, which will help to estimate skew-
ness consistently. This relation may introduce further applica-
tions in hedging strategy or new product design; see Neuberger

1The relative change between time lag and lagged leverage effect should be
maintained, even if the consistency may be an concern, since the consistency
can be achieved by a bias correction multiplier from our study shown later.

(2011). Another carefully chosen function of volatility can sim-
plify the estimation of high-frequency regression coefficients.
This leads to an interesting discovery in volatility prediction.
The empirical study with Microsoft stock data (2008–2011)
shows strong predictive power of a term containing the leverage
effect on the next period volatility. The power is comparable to
that of current period volatility which is believed to be the most
significant term in volatility prediction.

The main results of this article will be given in Sections 2 and
4. The data-generating mechanism and model setting can be
found in Section 2.1. The (stochastic) parameter of the leverage
effect is defined in Section 2.2. Based on this, for the case
without microstructure noise, the estimator and limit theorems
can be found in Sections 2.3 and 2.4. Simulation results are
provided in Section 3. Results that corroborate the theorems can
be found in Section 3.1. Section 4 studies the case where market
microstructure noise is present in the data. The estimator and
limit theorems for this case are provided in Sections 4.1 and
4.2. Simulation results for this case are provided in Section 5.
The extension to irregularly spaced data can be found in Section
6. The relation between leverage effect and skewness is shown
in Section 7. An application of the leverage effect in high-
frequency regression is implemented in Section 8. The details
of empirical studies are in Section 9. The conclusion is provided
in Section 10. Proofs are in the Appendix.

2. MAIN RESULTS

2.1 Data-Generating Mechanism

In general, we shall work with a broad class of continuous
semimartingales, namely Itô processes. In econometrics and
financial mathematics studies, this is the most popular model for
log price processes due to nonarbitrage considerations (Delbaen
and Schachermayer 1994, 1995, 1998).

Definition 1. A process Xt is called an Itô process provided
it satisfies

dXt = µt dt + σt dWt ,X0 = x0, (1)

where µt and σt are adapted càdlàg locally bounded random
processes, and Wt is a Wiener process. The underlying filtration
will be called (Ft ). The probability measure will be called P.

The integrated variance process is given as

〈X,X〉t =
∫ t

0
σ 2

u du. (2)

The process (2) is also known as the quadratic variation of X.
We shall sometimes also use the term “integrated volatility.”

We further assume that σt is also an Itô process (see the next
section for discussion of this)

dσt = at dt + ft dWt + gt dBt , (3)

where Bt is another Wiener process independent of Wt , and at ,
ft , and gt are all assumed to be Itô processes.

Clearly, in this stochastic volatility (SV) model, Xt corre-
sponds to the log price process and σt is its own volatility pro-
cess. Both processes have a common driving Wiener process
Wt , which accommodates the leverage effect.
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To summarize the technical requirements, we specify exact
conditions as follows:

Assumption 1. The system satisfies (1) and (3), where X and
σ are continuous processes (the continuous modification). We
assume that all the coefficients ft , gt , at , µt are locally bounded
in absolute value. We also assume that σt is locally bounded
away from zero.2

2.2 The Parameter: A Definition of Leverage Effect

As we have seen in the Introduction, the literature offers var-
ious perspectives on how to specify a parameter for this effect;
see also the discussion below in this section. We concentrate on
the estimation of the following stochastic parameter:

Definition 2. The stochastic parameter of the contempora-
neous leverage effect is defined as the quadratic covariation
between Xt and F (σ 2

t )

〈X,F (σ 2)〉T =
∫ T

0
2F ′(σ 2

t

)
σ 2

t ft dt, (4)

where we suppose that

Assumption 2. x $→ F (x) is twice continuously differen-
tiable, monotone on (0,∞).

The incorporation of the function F allows more flexibil-
ity and a wider range of applications when different forms of
volatility are of interest, such as log-volatility processes which
tend to be more stationary over time as implied by many empir-
ical studies. The actual choice of F will depend on the practical
purpose and empirical evidence. The inclusion of this func-
tion can also help reveal some interesting connections between
leverage effects and other statistics. Further interpretation of this
specification will be seen in Sections 7 and 8.

We stop here for a moment to reflect on the definitions. First
of all, we work with continuous processes. The interface with
jump processes remains to be explored. The latter permits ad-
ditional concepts of asymmetry, in particular the semivariance
of Barndorff-Nielsen, Kinnebrock, and Shephard (2008b). The
connection between semivariance and the leverage effect (and
skewness, see Section 7) in this article is an important question
which we leave for future investigation. This is necessarily a
complex matter, as it involves a different model of the price
process (continuous paths vs. jumps).

Once one works with continuous paths, the assumption that
the leverage effect is instantaneous is both natural in a semi-
martingale model for σt , and is empirically supported by the
finding in Bollerslev, Litvinova, and Tauchen (2006), where it
was shown that the connection between return and volatility is
most significant when the time lag is 0. This does not contra-
dict the fact that the effect can appear at a greater time lag, as
documented by Chen and Ghysels (2011).

As far as the Itô process (continuous semimartingale) assump-
tion is concerned, this assumption appears frequently both on

2To get from local boundedness to results that cover the whole time interval, use
arguments as in chap. 2.4.5 (p. 160-161) of Mykland and Zhang (2012). |σt | is
locally bounded from above by continuity. The assumptions guarantee that the
equivalent martingale measure for X exists locally. This is used in the proofs;
see the beginning of Section A.1.

the options pricing side (Hull and White 1987; Stein and Stein
1991; Heston 1993; Ball and Roma 1994), and on the econ-
metric side (Barndorff-Nielsen and Shephard 2002; Barndorff-
Nielsen et al. 2006; Jacod 2008; Barndorff-Nielsen and Veraart
2009, Aı̈t-Shalia and Jacod 2009; Mykland and Zhang 2011b).
A parallel development can be carried out under assumptions of
fractional Brownian motion (Comte and Renault 1998; Gloter
and Hoffmann 2004; Brockwell and Marquardt 2005; Nualart
2006; Comte et al. 2010).

The above is, of course, a set of theoretical considerations.
We finally appeal to the results in Section 9 to show that our
current definition of volatility asymmetry does find something
empirically relevant; we substantially improve the prediction of
next-period volatility using the current-period leverage effect.

2.3 Estimation in the Absence of Microstructure Noise

As the first step, we shall work with the equally spaced
case for the process (Xt ); specifically it is observed every
"tn,i+1 = "t = T

n
units of time, at times 0 = tn,0 < tn,1 <

tn,2 < · · · < tn,n = T . Furthermore, we divide observed values
into Kn blocks, with block size Mn = [c

√
n] (except possi-

bly for the first and last block, which does not matter for the
asymptotics), for some constant c. The boundary points are
on the grid H = {0 < τn,1 < τn,2 < · · · < τn,Kn−1 ≤ T }, where
Kn = [ n

Mn
].

Define3

̂〈X,F (σ 2)〉T = 2
Kn−2∑

i=0

(
Xτn,i+1 − Xτn,i

)(
F

(
σ̂ 2

τn,i+1

)
− F

(
σ̂ 2

τn,i

))
,

(5)

and

σ̂ 2
τn,i

= 1
Mn × "t

∑

tn,j ∈(τn,i ,τn,i+1]

(
Xtn,j+1 − Xtn,j

)2
.

The factor 2 in the first part of Equation (5) might look unnat-
ural to be included. However, it is crucial for the consistency of
the estimator (see Remark 3 for a discussion of this previously
unknown factor).

Theorem 1. Under Assumptions 1–2, as n → ∞ and T fixed,

n1/4( ̂〈X,F (σ 2)〉T − 〈X,F (σ 2)〉T )
L→Z

(
16
c

∫ T

0

(
F ′(σ 2

t

))2
σ 6

t dt

+ cT

∫ T

0

(
F ′(σ 2

t

))2
σ 4

t

(
44
3

f 2
t + 32

3
g2

t

)
dt

)1/2

, (6)

stably in law,4 where Z is a standard normal random variable
and independent of FT .

3One can also consider a kernel estimator of the spot volatility in (5), by applying
the methods in Kristensen (2010), with some adaptation. A detailed study is
beyond the scope of this article.
4Suppose that all relevant processes (Xt , σt , etc.) are adapted to the filtration
(Ft ). Let Zn be a sequence of Ft -measurable random variables. We say that
Zn converges stably in law to Z as n → ∞ if Z is measurable with respect to
an extension of FT so that for all A ∈ FT and for all bounded continuous g,
EIAg(Zn) → EIAg(Z) as n → ∞. The same definition applies to triangular
arrays.
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Another natural estimator analogous to ̂〈X,F (σ 2)〉T is

˜〈X,F (σ 2)〉T = 2
Kn−2∑

i=0

(
Xτn,i+1 − Xτn,i

)(
F

(
σ̃ 2

τn,i+1

)
− F

(
σ̃ 2

τn,i

))
,

σ̃ 2
τn,i

= 1
(Mn − 1) × "t

∑

tn,j ∈(τn,i ,τn,i+1]

×
(
"Xtn,j+1 − "Xτn,i+1

)2
, (7)

and

"Xτn,i+1 = 1
Mn

∑

tn,j ∈(τn,i ,τn,i+1]

"Xtn,j+1 = 1
Mn

(
Xτn,i+1 − Xτn,i

)
.

Noticing the relation between the two estimators when

F (x) = x: ˜〈X, σ 2〉T = Mn

Mn−1
̂〈X, σ 2〉 −

∑
i

2
Mn(Mn−1)"t

"Xτn,i+1

("Xτn,i+2 )2 +
∑

i
2

Mn(Mn−1)"t
("Xτn,i+1 )3, the following theorem

can be easily derived:

Theorem 2. Under Assumptions 1–2 as in Theorem 1, as
n → ∞ and T fixed,

n1/4( ˜〈X,F (σ 2)〉T − 〈X,F (σ 2)〉T )
L→Z

(
16
c

∫ T

0

(
F ′(σ 2

t

))2
σ 6

t dt

+ cT

∫ T

0

(
F ′(σ 2

t

))2
σ 4

t

(
44
3

f 2
t + 32

3
g2

t

)
dt

)1/2

, (8)

stably in law,5 where Z is a standard normal random variable
and independent of FT .

Remark 1. From the limit theorems, it is not hard to see that
by properly choosing c, one can minimize the limit variance.
The optimal value is

c2 =
16

∫ T

0

(
F ′(σ 2

t

))2
σ 6

t dt

T
∫ T

0

(
F ′

(
σ 2

t

))2
σ 4

t

( 44
3 f 2

t + 32
3 g2

t

)
dt

. (9)

See Section 2.4 for an estimator6 of c.

Remark 2. The two estimators have the same asymptotic
properties. Even though the centered version gives slightly more
symmetric results, it does not behave very differently from the
noncentered version. In practice, the noncentered version can be
applied with less programming effort. Therefore, our later sim-
ulation mainly adopts the noncentered version of estimators.

Remark 3. The origin of the factor 2 in the estimator can be
found in the proof of Theorem 1. For intuition, however, we
give here a verbal explanation of the source of this adjustment
constant. Let us consider the case where F (x) = x. Since σ̂ 2

t is a
consistent estimator of σ 2

t , then the first multiplication (Xτi+1 −
Xτi

)(σ̂ 2
τi+1

− σ 2
τi

) already gives a consistent (though infeasible)
estimator of the leverage effect in the interval (τi , τi+1]. Then
one may expect the remainder term (Xτi+1 − Xτi

)(σ̂ 2
τi

− σ 2
τi

) to
have mean zero. However, since σ̂ 2

τi
employs data in the time

interval (τi , τi+1], as does (Xτi+1 − Xτi
), the product does not

5See Footnote 4.
6Here and in the continuation of Remark 1, we assume that the denominator in
(9) is nonzero.

converge to zero but to one half of the leverage effect. To see

why it is one half, note that each increment
"X2

tj

"t
term is roughly

an (inconsistent) estimator of σ 2
tj

. Thus the cross product gives an
average of leverage effects over (τi , t1], (τi , t2], . . . , (τi , τi+1]. If
〈X, σ 2〉′t is considered to be constant over (τi , τi+1], that average
of those leverage effects will give a value of about half of the
leverage effect over the entire interval. Hence, we have reduced
the estimation of leverage effect by half. An adjustment factor
of 2 therefore needs to be added to achieve consistency.

2.4 Estimation of Asymptotic Variance

Let

G1
n = 2n

1
2

Kn−2∑

i=0

(Xτn,i+1 − Xτn,i
)2(F

(
σ̂ 2

τn,i+1

)
− F

(
σ̂ 2

τn,i

))2
,

and (10)

G2
n = 2n

1
2 Mn"t

Kn−2∑

i=0

σ̂ 2
τn,i

(
F

(
σ̂ 2

τn,i+1

)
− F

(
σ̂ 2

τn,i

))2
.

By the same methods as in the proof of Theorem 1, we have
the following convergences in probability:

G1
n

p→ 8
c

∫ T

0

(
F ′(σ 2

t

))2
σ 6

t dt

+ cT

∫ T

0

(
F ′(σ 2

t

))2
σ 4

t

(
28
3

f 2
t + 16

3
g2

t

)
dt, (11)

G2
n

p→ 8
c

∫ T

0

(
F ′(σ 2

t

))2
σ 6

t dt

+ cT

∫ T

0

(
F ′(σ 2

t

))2
σ 4

t

16
3

(
f 2

t + g2
t

)
dt, (12)

and

G1
n + G2

n

p→ 16
c

∫ T

0

(
F ′(σ 2

t

))2
σ 6

t dt

+ cT

∫ T

0

(
F ′(σ 2

t

))2
σ 4

t

(
44
3

f 2
t + 32

3
g2

t

)
dt.

(13)

Equation (13) gives the estimation of the asymptotic vari-
ance. With this estimation, a feasible version of the central limit
distribution can be derived.

Theorem 3. Under Assumptions 1–2, as n → ∞ and T fixed,

n1/4( ̂〈X,F (σ 2)〉T − 〈X,F (σ 2)〉T )
√

G1
n + G2

n

L→Z1,

and (14)

n1/4( ˜〈X,F (σ 2)〉T − 〈X,F (σ 2)〉T )
√

G1
n + G2

n

L→Z1

stably in law,7 where Z1 is a standard normal random variable
and independent of FT .

Notice that the limiting distribution Z1 is the same in both
limits. In other words, the difference between the two statistics

7See Footnote 4.
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Table 1. The summary statistics do exhibit the target normality

MSE Mean Median Q1 Q3

n = 390, T = 1/250 infeasible 1.097112 −0.02108 −0.005707 −0.676 0.6496
n = 390, T = 1/250 feasible 1.051725 0.006831 −0.004835 −0.754 0.7399
n = 23400, T = 1/250 infeasible 1.009285 −0.006430 0.003727 −0.6982 0.6796
n = 23400, T = 1/250 feasible 1.002125 0.002964 0.004267 −0.6964 0.6917
n → ∞, fixed T (asymptotic value) 1 0 0 −0.674 0.674

NOTE: This corroborates the theorems and shows that the asymptotics can predict small sample behavior. For sample size 390, both the mean and median are very close to 0. The MSE
is close to 1 and the quartiles are close to the theoretical values from N(0, 1). As sample size increases, the MSE decreases further closer to 1.

converges to zero in probability. With this feasible CLT, one can
conduct hypothesis testing and construct confidence interval for
the leverage effect parameter.

Remark 1 (continued). The result (13) opens paths to es-
timating the tuning parameter c in (9). We here outline two
approaches.

Method 1: The conceptually simplest possibility is to pick
c = arg min{G1

n + G2
n} over a suitable grid of c’s. If the grid

is nested and becomes dense as n → ∞, this automatically
provides a consistent estimator of c.

Method 2: Since Method 1 is computationally heavy, we
here also propose an alternative two-step method. Fix an ini-
tial value c0, and compute (G1

n + G2
n)(c0). On the other hand,

we can reduce estimation of γ 2 =
∫ T

0 (F ′(σ 2
t ))2σ 6

t dt to the lo-
cal estimation of volatility by the methods in Section 4.1 in
Mykland and Zhang (2009). Call this latter estimate γ̂ 2. We thus
obtain that c−1

0 (G1
n + G2

n)(c0) − 16γ̂ 2/c2
0 consistently estimates

T
∫ T

0 (F ′(σ 2
t ))2σ 4

t ( 44
3 f 2

t + 32
3 g2

t ) dt . A consistent estimate of c2

is thus given from (9) as

ĉ2 = 16γ̂ 2 (
c−1

0

(
G1

n + G2
n

)
(c0) − 16γ̂ 2/c2

0

)−1
.

The two methods can be used together, with the second provid-
ing a starting point for seaching for a minimum in Method 1.

3. SIMULATION RESULTS

All simulation results are based on 10,000 sample paths while
varying the sample size n, function F, and optimal choice of
c (path dependent). In the simulation, the properties of the es-
timator are studied with the Heston model (Heston 1993). To
examine the theoretical limit distribution, the distribution of the
statistics in Theorem 1

n1/4( ̂〈X,F (σ 2)〉T − 〈X,F (σ 2)〉T )
( 16

cT

∫ T

0 F ′
(
σ 2

t

)2
σ 6

t dt + c
∫ T

0

(
F ′

(
σ 2

t

))2
σ 4

t

( 44
3 f 2

t + 32
3 g2

t

)
dt

)1/2 ,

and the statistics in Theorem 3,

n1/4( ̂〈X,F (σ 2)〉T − 〈X,F (σ 2)〉T )
√

G1
n + G2

n

and

n1/4( ˜〈X,F (σ 2)〉T − 〈X,F (σ 2)〉T )
√

G1
n + G2

n

,

are studied. So if the asymptotics correctly predict small sample
behavior, the distributions should be close to the standard normal
distribution.

The Heston model used in the simulation is of the form:

dXt = σt dWt ,

dσ 2
t = κ

(
θ − σ 2

t

)
dt + γ σt (ρ dWt +

√
1 − ρ2 dBt ),

where Wt ⊥⊥ Bt . (15)

3.1 Normality Demonstration

In the simulation, the true log price is simulated from the He-
ston model with broadly realistic parameter values: κ = 5, θ =
0.04, γ = 0.5, ρ = −

√
0.5 over 1 trading day. Two different

sampling frequencies are studied to examine the small sample
behavior. The first is when the data are observed at 1-min fre-
quency, which corresponds to sample size 390. The second is
when the data are observed at every second, which corresponds
to sample size 23,400. The results are given in Table 1.

4. ESTIMATION WITH MICROSTRUCTURE NOISE

It is well known that markets are not so ideal that log price pro-
cesses can be simply represented by pure semimartingales. This
has long been thought about as “microstructure” see, e.g., Roll
(1984), O’Hara (1995), Harris (1990), and Hasbrouck (1996).
In the context of high-frequency data, such microstructure was
originally observed through the so-called signature plot (intro-
duced by Andersen et al. (2000); see also the discussion in
Mykland and Zhang (2005)). This led researchers to investigate
a model where the efficient price is latent, and one actually
observes

Yt = Xt + εt . (16)

Several approaches8 seek to deal with microstructure noise
while estimating integrated volatility, and they shed light on how
to proceed in the estimation of leverage effects in the similar
situation. Among these approaches, we have focused on preav-
eraging. The preaveraging method (Jacod et al. 2009; Podolskij
and Vetter 2009a; Mykland and Zhang 2011a) provides a plausi-
ble way to solve the problem with microstructure. Therefore, all
of the following discussion will be in the framework of preav-
eraging and the blocking method will be adjusted as follows:

8Such as Zhang, Mykland, and Aı̈t-Sahalia (2005), Zhang (2006), Barndorff-
Nielsen et al. (2008a), Reiss (2010), and Xiu (2010), as well as the preaveraging
papers cited in the text.
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The contaminated log price process (Yt ) is observed every
"tn,i = T

n
units of time, at times 0 = tn,0 < tn,1 < tn,2 < · · · <

tn,n = T .

Assumption 3.

Yt = Xt + εt , where εt ’s are iid. N (0, a2) and
εt ⊥⊥ the W and B processes, for all t . (17)

We also assume that εt ’s have finite fourth moment, and are
independent of both return and volatility processes.

We can also relax these assumptions; see the development in
Mykland and Zhang (2011a).

Here two nested levels of blocks will be required. The first
level of blocks defines the range of preaveraging and the sec-
ond one implements a blocking idea similar to that in the case
without noise in Section 2.3.

Blocks are defined on a much less dense grid of τn,i , also
spanning [0, T ], so that

block # i = {tn,j : τn,i ≤ tn,j < τn,i+1} (18)

(the last block, however, includes T). We define the block size
by

Mn,i = #{j : τn,i ≤ tn,j < τn,i+1}. (19)

In principle, the block size Mn,i can vary across the trading
period [0, T ], but for this development we take Mn,i = Mn; it
depends on the sample size n, but not on the block index i.

We then use as an estimated value of the efficient price in the
time period [τn,i , τn,i+1):

X̂τn,i
= 1

Mn

∑

tn,j ∈[τn,i ,τn,i+1)

Ytn,j
.

Treating the estimated efficient price as a new data frame, we
proceed as in Section 2.3 but with Xt replaced by X̂t , n by n′ =
n/Mn (up to rounding), and tn,i by τn,i . Furthermore, we divide
X̂t values into Kn blocks, with block size L = Ln = [c

√
n′]

(except possibly for the first and last block, which does not
matter for the asymptotics), for some constant c. The boundary
points are on the grid G = {0 < λn,1 < λn,2 < · · · < λn,Kn−1 ≤
T } ⊂ H.

4.1 The Case With Microstructure Noise

In the case with microstructure noise, the data blocking
mechanism will be similar to that just stated, but less compli-
cated where M = Mn = [c1

√
n], τn,i = iMn

T
n

, and L = Ln =
[ cn1/4

√
c1

]. The interval between successive observations is now
"t = "tn = tn,j+1 − tn,j = T/n.

Define

̂〈X,F (σ 2)〉T = 3
Kn−2∑

i=0

(
X̂λn,i+1 − X̂λn,i

)(
F

(
σ̂ 2

λn,i+1

)
− F

(
σ̂ 2

λn,i

))
,

X̂τn,i
= 1

M

∑

tn,j ∈[τn,i ,τn,i+1)

Ytn,j
, (20)

and

σ̂ 2
λn,i

= 1
L × M × "t

∑

τn,j+1∈(λn,i ,λn,i+1]

(
X̂τn,j+1 − X̂τn,j

)2
.

Note that the factor 2 in the previous proposed estimator in
Equation (5) is now changed to 3 instead. This change is due
to the preaveraging method we adopted first to asymptotically
eliminate the impact of noise on the estimation. The change is
consistent with the adjustment to the realized volatility estimated
by preaveraging; see Jacod et al. (2009).

Theorem 4. Under Assumptions 1–3, as n → ∞ and T fixed,

n1/8( ̂〈X,F (σ 2)〉T − 〈X,F (σ 2)〉T )

L→Z



c
√

c1T

∫ T

0

(
F ′(σ 2

t

))2
σ 4

t

(
44
3

f 2
t + 32

3
g2

t

)
dt

+ 16
√

c1

c

∫ T

0

(
F ′(σ 2

t

))2
σ 6

t dt

+ 96a2

cc
3/2
1 T

∫ T

0

(
F ′(σ 2

t

))2
σ 4

t dt

+ 216a4

cc
7/2
1 T 2

∫ T

0

(
F ′(σ 2

t

))2
σ 2

t dt




1/2

, (21)

stably in law,9 where Z is a standard normal random variable
and independent of FT .

The optimal c and c1 that minimize the asymptotic variance
are derived as follows:

c =

√
−C2 + 12AD + C

√
C2 + 12AD

9BD
, (22)

and

c1 =

√
C +

√
C2 + 12AD

2A
, (23)

where A = 16
∫ T

0 (F ′(σ 2
t ))2σ 6

t dt , B = T
∫ T

0 (F ′(σ 2
t ))2σ 4

t

( 44
3 f 2

t + 32
3 g2

t ) dt , C = 96a2

T

∫ T

0 (F ′(σ 2
t ))2σ 4

t dt , and D = 216a4

T 2∫ T

0 (F ′(σ 2
t ))2σ 2

t dt .
In practice, c and c1 can be estimated by minimizing G1

n + G2
n

defined in the next section, over a suitable grid of c’s and c1’s.
If the grid is nested and becomes dense as n → ∞, this auto-
matically provides a consistent estimator of c and c1.

4.2 Estimation of Asymptotic Variance

Let

G1
n = 9

2
n

1
4

Kn−2∑

i=0

(
X̂λn,i+1 − X̂λn,i

)2(
F

(
σ̂ 2

λn,i+1

)
− F

(
σ̂ 2

λn,i

))2
,

and (24)

G2
n = 9

2
n

1
4 LnMn"t

Kn−2∑

i=0

σ̂ 2
λn,i+1

(
F

(
σ̂ 2

λn,i+1

)
− F

(
σ̂ 2

λn,i+1

))2
.

9See Footnote 4.
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Table 2. Because of the much slower convergence rate, the simulation results are not as good as in the case without microstructure noise

MSE Mean Median Q1 Q3

n = 5 days, T = 1/50 infeasible 1.315581 −0.05502 −0.01236 −0.71910 0.66330
n = 5 days, T = 1/50 feasible 1.142911 0.02566 −0.02703 −0.79680 0.80940
n = 20 days, T = 2/25 infeasible 1.193074 −0.03032 −0.003359 −0.6793 0.6578
n = 20 days, T = 2/25 feasible 1.125859 0.02167 −0.05247 −0.77740 0.76390
n → ∞, fixed T (asymptotic value) 1 0 0 −0.674 0.674

NOTE: Even so, with reasonably large sample size, the mean and median are still close to 0. The MSE is not very far from 1, and the quartiles are reasonably close to the theoretical
values from the standard normal distribution.

By the same methods as in the proof of Theorem 1, we have the
following convergences in probability

G1
n

p→ 8
√

c1

c

∫ T

0

(
F ′(σ 2

t

))2
σ 6

t dt

+ c
√

c1

∫ T

0

(
F ′(σ 2

t

))2
σ 4

t

(
28
3

f 2
t + 16

3
g2

t

)
dt

+ 48a2

cc
3/2
1 T

∫ T

0

(
F ′(σ 2

t

))2
σ 4

t dt

+ 108a4

cc
7/2
1 T 2

∫ T

0

(
F ′(σ 2

t

))2
σ 2

t dt, (24)

G2
n

p→ 8
√

c1

cT

∫ T

0

(
F ′(σ 2

t

))2
σ 6

t dt

+ c
√

c1

∫ T

0

(
F ′(σ 2

t

))2
σ 4

t

16
3

(
f 2

t + g2
t

)
dt

+ 48a2

cc
3/2
1 T 2

∫ T

0

(
F ′(σ 2

t

))2
σ 4

t dt

+ 108a4

cc
7/2
1 T 3

∫ T

0

(
F ′(σ 2

t

))2
σ 2

t dt, (25)

and

G1
n + G2

n

p→ 16
√

c1

cT

∫ T

0

(
F ′(σ 2

t

))2
σ 6

t dt

+ c
√

c1

∫ T

0

(
F ′(σ 2

t

))2
σ 4

t

(
44
3

f 2
t + 32

3
g2

t

)
dt

+ 96a2

cc
3/2
1 T 2

∫ T

0

(
F ′(σ 2

t

))2
σ 4

t dt

+ 216a4

cc
7/2
1 T 3

∫ T

0

(
F ′(σ 2

t

))2
σ 2

t dt. (26)

Equation (27) gives the estimation of the asymptotic vari-
ance. With this estimation, a feasible version of the central limit
distribution can be derived.

Theorem 5. Under Assumptions 1–3, as n → ∞ and T fixed,

n1/8( ̂〈X,F (σ 2)〉T − 〈X,F (σ 2)〉T )
√

G1
n + G2

n

L→Z1, (28)

stably in law,10 where Z1 is a standard normal random variable
and independent of FT .

10See Footnote 4.

5. SIMULATION FOR THE CASE WITH
MICROSTRUCTURE NOISE

Similarly to the case without microstructure noise, the small
sample behavior of the asymptotic normality can be demon-
strated by simulating the statistics

n1/8( ̂〈X,F (σ 2)〉T − 〈X,F (σ 2)〉T )
√√√√√√√

16
√

c1

c

∫ T

0 (F ′(σ 2
t ))2σ 6

t dt + c
√

c1T
∫ T

0 (F ′(σ 2
t ))2

σ 4
t ( 44

3 f 2
t + 32

3 g2
t ) dt + 96a2

cc
3/2
1 T

∫ T

0 (F ′(σ 2
t ))2σ 4

t dt

+ 216a4

cc
7/2
1 T 2

∫ T

0 (F ′(σ 2
t ))2σ 2

t dt

and

n1/8( ̂〈X,F (σ 2)〉T − 〈X,F (σ 2)〉T )
√

G1
n + G2

n

.

The Heston model is once again adopted in the simulation.
The parameterization is the same with κ = 5, θ = 0.04, γ =
0.5, ρ = −

√
0.5. The true log-price process is latent. It is con-

taminated by market microstructure as in Equation (17). The
standard deviation of noise is set to be a = 0.0005. This is also
a realistic value in practice. Since the first step of preaveraging
consumes part of the data and reduces the sample size for the
second step of estimation, the choices of n are bigger than those
in the case without noise. The frequency is chosen as 1 sec,
which produces 23, 400 observations in each trading day. The
results corroborate the theorem and are demonstrated in Table 2.

Even though only the simulations with F (x) = x are pre-
sented, the results with other functions satisfying the condition
in definition (2) such as F (x) = log x have been investigated.
The results look very similar and the tables are omitted for the
reasons of space.

6. IRREGULARLY SPACED DATA

So far our analysis in cases both with and without microstruc-
ture noise has been based on measuring prices in regularly
spaced intervals. In some ways it is more natural to work with
prices measured in tick time and so it would be desirable to ex-
tend the above theory to cover irregularly spaced data. This
is emphasized by Zhang, Mykland, and Aı̈t-Sahalia (2005),
Barndorff-Nielsen et al. (2008a), and Renault and Werker (2011)
in their studies. We here use the framework from Barndorff-
Nielsen et al. (2008a).
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Assumption 4. The observation times (tn,i) satisfy the
condition

tn,i = G

(
i
T

n

)
=

∫ i T
n

0
G′(s) ds, i = 0, 1, . . . , n,

where G : [0, T ] → [0, T ] is a strictly increasing, twice differ-
entiable function with G(0) = 0, G(T ) = T . G′(s) is locally
bounded away from 0, and G′′ is bounded.

With the change of time under the Assumption 4, the stochas-
tic volatility model can be written as:

dZt = dX ◦ G(t) = µG(t)G
′(t) dt + σG(t)

√
G′(t) dWe

t ,

and (29)

dst = dσ ◦ G(t) = aG(t)G
′(t) dt + fG(t)

√
G′(t) dWe

t

+ gG(t)

√
G′(t) dBe

t ,

where We and Be are independent Wiener processes.

Proposition 1. The leverage effect in Definition 2 satisfies
〈X,F (σ 2)〉T = 〈Z,F (s2)〉T .

Proof:

〈Z,F (s2)〉T =
∫ T

0
F ′(s2)d〈s2, Z〉t

=
∫ T

0
F ′(σ 2

G(t)

)
2σ 2

G(t)fG(t)G
′(t) dt

=
∫ T

0
F ′(σ 2

G(t)

)
2σ 2

G(t)fG(t) dG(t)

=
∫ T

0
F ′(σ 2

v

)
2σ 2

v fv dv

= 〈X,F (σ 2)〉T .

With all index notation kept the same as in Section 2.3, the
estimator of 〈Z,F (s2)〉T can be constructed similar to Equa-
tion (5), with one adaptation:

̂〈Z,F (s2)〉T = 2
Kn−2∑

i=0

(X ◦ G((i + 1)Mn"t) − X ◦ G(iMn"t))

×
(
F

(
ŝ2

(i+1)Mn"t

)
− F

(
ŝ2
iMn"t

))

and (30)

ŝ2
iMn"t = 1

"τn,i+1

∑

tn,j+1 ∈
(iMn"t, (i + 1)Mn"t]

× (X ◦ G(tn,j+1) − X ◦ G(tn,j ))2.

The CLT, estimation of asymptotic variance, and feasible
CLT follow for the estimator ̂〈Z,F (s2〉T as in the equidistant
case without microstructure noise. The results for the case with
microstructure noise can be derived analogously. Considering
the contaminated process Y ◦ G(t) = X ◦ G(t) + ε ◦ G(t) =
Zt + ε ◦ G(t), with all index notation kept the same as in sec-
tion 4, the estimator of the leverage effect can be constructed as

follows:

̂〈Z,F (s2)〉T = 3
Kn−2∑

i=0

(
Ẑλn,i+1 − Ẑλn,i

)(
F

(
ŝ2
λn,i+1

)
− F

(
ŝλn,i

))
,

Ẑτn,j
= 1

M

∑

tn,p+1 ∈
(jM"t, (j + 1)M"t]

(Y ◦G(tn,p+1) − Y ◦G(tn,p)),

and

ŝ2
λn,i

= 1
"λn,i+1

∑

τn,j+1 ∈
(iLM"t, (i + 1)LM"t]

(Ẑτn,j+1 − Ẑτn,j
)2. (30)

We emphasize that this estimator is feasible (observable), since
both contaminated price Yt and observation times tn,i and λn,i

are directly observable from the market.
The CLT, estimator of asymptotic variance and feasible CLT

can be derived in a similar manner as when observations are
regularly spaced.

7. LEVERAGE EFFECT AND SKEWNESS

From sec. 2 of Mykland and Zhang (2009), leverage
effect(F (x) = x) and skewness have a close relationship. For
equidistant data, the skewness of returns in high-frequency data
satisfies (as n → ∞)

n

T
lim

∑

tn,i+1≤T

"X3
tn,i+1

L→3
2
〈σ 2, X〉T + 3

∫ T

0
σ 3

t

(
dWt + σ−1

t µt dt
)

+
(

6
∫ T

0
σ 6

t dt

)1/2

Z,

where Z is a standard normal random variable. This is a biased
and inconsistent estimator, but it is interesting to find that lever-
age effect appears on the right-hand side. When the mean is
removed from blocks of size M, this empirical skewness con-
verges to the leverage effect plus a mixed normal error:

n

T
lim

∑

tn,i+1≤T

("Xtn,i+1 − local mean of X)3

L→3
2
〈σ 2, X〉T +

(
M − 1

M

(
6 + 18

M
− 15

M2

)∫ T

0
σ 6

t dt

)1/2

Z.

M is chosen differently in Mykland and Zhang (2009) from that
in this article. It is a constant instead (i.e., M does not grow with
n). This relationship tells us that in the case where skewness is
hard to estimate directly, the consistent estimation of leverage
effect proposed by this article provides an alternative way to
estimate skewness.

To further emphasize that we are indeed estimating a form of
skewness by the leverage effect, we now consider the predictable
instantaneous skewness:

p-skew := n

T

∑

tn,i+1≤T

E
(
"X3

tn,i+1
|Fti

)
.
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We obtain

Proposition 2. Subject to regularity conditions, as n → ∞,

p-skew
p→3

2
〈σ 2, X〉T .

It should be noted that since E("X3
tn,i+1

|Fti ) is an unobserv-
able quantity, this proposition does not yield a method of estima-
tion. It does, however, clarify the relationship between skewness
and leverage effect.

The existence of a connection between skewness and the
leverage effect has previously been noted in Meddahi and
Renault (2004); see the discussion following Proposition 3.4
(p. 370).

8. LEVERAGE EFFECTS AND REGRESSION
S

The estimation of leverage effects also has an application to
estimating the regression coefficient of the volatility on its own
log return. On one hand, the existence of leverage effect implies
the relation of volatility and the log return as stated below:

dσ 2
t = 2ft dXt + 2σt gt dBt +

(
2σt at − 2ftµt + f 2

t + g2
t

)
dt,

(31)

and

d
〈
X, σ 2

t

〉
t

d
〈
X,X

〉
t

= 2ft . (32)

On the other hand, the leverage effect specified as 〈X, log σ 〉
takes the following form:

2d〈X, log σ 〉
dt

= 2ft . (33)

Equations (33) and (34) suggest two ways of applying the esti-
mation of leverage effects (F (x) = x and F (x) = 1

2 log(x)) to
estimating the regression coefficient of the volatility process on
its own log-return process. The second method only involves
lower orders of the volatility process, and is thus comparatively
robust. We will use this method in the next section.

9. EMPIRICAL STUDY

In the empirical study, we employ Microsoft stock trades
data from the New York Stock Exchange (NYSE TAQ). The
years under study are 2008 through 2011. Even though the
stock is traded between 9:30 am and 4:00 pm, the window
9:45 am–3:45 pm is chosen in the empirical analysis. The reason
for choosing this window is that a vast body of empirical studies
documents increased return volatility and trading volume at the
open and close of the stock market (Wood et al. 1985; Chan
et al. 2000). A 15-min cushion at the open and close may strike
a good balance between avoiding abnormal trading activities in
the market and preserving enough data points to perform the
estimation procedures in a consistent way. On average, there are
currently several hundred thousand trades of Microsoft during
each trading day. There are frequently multiple trades in each
second.

In Section 8, we explored intraday high-frequency regression.
It is clear that two forms of the leverage effect reveal the relation

between volatility and return in the regression model. One way
to extrapolate this intraday behavior to between-day volatility
prediction is to include the previous day’s return but scaled by a
time-varying leverage effect. Technically, all regressors are now
in the drift term.

Since we are not trying to discover the best model calibration
for volatility prediction, but rather to investigate the predictive
power of return scaled by leverage effect, the prediction model
is simply a linear regression (or AR(2)). Though this may not
be a very sophisticated model, the results can still improve
understanding the role of leverage effects in volatility prediction:
∫ ti+1

ti

σ 2
t dt = α0 + α1

∫ ti

ti−1

σ 2
t dt + α2

∫ ti−1

ti−2

σ 2
t dt + α3"X2

ti−

+ α4

∫ ti

ti−1

2ft dt × "Xti + εi .

• The integrated volatility
∫ ti+1

ti
σ 2

t dt can be estimated by
various methods. In this empirical study, the preaveraging
method (Jacod et al. 2009) is adopted.

• "Xti− denotes the overnight log return.
•

∫ ti
ti−1

2ft dt can be estimated by the proposed leverage effect
estimator in this article by setting F (x) = 1

2 log(x).
• The inclusion of lagged volatilities and overnight returns

is due to the empirical finding of volatility clustering.

In this study, since we do not consider the case with jumps
involved, we first remove the days with jump activities by the
jump test from Lee and Mykland (2012).11 Alternatively, one
can apply the jump tests as in Aı̈t-Shalia and Jacod (2009),
Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen and
Shephard (2006), Mancini (2001), Podolskij and Ziggel (2010),
and other works by the same authors.

We also follow the convention by preaveraging the data over
every 5 min in the first step. After preaveraging, we take c = 1.
We explore the volatility prediction over a two-day period, a
longer period than one day, because of the comparatively slow
convergence rate of the estimators as discussed in Section 5. To
check the robustness, we also repeat the regression replacing
return scaled the leverage effect by return itself. The prediction
results are shown in Table 3, and the time series plot of the
estimated leverage effect is given in Figure 1.

“SS explained” is the main indicator to show whether return
scaled by leverage effect has a big contribution to the prediction
of leverage effect. For each year, the first column of p-valued
based on t-test is given only as reference. Of course, since the
covariates are not independent from the response variable, these
statistics cannot really tell whether the corresponding covariate
should be included in the model. The third column gives the
collinearity diagnostic by variance inflation factors (vif) (see,
e.g., Weisberg 2004).

Since almost all vif values are close to 1, one can consider the
covariates not to be collinear with each other. The sum of squares
explained by the return scaled by the leverage effect (RLE)
are substantial even when this term is included into the model

11The total numbers of days removed are 21 for 2008, 27 for 2009, 60 for 2010,
and 43 for 2011.
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Table 3. Two-day ahead volatility prediction results with Microsoft 2007–2010 data

2008 2009

P(> |t |) SS explained vif P(> |t |) SS explained vif

α0 0.003909 0.035226
RVt−1 1.75 · 10−7 7.05 · 10−5* 2.050335 0.000752 1.7633 · 10−5 ∗ ∗∗ 5.603527
RVt−2 0.369974 1.05 · 10−5* 1.461129 0.658205 1.9960 · 10−6 1.349047
R2

t− 0.0493 9.198 · 10−6 1.142936 0.570849 7.09 × 10−7 1.062036
RLEt−1 0.000454 2.0697 · 10−5∗ 1.551306 0.027969 4.827 · 10−6∗ 4.855324
or Rt−1 0.821 9.0 · 10−8∗ 1.003209 0.280060 1.1866 · 10−6 1.198528

2010 2011

P(> |t |) SS explained vif P(> |t |) SS explained vif

α0 0.000706 0.000747
RVt−1 0.833737 1.18 · 10−7 1.453209 5.61 · 10−5 2.2341 · 10−6 ∗ ∗∗ 1.622136
RVt−2 0.180635 2.066 · 10−7 1.008225 0.215383 8.6345 × 10−7∗ 1.178455
R2

t− 4.32 · 10−10 1.4117 · 10−5 ∗ ∗∗ 1.011785 0.270385 1.7367 · 10−7 1.034753
RLEt−1 0.5254 1.172 · 10−7 1.455641 0.000486 2.1891 · 10−6 ∗ ∗∗ 1.463627
or Rt−1 0.870061 7.8 · 10−9 1.068818 0.102010 5.0273 · 10−7 1.049329

RVt denotes the estimated integrated volatility at day t; Rt− denotes overnight return for day t; RLE denotes the log return scaled by leverage effect at day t (estimated leverage effect ×
log return). Rt−1 denotes the previous period return itself without scaling. “SS explained” denotes the sum of squares gained by adding each covariate in the order presented in the table.
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Figure 1. TS-plot of the estimated leverage effects: The black curves present the time series plots of the estimated leverage effects. The red
curves give the 95% confidence intervals of the estimated values. The values on the vertical axes are different from one year to another. That is
due to the different magnitudes of the estimated leverage effects. Apparently year 2008 and 2009 display the biggest negative leverage effects.
This observation coincides with the empirical fact during the financial crisis.
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last. Most of these sums of squares are comparable to the sum
of squares explained by the previous day’s volatility, which is
believed to be the most significant factor for volatility prediction
(Engle 1982; Bollerslev 1986). In all cases, RLE has stronger
predictive power than the two-period ahead integrated volatility
does. This strongly suggests the inclusion of return scaled by
leverage effect into any model trying to predict next-period’s
volatility. The predictive power of a time-varying leverage effect
estimator12 is consistent with the earlier work by Engle and Ng
(1993) and Chen and Ghysels (2011), but here appears in a new
form. In addition, the previous period return does not contribute
to the sum of squares as much as the one scaled by the leverage
effect. In some case, the previous period return is not significant
while the return scaled by the leverage effect explains significant
amount of sum of squares.

10. CONCLUSION

This article provides nonparametric estimators of the leverage
effect, and analyzes them both theoretically and in simulation.
The definition of the stochastic parameter of the leverage effect
involves a twice differentiable monotone function. Even though
the reliance of the estimation on higher moments of volatility
is of concern in practice, the carefully chosen function F can
help to reduce the order of moments required and provide ro-
bust results. Other benefits of this function can be easily seen
in the discussion of the connection between the leverage ef-
fect and skewness. While the sum of intraday cubic returns is
not a consistent estimator of skewness, the p-skewness (Sec-
tion 7) can instead be estimated consistently by the leverage
effect estimators proposed by this article. The related properties
of p-skewness can also be studied by the properties of the lever-
age effect. Clever choices of the function F can also reduce the
work of estimation, such as the estimation of high-frequency re-
gression coefficients. Instead of estimating both leverage effects
and realized volatility, a different form of the leverage effect can
serve as the estimated coefficient (Section 8). If the properties
of the estimated coefficient are of interest, it is more attractive
to apply the method in Equation (34), whose statistical proper-
ties have already been studied in this article, than to apply the
first ratio statistic in Equation (33) whose statistical properties
require further efforts to investigate.

The bias correction factors in the estimators contribute to
an important finding in this article and are previously unknown.

12The main motivation for us to include “leverage effect scaled returns” is the
earlier empirical findings on asymmetric impact of positive or negative returns
on the volatility process. To capture this asymmetric impact in the prediction
model, we include the extra term. We realize that Jacod (1994, 1996), Barndorff-
Nielsen, and Shephard (2005), and others, showed that the correlation (leverage
effect) has no impact on the asymptotic distribution. These observations seem
to suggest that asymmetries do not matter for forecasting, but that is not so.
The concept of the news impact curve (Engle and Ng 1993) was originally
formulated within the context of daily ARCH-type models. In the models of
Engle and Ng (1993), the returns are included in the volatility prediction models
by differently scaling the positive or negative returns. Here we applied the intra-
day data over small time interval to estimate integrated volatility, but predict
the next volatility over a much longer time interval (two-day ahead). Therefore,
the prediction falls into a comparative low frequency setting. The leverage
effect turns out to have a significant impact on the volatility prediction which
is supported by our empirical finding. This inclusion of leverage effect scaled
returns in the volatility prediction model is further supported by the findings in
Chen and Ghysels (2011), where they are dealing with two different frequencies
and reaching a similar conclusion.

They not only provide the consistency of the estimation, but also
imply that simple covariance estimators tend to underestimate
the leverage effect, especially when the values of the leverage
effect are close to zero. The amplifying factors play a vital role
of bias correction in the estimation.

The empirical studies demonstrate the importance of the
leverage effect in volatility prediction. Even though the sim-
ple regression (or AR(2)) model is adopted in the study, the
explanatory power of RLE is surprisingly high. The power is
almost of the same magnitude as the predictive power of the pre-
vious period volatility which is widely considered to be the main
source of variation in volatility prediction. This high explana-
tory power suggests that time-varying leverage effects should
be included additionally to explain the variation and clustering
in volatility prediction models.

Even though we have provided a way to deal with irregularly
spaced data, it is important to study the estimation of leverage
effects and the asymptotic properties of estimators when time is
endogenous (as in Li et al. 2013). Different methods of dealing
with microstructure noise should also be studied and compared
with the ones in this article. Our findings create the important
necessary foundation for further analysis both theoretically and
empirically, as well as an investigation of how to carry out risk
management in the presence of leverage effects.

Finally, as discussed in Section 2.2, many open questions
remain in terms of model specification (continuous vs. jumps,
semimartingale vs. long range dependence), with reference to
the papers cited in that section. In particular, the connection to
semivariance remains to be explored.

APPENDIX A: PROOF OF THEOREM 1

A.1 Preliminaries

In the following, by Fj we mean Ftn,j
, and p is a positive integer.

Without loss of generality, we will set µt = 0, see Mykland and Zhang
(2009), sec. 2.2, as well as our current Assumption 1 and associated
Footnote 1. Recall that
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Lemma 1. Under Assumption 1,
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3. (A.5) is the direct consequence of (A.3) and (A.4). This com-
pletes the proof.

Later in the derivation of limit theorem, it is easy to see that the proof
and calculations strongly depend on Lemma 1, which will be applied
recursively.

A.2 Main Martingale Representation and Argument
to Prove Theorem

The proof of Theorem 1 is provided in this section, with supporting
details in the following sections. Construct an approximate martingale
(MG) on the grid of the τn,i’s as follows:
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The martingale up to time t is
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Although Mn above is observed in discrete time, we can interpolate
the martingale into a continuous martingale up to any time t; see, in

particular, Heath (1977) as well as Mykland (1995) and the references
therein. This interpolation is closely related to Skorokhod embedding
in Brownian motion; see, for example, Appendix I of Hall and Heyde
(1980). Then we only need to prove the CLT for the interpolated con-
tinuous martingale. Therefore, we can apply Theorem 2.28 (p. 152) in
Mykland and Zhang (2012) to prove the CLT. The conditions of cited
theorem will follow from the development in the rest of Appendix 10,
in particular (A.16) and (A.19), and the approximation in Lemma 2.
Alternatively, one can develop a functional argument for the CLT as
in Jacad (2009), Jacod and Shiryaev (2003), Jacod and Protter (2011),
and Podolskij and Vetter (2009b).

A.3 The Aggregate Conditional Variance
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We derive that
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
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
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
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With this result, we can calculate the conditional variance by only
considering conditional second moments instead.

A.4 Aggregate Conditional Second Moment
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Applying Lemma (1), we can prove the following results
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1
Mn"t

∑

τn,i+1≤t

E
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∑

τi+1≤t

σ 4
τn,i

f 2
τn,i

Mn"t + Op(Mn"t), (A.13)

1
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and
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The above three equations lead to the following convergence:
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(A.16)

To finalize the proof of Theorem 1, we need the quadratic varia-
tion of the interpolated martingale. The following lemma shows that
the asymptotics of the quadratic variation is the same as that of the
aggregate conditional variance as in Equation (A.16)

Lemma 2.
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Proof of Lemma 2:
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since στi
, fτi

, gτi
, [Mn, Mn]t are assumed to be bounded, Mn"t =

Op(n−1/2).

A.5 Elimination of the Bias Term

The bias in the limit of ̂〈X,F (σ 2)〉T also depends on the limit of
[Mn, W (i)]t , where either W

(i)
t = Wt or W (i) is orthogonal to Wt , for

any t ∈ (0, T ]. For the second case, it is obvious that [Mn, W (i)]t = 0.
We only need to study the first case W

(i)
t = Wt . In this case, since the

covariance between Op(Mn"t) terms and Wt will be of even higher
order (at least Op((Mn"t)3/2)), those are negligible in the limit. Thus we
only need to consider the following aggregate conditional expectation:
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= Op((Mn"t)3/2) (By Itô’s formula and Lemma 1). (A.19)

Thus, [Mn,W ]t = Op((Mn"t)3/2) for any t ∈ (0, T ].
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All the proofs above can be easily extended to the case for any
t ∈ (0, T ]. Thus, as outlined at the end of Section A.2, with (A.3),
(A.16), (A.18), and (A.19), the proof of Theorem 1 is completed by
applying the Central Limit Theorem for semimartingales (refer to the
version in Mykland and Zhang 2012, thm 2.28).

APPENDIX B: PROOF OF THEOREM 2

With Taylor expansion, the first-order difference of the
two estimators is:

∑
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2
Mn(Mn−1)"t
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)("Xτn,i+1 )3 and

∑
τi+1≤t

2
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F ′(στn,i
)"Xτn,i+1 ("Xτn,i+2 )2. In order for any term

to make a difference in the limit, the term must be of order lower than
Op(Mn"t). However, the difference terms are of order higher than
Op(Mn"t) by BDG inequality as shown in the proof of Proposition 2
at the end of the article:
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.

Theorem 2 is easily proved with this result and a slight variation of the
proof of Theorem 1.

APPENDIX C: PROOF OF THEOREM 3

As we saw in the proof of Theorem 1 that
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To prove the consistency of Equation (11), we can again apply the
martingale convergence argument. According to Lemma 2, it suffices
to check wether the conditional variance of the martingale converges
to 0. By applying Lemma 1, we can obtain:
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This proves G1
n

p→ 8
c

∫ T

0 (F ′(σ 2
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t dt + cT
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( 28
3 f 2
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t ) dt.

By similar argument, one can prove G2
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t dt +
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These two convergences, together with Theorem 1, prove the stable
convergence in Theorem 3 .

APPENDIX D: PROOF OF THEOREM 4

The proof of Theorem 4 will be done similarly to that of Theorem
1 in a manner to compare the difference between (Xtn,j+1 − Xtn,j

) and
(X̄tn,j+1 − X̄tn,j

) in each step. As seen in the case without microstructure
noise, it is enough to prove the case F (x) = x. For the convenience

of later calculations, we always assume τn,j+1 ∈ (λn,i , λn,i+1], τ ′
n,j+1 ∈

(λn,i+1, λn,i+2] and τn,j+1 and τ ′
n,j+1 are corresponding (j + 1)th obser-

vation time in the consecutive two big λ-blocks.

D.1 Aggregate Conditional Expectation of the Estimator

According to the contiguity to Gaussian noise (Mykland and Zhang
2011a), the process can be simplified as follows:
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and
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lowing aggregate conditional expectation of the estimator:

E



 3
LM"t

Kn−2∑

i=0

"X̄λn,i+1




∑

τ ′
n,j+1∈(λn,i+1,λn,i+2]

"X̄2
τ ′
n,j+1

−
∑

τn,j+1∈(λn,i ,λn,i+1]

"X̄2
τn,j+1





∣∣∣∣∣∣∣
Fi



 + Op(LM"t)

= 3
LM"t

Kn−2∑

i=0

E





1
M3

∑

τ ′
n,j+1 ∈ (λn,i+1, λn,i+2]

tn,l ∈ [λn,i , τn,1)
t ′n,l ∈ [λn,i+1, τ

′
n,1)

tn,k ∈ [τ ′
n,j , τ

′
n,j+1)

t ′n,k ∈ [τ ′
n,j+1, τ

′
n,j+2)

×
(
Xt ′n,l

− Xtn,l

)(
Xt ′n,k

− Xtn,k

)2

− 1
M3

∑

tn,l ∈ [λn,i , τn,1)
t ′n,l ∈ [λn,i+1, τ

′
n,1)

(
Xt ′n,l

− Xtn,l

)

 



212 Journal of the American Statistical Association, March 2014

×
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The last step applies Lemma 1 (A.3) and (A.4), and we conclude that:

̂〈X, σ 2〉T

p→
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0
2σ 2

t ftdt = 〈X, σ 2〉T . (D.23)

There is another way to look at "X̄τn,j+1 , which leads to a continuous
approximation and provides a simpler way to prove the results.
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and

X̄λn,i+1 − X̄λn,i

= Xλn,i+1 − Xλn,i
+

M∑

k = 1
t ′n,k ∈ [λn,i+1, τ

′
n,1)

(
M − k

M

) (
Xt ′n,k+1

− Xt ′n,k

)

−
M∑

k = 1
tn,k ∈ [λn,i , τn,1)

(
M − k

M

) (
Xtn,k+1 − Xtn,k

)

0 Xλn,i+1 − Xλn,i
+ 1

M"t

∫ τ ′
n,1

λn,i+1

(τ ′
n,1 − t) dXt

− 1
M"t

∫ τn,1

λn,i

(τn,1 − t) dXt . (D.25)

One can verify that, to the relevant order, the aggregate conditional
expectation by this continuous approximation gives the same result but
less complicated calculations.

D.2 Conditional Variance of the Approximate Martingale

Similarly as in the proof of Theorem 1,the martingale is constructed
as follows:

Up to time t,
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where, except a few terms at the edge,
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Again, we will interpolate this martingale into a continuous martin-
gale up to any time t ∈ (0, T ] as in the proof of Theorem 1.

From this point on, the continuous approximation of X̄ with inte-
gral will be adopted for simplicity and transparency. However, all the
calculation can be checked by applying Lemma 1 to the direct proof
without continuous approximation.
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where τn,k < τn,j ≤ τn,m, Fk = Fn,k .

The proof of this Lemma is similar to that of Lemma 1.
It is easy to see that the aggregate conditional expectation term in

Mn
t is of order Op(LM"t) from (D.22). So the aggregate conditional

variance will be the same as the second moment of the term before the
aggregate conditional expectation.
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We will separately calculate the conditional variance involving the
microstructure noise "ZM−1/2 and the variance involving only the
semimartingale process, denoted accordingly as var("Mn,noise
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|Fi) and

var("M
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and
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These results prove that, for any t ∈ (0, T ]:
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By similar methods, we can prove that the bias term also converges
to zero (here we omit the lengthy proof):
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Thus, [Mn, W ]t = Op((LM"t)3/2) for any t ∈ (0, T ]. This completes
the proof of Theorem 4.

APPENDIX E: PROOF OF THEOREM 5

Theorem 5 can be easily proved by the consistency of asymptotic
variance (27) and stable convergence in Theorem 4. We only need
to establish the convergence in probability of Equation (27). This
convergence can be proved by adopting the similar martingale
technique as in the proof of Theorme 3, and by applying Lemma 1,
Lemma 2, and Lemma 3. We can prove: E( 81
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))2|Fi))2 = Op(LM"t). This equation gives the

consistency of Gn,1 in Equation (27). By similar argument, the
consistency of Gn,2 can be proved and consequently completing the
proof of the convergence of Equation (27) and Theorem 5.

APPENDIX F: PROOF OF PROPOSITION 2

We will assume the equivalent measure where both Xt and σt are
martingales. This can be done in analogy with the development in
Mykland and Zhang (2009), sec. 2.2, by a stopping argument and so
long as the instantaneous correlation between Xt and σt is not ±1. (In
the latter case, the proof is different but straightforward.)

By the third Bartlett identity (Mykland 1994)
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By the Itô formula, d(tn,i+1 − t)(σ 2
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We have here used that "ti = T
n

(equidistant spacing); for a more
general case, the expression will involve the quadratic variation of
time.
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