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Abstract. We extend several celebrated methods in classical analysis for summing series of com-
plex numbers to series of complex matrices. These include the summation methods of Abel, Borel,
Cesáro, Euler, Lambert, Nörlund, and Mittag-Leffler, which are frequently used to sum scalar series
that are divergent in the conventional sense. One feature of our matrix extensions is that they are
fully noncommutative generalizations of their scalar counterparts — not only is the scalar series
replaced by a matrix series, positive weights are replaced by positive definite matrix weights, order
on R replaced by Loewner order, exponential function replaced by matrix exponential function, etc.
We will establish the regularity of our matrix summation methods, i.e., when applied to a matrix
series convergent in the conventional sense, we obtain the same value for the sum. Our second goal
is to provide numerical algorithms that work in conjunction with these summation methods. We
discuss how the block and mixed-block summation algorithms, the Kahan compensated summation
algorithm, may be applied to matrix sums with similar roundoff error bounds. These summation
methods and algorithms apply not only to power or Taylor series of matrices but to any general
matrix series including matrix Fourier and Dirichlet series. We will demonstrate the utility of these
summation methods: establishing a Fejér’s theorem and alleviating the Gibbs phenomenon for
matrix Fourier series; extending the domains of matrix functions and accurately evaluating them;
enhancing the matrix Padé approximation and Schur–Parlett algorithms; and more.

1. Introduction

As we learned in calculus or real analysis, whenever we have an expression
∞∑
k=0

ak = s (1.1)

for some ak ∈ C, k = 0, 1, 2, . . . , and s ∈ C, the meaning of ‘=’ is defined to be the convergence
of the sequence of partial sums sn :=

∑n
k=0 ak to the limit s in the standard Euclidean metric | · |

on C. In this case the series
∑∞

k=0 ak is said to be convergent with value s; and if it does not meet
this definition of convergence, then it is said to be divergent.

Because of its ubiquity and utility, we sometimes lose sight of the fact that such an interpretation
of ‘=’ in (1.1) is purely by convention, and not sacrosanct. A series divergent in the sense of the
conventional definition may have a well-defined value under alternative definitions of ‘=’ that are
perfectly legitimate mathematically. Take the harmonic series

∑∞
k=1 1/k for illustration, well-known

to be divergent in the conventional sense but as soon as we change, say, the choice of the metric
from Euclidean to p-adic | · |p, it becomes convergent in the sense that |sn− s|p → 0 for some value
s ∈ C that depends on p [8]. Indeed, a well-known result in p-adic analysis [40] is that with a
p-adic metric, a series

∑∞
k=0 ak is convergent if and only if limk→∞ ak = 0, obviously false by the

conventional definition of series convergence.
Even if we restrict ourselves to the Euclidean metric, which is what we will do in the rest of this

article, the meaning of ‘=’ still depends on a specific way to sum the values ak ∈ C, k = 0, 1, 2, . . . .
As is known to early analysts, there are many other reasonable ways to assign a value to a series
that is divergent in the conventional sense, and such values are mathematically informative and
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useful in many ways [20]. As Hardy pointed out [20], a summation method just needs to be a
function from the set of infinite series to values, assigning a sum to a series, which may or may not
be convergent in the conventional sense.

The first and best-known summation method is likely Cesáro summation [10], that allows one
to sum the Grandi series 1 − 1 + 1 − 1 + · · · to 1/2. The idea can be traced back even earlier to
Leibniz, d’Alambert, Cauchy, and other predecessors of Cesáro [20, 44]. Cesáro summation has the
property of being regular, i.e., for a series that is convergent in the conventional sense, the method
gives an identical value for the sum. Regular summation methods have been studied extensively
[4, 20, 38, 44] and applied in various fields from analytic number theory [46] to quantum field theory
[15] to statistics [18]. Indeed summing divergent series is an important aspect of renormalization,
a cornerstone of modern physics [45], particularly in the renormalization technique of zeta function
regularization [22].

A main goal of our article is to show that many if not most of these summation methods for
series of complex numbers extend readily and naturally to series of complex matrices. Take a toy
example for illustration: The Neumann series

∞∑
k=0

Xk = (I −X)−1 (1.2)

if and only if the spectral radius of X ∈ Cd×d is less than 1. Again ‘=’ here is interpreted in
the sense of conventional summation, i.e., the sequence of partial sums Sn :=

∑n
k=0X

k converges
to (I − X)−1 with respect to any matrix norm ∥ · ∥. Let λ(X) denote the spectrum of X and
D := {z ∈ C : |z| < 1} the complex open unit disc. Depending on which method we use to sum the
series on the left-hand side of (1.2), we obtain different interpretations of ‘=’:

conventional: (1.2) holds if and only if λ(X) ⊆ D;
Abel: (1.2) holds if and only if λ(X) ⊆ D \ {1};
Cesáro: (1.2) holds if and only if λ(X) ⊆ D or λ(X) ⊆ D\{1} and the geometric and algebraic

multiplicities are equal for each eigenvalue in λ(X) ∩ ∂D \ {1};
Euler: (1.2) holds if and only if λ((I +P )−1(P +X)) ⊆ D for some P ≻ 0 commuting with X;
Borel: (1.2) holds if and only if λ(X) ⊆ {z ∈ C : Re(λ) < 1}.

The last four summation methods will be defined in due course. In case the reader is wondering,
although the matrix (I − X)−1 is well-defined as long as 1 /∈ λ(X), we will see that there is no
natural method that will extend the validity of (1.2) to all X ∈ Cd×d with λ(X) ⊆ C \ {1}.

In the toy example above, the series in question is a power series where the kth term is a scalar
multiple of Xk. The matrix summation methods in our article will apply more generally to any
series of matrices

∑∞
k=0Ak, where Ak may not be Taylor in nature, i.e., (X − αI)k, but may be

Fourier sin(kX), Dirichlet exp(X log k), Hadamard powers X◦k, or yet other forms not covered in
this article, e.g., it could be defined by a recurrence relation Ak = BAk−1(I − Ak−1) or randomly
generated Ak ∼Wishart(Σ, n).

So a second goal of our article is to provide practical numerical algorithms that complement our
theoretical summation methods. These algorithms will allow us to compute, in standard floating
point arithmetic, a matrix Ŝ ∈ Cd×d that approximates the theoretical sum S ∈ Cd×d of the series∑∞

k=0Ak given by the respective summation method.
These two aspects are complementary: There is no numerical method that would allow one to

ascertain the convergence of a series, regardless of which summation method we use. A standard
example is the harmonic series

∑∞
k=1 1/k; every numerical method would yield a finite value [23,

Section 4.2], which is completely meaningless since its true value is +∞. On the other hand, most
of the matrix series we encounter will have no alternate closed-form expressions, again regardless of
which summation method we use. The only way to obtain an approximate value would be through
computing one in floating point arithmetic. In summary, the theoretical summation method permits
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us to determine convergence; and its corresponding numerical algorithm permits us to determine
an approximate value. We provide an overview of these two aspects of our work.

Theoretical: regular summation methods. As in the case of its scalar counterpart, a matrix
summation method is a partial function, i.e., possibly defined on a subset of its stated domain,
from the set of d × d complex matrix series to a sum in Cd×d. We will generalize five classes of
summation methods for scalar-valued series to matrix-valued ones. Figure 1 organizes them in a
tree.

Summation Methods

Sequential

Nörlund

Cesáro

Euler

Functional

Abelian means

Abel

Lambert Mittag-Leffler

weak Borel strong Borel

Figure 1. Relations between various methods: a → b means a-summation is a
special case of b-summation; a ↠ b means a-summable implies b-summable.

The five summation methods fall under two broad categories, sequential and functional methods,
discussed in Sections 3 and 4 respectively. These terminologies follow those for scalar-valued series
[44]. Basically, a sequential method transforms the terms of a series or its sequence of partial sums
into another sequence, whereas a functional method would transform them into a function. We will
generalize two of the most important sequential methods, Nörlund (of which Cesáro is a special
case) and Euler; and three of the most important functional methods, Lambert, Abelian means,
and Mittag-Leffler (Abel and Borel summations are respectively special cases of the latter two);
showing that they also work for matrix series.

One feature of our generalizations that we wish to highlight is that they are truly matrix-valued
to the fullest extent possible. For example, our generalization of Nörlund summation limn→∞(ρ0+
· · ·+ρn)−1(ρns0+ρn−1s1+ · · ·+ρ0sn) with sn :=

∑n
k=0 ak does not just replace ak ∈ C by matrices

Ak ∈ Cd×d but also the positive scalars ρ0, . . . , ρn by positive definite matrices P0, . . . , Pn. Our
extension of Abel summation limx→0

∑∞
k=0 ake

−ρkx does not merely replace ak ∈ C by matrices
Ak ∈ Cd×d but also the increasing sequence 0 < ρ0 < ρ1 < · · · by a sequence of matrices increasing
in Loewner order 0 ≺ P0 ≺ P1 ≺ · · · and ex by the matrix exponential function.

Practical: numerical summation algorithms. Once a matrix series is ascertained to be sum-
mable via one of the aforementioned theoretical methods, the corresponding numerical method
would be used to provide an approximate value in the form of a finite sum. However, it is non-
trivial to obtain an accurate value for this finite sum in finite precision arithmetic. Simply adding
terms in the finite sum in any fixed order would not give the most accurate result. In Section 6,
we adapt three numerical summation algorithms in [3, 23] for sums of matrices:

(i) block summation: divide the finite sum into equally-sized blocks and sum the local blocks
recursively, then sum the local sums recursively;

(ii) compensated summation: keep a running compensation term to extend the precision;
(iii) mixed block summation: divide the finite sum into equally-sized blocks and sum the local

blocks with one algorithm, then sum the local sums with another algorithm.
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We stress that the summation methods above apply to any series of matrices, not just power series
of matrices like those commonly found in the matrix functions literature [24]. In Section 7, for the
special case when we do have a matrix power series, we extend two algorithms for summing matrix
power series [24] by enhancing them with the summation methods introduced in Section 3:

(iv) Padé approximation: best rational approximation of a matrix function at a given order;
(v) Schur–Parlett algorithm: Schur decomposition followed by block Parlett recurrence.

We present numerical experiments in Section 8 to illustrate the value and practicality of our sum-
mation methods:

(a) using Cesáro summation to alleviate Gibbs phenomenon in matrix Fourier series;
(b) using Euler and strong Borel summations to extend matrix Taylor series;
(c) using Euler summations for high accuracy evaluation of matrix functions;
(d) using Lambert summation to investigate matrix Dirichlet series;
(e) using compensated matrix summation for accurate evaluation of Hadamard power series.

There are some surprises. For example, for (1.2), using Euler sum to evaluate the Neumann series
and using Matlab’s inv to invert I −X, Euler sum gives results that are an order of magnitude
more accurate than Matlab’s inv; Gibbs phenomenon in matrix Fourier series happens only when
the matrix involved is diagonalizable; a well-known property of the Riemann zeta function remains
true for the matrix zeta function.

As one of our goals is to compute an approximate value in floating arithmetic for the matrix
series and summation methods studied in this article, so even though some of our theoretical results
readily extend to Banach algebras we do not pursue this unnecessary generality.

2. Conventions and notations

Recall that it does not matter which matrix norm we use since all norms on a finite-dimensional
space Cd×d are equivalent and thus induce the same topology. Throughout this article, we will use
∥ · ∥ to denote the Euclidean norm on Cd and spectral norm on Cd×d:

∥A∥ := sup
x ̸=0

∥Ax∥
∥x∥

.

Note that the norm notation is consistent if we adopt the standard convention of identifying vectors
in Cd with single-column matrices in Cd×1. For P ∈ Cd×d, we use the shorthand P ≻ 0 for P positive
definite, i.e., x∗Px > 0 for all nonzero x ∈ Cd. Recall that this condition implies that P must also
be Hermitian [49, p. 80] (but the analogous statement is not true over R). More generally ≻ denotes
the Loewner order, i.e., A ≻ B if and only if A − B is positive semidefinite. We write I for the
identity matrix and 1 for the all one’s matrix. We use λ(X) to denote the spectrum of X ∈ Cd×d. A
note of caution is that we do not treat λ(X) as a multiset; whenever we write λ(X) = {λ1, . . . , λr},
the elements λi’s are necessarily distinct. For example, λ(I) = {1} always, not {1, . . . , 1}.

We write Re(x) and Im(x) for the real and imaginary parts of x ∈ C, respectively. We write
D := {z ∈ C : |z| < 1} for the open unit disc and N := {0, 1, 2, . . . } for the nonnegative integers.
Unless noted otherwise, all sequences, summands in a series, partial sums, will be indexed by N
throughout this article. We denote closure and boundary of a set Ω by Ω and ∂Ω respectively.

We also lay out some formal definitions and standard notations [11, 13, 33, 42] related to se-
quences and series of matrices.

Definition 2.1. A matrix sequence A• := (Ak)∞k=0 is a map from N to Cd×d whose value at k ∈ N
is denoted by Ak ∈ Cd×d. We say that the matrix sequence A• converges to A ∈ Cd×d if

lim
k→∞
∥Ak −A∥ = 0,



SUMMING DIVERGENT MATRIX SERIES 5

and denote it by limk→∞Ak = A. We denote the vector space of matrix sequences by
s(Cd×d) :=

{
A• : Ak ∈ Cd×d, k ∈ N

}
and its subspace of convergent matrix sequences by

c(Cd×d) :=
{
A• : lim

k→∞
Ak = A ∈ Cd×d

}
.

We speak of a series when we are interested in summing a sequence. Therefore, a series
∑∞

k=0Ak

and its underlying sequence A• are one-and-the-same object and we will not distinguish them. While
the convergence of a matrix sequence is unambiguous throughout this article, the summability of
a matrix series is not and will take on multiple different meanings. Getting ahead of ourselves, we
will be defining the R-sum S of a series

∑∞
k=0Ak and writing

∞∑
k=0

Ak
R= S (2.1)

where different letters in place of R would refer to Nörlund means (N), Cesáro (C), Euler (E),
Abelian means (A), Lambert (L), weak Borel (WB), strong Borel (SB), and Mittag-Leffler (M)
summations, all of which will be defined in due course. We say that A• is R-summable if there is a
well-defined R-sum S ∈ Cd×d. The absence of a letter would denote conventional summation, i.e.,
S is the limit of its sequence of partial sums, S• = (Sk)∞k=0, Sn :=

∑n
k=0Ak.

As usual, we write Cb(Ω) := Cb(Ω,C) for the Banach space of complex-valued continuous func-
tions equipped with the uniform norm; Ω will usually be an open interval in R. We will often have
to discuss matrices whose entries are in Cb(Ω), i.e., A(x) = [aij(x)] with continuous and bounded
aij : Ω→ C, i, j = 1, . . . , d. We denote the space of such matrices as Cb(Ω)d×d. These may also be
viewed as matrix-valued continuous maps A : Ω → Cd×d or as tensor product of the two Banach
spaces [32]:

Cb(Ω)d×d = Cb(Ω,Cd×d) = Cb(Ω)⊗ Cd×d.

Indeed the tensor product view will be the neatest as we will also need to speak of Cb(Ω)d×d-valued
sequences:

s
(
Cb(Ω)d×d) = s(Cd×d)⊗ Cb(Ω), c

(
Cb(Ω)d×d) = c(Cd×d)⊗ Cb(Ω)

but we will avoid tensor products for fear of alienating readers unfamiliar with the notion.
We will occasionally use the notion of a partial function to refer to a map from a set X to a set

Y defined on a subset S ⊆ X called its natural domain. These are useful when we wish to speak
loosely of a map from X to Y that may not be defined on all of X, but whose natural domain may
be difficult to specify a priori. A matrix summation method falls under this situation as we want
to define a map R on s(Cd×d) that is only well-defined on its natural domain of R-summable series.
Following convention in algebraic geometry, we write R : X 99K Y to indicate that R may be a
partial function.

3. Sequential summation methods

Many summation methods for scalar series are sequential summation method [20]. In this section
we will extend them to matrix series, defining various partial functions that map a sequence A• ∈
s(Cd×d) into a suitably transformed sequence in c(Cd×d) and defining the corresponding sum1 as
the limit of the transformed sequence.

Let Cn,k ∈ Cd×d, n, k ∈ N, and consider the partial function R : s(Cd×d) 99K c(Cd×d) given by

R(A•)n =
∞∑
k=0

Cn,kSk (3.1)

1Sometimes called antilimit for easy distinction from the partial sums [20].
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for any A• ∈ s(Cd×d), Sn =
∑n

k=0Ak, and n ∈ N. The R-sum is defined to be limn→∞ R(A•)n, if
the limit exists; and in which case we write (2.1) with S = limn→∞ R(A•)n.

For a conventionally summable series, we expect our summation method to yield the same sum,
i.e.,

∑∞
k=0Ak

R= S whenever
∑∞

k=0Ak = S. This property is called regularity. All summation
methods considered in our article will be shown to be regular. In fact they satisfy the slightly
stricter but completely natural condition of total regularity: if a series sums to +∞ conventionally,
then the method also sums it to +∞. Total regularity is the reason why the validity of (1.2) cannot
be extended to all of C \ {1}: For d = 1,

∑∞
k=0 x

k = +∞ whenever x ∈ (1,+∞) and so no totally
regular method could ever yield (1− x)−1 for all x ∈ C \ {1}. We will not discuss total regularity
in the rest of this article.

We provide a sufficient condition for the regularity of sequential summation methods (3.1),
generalizing [20, Theorem 1] to matrices.

Theorem 3.1. Let Cn,k ∈ Cd×d, n, k ∈ N. Suppose
(i) there exists η > 0 such that

∑∞
k=0∥Cn,k∥ < η for each n ∈ N;

(ii) limn→∞Cn,k = 0 for each k ∈ N;
(iii) limn→∞

∑∞
k=0Cn,k = I.

Then for any A• ∈ s(Cd×d) with Sn =
∑n

k=0Ak and limn→∞ Sn = S, the series
∑∞

k=0Cn,kSk is
summable in the conventional sense for each n ∈ N and

lim
n→∞

∞∑
k=0

Cn,kSk = S. (3.2)

Proof. Since S• = (Sk)∞k=0 is convergent and therefore bounded, ∥Sk∥ ≤ β for some β > 0 and all
k ∈ N. It follows from (i) that for each n ∈ N,

∞∑
k=0
∥Cn,kSk∥ ≤

∞∑
k=0
∥Cn,k∥ · ∥Sk∥ ≤ βη.

Thus
∑∞

k=0Cn,kSk is summable. To show (3.2), first assume that S = 0. For ε > 0, choose m ∈ N
sufficiently large so that ∥Sk∥ < ε/2η for k > m. By (i) and (ii),

lim
n→∞

m∑
k=0

Cn,kSk = 0 and
∥∥∥∑
k>m

Cn,kSk

∥∥∥ ≤ ε

2η
∑
k>m

∥Cn,k∥ ≤
ε

2 .

Hence
lim
n→∞

∞∑
k=0

Cn,kSk = lim
n→∞

( m∑
k=0

Cn,kSk +
∑
k>m

Cn,kSk

)
= 0.

For S ̸= 0, consider A′
• = (A′

k)∞k=0 with

A′
k :=

{
A0 − S k = 0,
Ak k = 1, 2, . . . ,

with partial sums S′
k = Sk − S, k ∈ N. Since limk→∞ S′

k = 0, we get limn→∞
∑∞

k=0Cn,kS
′
k = 0. By

(iii),

lim
n→∞

∞∑
k=0

Cn,k(S′
k + S) = lim

n→∞

∞∑
k=0

Cn,kS
′
k + lim

n→∞

∞∑
k=0

Cn,kS = S. □

Theorem 3.1 should be interpreted as follows: A summation method of the form (3.1) satisfying
(iii) should be seen as taking matrix-weighted averages of the sequence of partial sums S• for each n.
Conditions (i) and (ii) are what one would expect for weights: absolutely summable and not biased
towards any partial sum Sk respectively. Theorem 3.1 would be useful for establishing regularity
of matrix summation methods involving various choices of matrix weights.
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3.1. Nörlund means. The scalar version of this summation method was first introduced in [47]
but named after Nörlund who rediscovered it [36]. Its most notable use is for summing Fourier
series [26, 43]. Here we will extend it to series of matrices.

Definition 3.2. Let P• := (Pk)∞k=0 be a sequence of positive definite matrices such that

lim
k→∞
∥(P0 + · · ·+ Pk)−1∥∥Pk∥ = 0. (3.3)

For A• = (Ak)∞k=0 ∈ s(Cd×d), the series
∑∞

k=0Ak is Nörlund summable to S ∈ Cd×d with respect
to P• if

lim
n→∞

(P0 + · · ·+ Pn)−1(PnS0 + Pn−1S1 + · · ·+ P0Sn) = S,

where Sn =
∑n

k=0Ak, n ∈ N. We denote this by
∞∑
k=0

Ak
N= S

and call S the Nörlund mean of A•. There is an implicit choice of P• not reflected in the notation.

Corollary 3.3 (Regularity of Nörlund mean). Let P• := (Pk)∞k=0 be a sequence of positive definite
matrices satisfying (3.3). For A• ∈ s(Cd×d) and S ∈ Cd×d, if

∑∞
k=0Ak = S, then

∑∞
k=0Ak

N= S.

Proof. The Nörlund mean is a sequential summation method with a choice of

Cn,k =
{
(P0 + · · ·+ Pn)−1Pn−k if k ≤ n,

0 if k > n,

in (3.1). To show regularity, we check the three conditions of Theorem 3.1: Since
n∑

k=0
(P0 + · · ·+ Pn)−1Pn−k = I,

the Conditions (i) and (iii) are satisfied. Since P0 + · · · + Pn ≻ P0 + · · · + Pn−k, we have ∥(P0 +
· · ·+ Pn)−1∥ ≤ ∥(P0 + · · ·+ Pn−k)−1∥ and so Condition (ii) is satisfied as

lim
n→∞

∥(P0 + · · ·+ Pn)−1∥∥Pn−k∥ ≤ lim
n→∞

∥(P0 + · · ·+ Pn−k)−1∥∥Pn−k∥ = 0. □

The well-known Cesáro summation is a special case of Nörlund summation with P• given by

Pk =
(
k + j − 1
j − 1

)
I, k ∈ N,

for some fixed j ∈ N. We write (C, j) for the jth order Cesáro summation. So (C, 0) is conventional
summation and (C, 1) is Cesáro summation extended to a matrix series, defined formally below.

Definition 3.4. Let A• = (Ak)∞k=0 ∈ s(Cd×d) and S• be its sequence of partial sums, Sn =∑n
k=0Ak. Define

Σn := 1
n

n−1∑
k=0

Sk.

The series
∑∞

k=0Ak is Cesáro summable to S ∈ Cd×d if limn→∞Σn = S. We denote this by
∞∑
k=0

Ak
C= S

and call S the Cesáro sum of A•.
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A standard example of a Cesáro summable (scalar-valued) series divergent in the usual sense is
the Grandi series 1−1+1−1+ · · · , which sums to 1/2 in the Cesáro sense. Indeed, this is a special
case of

∑∞
k=0 x

k C= 1/(1− x) for any x ∈ D \ {1}, which follows from

lim
n→∞

1
n

n−1∑
m=0

m∑
k=0

xk = lim
n→∞

n−1∑
m=0

1− xm+1

n(1− x) = 1
1− x

. (3.4)

We establish the corresponding result for matrix Neumann series, which is more involved.

Proposition 3.5 (Cesáro summability of Neumann series). Let X ∈ Cd×d. Then
∞∑
k=0

Xk C= (I −X)−1 (3.5)

if and only if one of the following holds:
(i) λ(X) ⊆ D,
(ii) λ(X) ⊆ D \ {1} and the geometric and algebraic multiplicities are equal for each eigenvalue

in λ(X) ∩ ∂D \ {1}.

Proof. We start with the backward implication. For the first case λ(X) ⊆ D, we have
∑∞

k=0X
k =

(I −X)−1 and so (3.5) holds by Corollary 3.3 since Cesáro summation is a special case of Nörlund
summation. For the second case where λ(X) ⊆ D \ {1}, let J1, . . . , Jr be a list of all Jordan blocks
of X corresponding to eigenvalues λ1, . . . , λj ∈ ∂D \ {1} and λj+1, . . . λr ∈ D. By assumption,
λ1, . . . , λj have equal geometric and algebraic multiplicities and thus the Jordan blocks J1, . . . , Jj
are all 1× 1. Hence the Jordan decomposition X = WJW−1 has the form

J =



λ1
. . .

λj

Jj+1
. . .

Jr


,

where Ji ∈ Cdi×di , i = j + 1, . . . , r. By (3.4),
∞∑
k=0

λk
i

C= 1
1− λi

for i = 1, . . . , j.

By the first case,
∞∑
k=0

Jk
i

C= (1− Ji)−1 for i = j + 1, . . . , r.

Therefore,

∞∑
k=0



λk
1

. . .
λk
j

Jk
j+1

. . .
Jk
r


C=



1
1−λ1

. . .
1

1−λj

(I − Jj+1)−1

. . .
(I − Jr)−1


,

so
∞∑
k=0

Xk =
∞∑
k=0

WJkW−1 C= (I −X)−1.
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We next establish the forward implication. Suppose X has spectral radius ρ(X) > 1. As

ρ(X) = lim
k→∞
∥Xk∥

1
k ,

for any ϵ < ρ(X)− 1, there is some m ∈ N such that (ρ(X)− ϵ)k ≤ ∥Xk∥ for all k > m. In other
words, ∥Xk∥ grows exponentially and thus

lim
n→∞

∥Σn∥ = lim
n→∞

∥∥∥ 1
n

n−1∑
m=0

m∑
k=0

Xk
∥∥∥ =∞.

Also, observe that
1
n

n−1∑
m=0

m∑
k=0

1 = 1
n

n−1∑
m=0

m = n− 1
2 ;

so if 1 is an eigenvalue of X, then its Neumann series cannot be Cesáro summable. Hence we must
have λ(X) ⊆ D \ {1}. It remains to rule out the case where X has a Jordan block of size greater
than 1 × 1 for an eigenvalue in ∂D \ {1}. Suppose X has a Jordan block Jλ ∈ Cdi×di with di ≥ 2
and corresponding eigenvalue λ ∈ ∂D \ {1}. Dropping the subscript i to avoid clutter, we have

Jk
λ =


λk

(k
1
)
λk−1 (k

2
)
λk−2 . . .

( k
d−1
)
λk−(d−1)

λk
(k
1
)
λk−1 . . .

( k
d−2
)
λk−(d−2)

. . . . . . ...
λk

(k
1
)
λk−1

λk

 for k > d. (3.6)

Observe that the (1, 2)th entry,( 1
n

n−1∑
m=0

m∑
k=0

Jk
λ

)
12

= 1
n

n−1∑
m=0

m∑
k=0

kλk−1 =
n−1∑
k=0

(k − 1)λk − kλk−1 + 1
n(1− λ)2

is divergent as n→∞. So the series
∑∞

k=0 J
k
λ is not Cesáro summable and neither is the Neumann

series of X. □

The proof above shows that whenever there is a Jordan block of size greater than 1 with eigen-
values on ∂D \ {1}, Cesáro summation will fail to sum the Neumann series. In Section 4.1, we will
see how we may overcome this difficulty with Abel summation.

The best-known application of the scalar Cesáro summation is from Fourier Analysis [29, 31, 48].
It is well-known that if f ∈ L2(−π, π), then its Fourier series

sn(x) :=
n∑

k=−n

f̂(k)eikx

converges to f in the L2-norm, i.e., limn→∞∥sn− f∥2 = 0. Fejér’s theorem [14] gives the L∞-norm
analogue for continuous functions with one caveat — the series has to be taken in the Cesáro sense:
If f ∈ C(−π, π), then

σn(x) :=
1
n

n−1∑
m=0

m∑
k=−m

f̂(k)eikx,

converges uniformly to f , i.e., limn→∞∥σn − f∥∞ = 0.
A well-known consequence of Fejér’s theorem is that if f ∈ L2(−π, π) is continuous at x ∈ (−π, π),

then its Cesáro sum converges pointwise to f(x) [29, 48]. As an application of our notion of
Cesáso summability for matrices, we extend Fejér’s theorem to arbitrary matrices X ∈ Cd×d with
real eigenvalues and 2π-periodic functions f ∈ Cd−1(R). We emphasize that we do not require
diagonalizability of X. While we have assumed that f is (d− 1)-times differentiable for simplicity,
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it will be evident from the proof that the result holds for any f ∈ C(R) that is (dλ − 1)-times
differentiable at each λ ∈ λ(X) where dλ is the size of the largest Jordan block corresponding to λ.

Proposition 3.6 (Fejér’s theorem for matrix Fourier series). Let X ∈ Cd×d have all eigenvalues
real. Let f ∈ Cd−1(R) be 2π-periodic. Then

lim
n→∞

1
n

n−1∑
m=0

m∑
k=−m

f̂(k)eikX = f(X). (3.7)

Proof. By the standard Fejér’s theorem, for j ≤ d− 1,

lim
n→∞

σ
(j)
n (λ) = lim

n→∞
1
n

n−1∑
m=0

m∑
k=−m

(ik)j f̂(k)eikλ = f (j)(λ)

for any λ ∈ R and where the parenthetical superscripts denote jth derivative. For a Jordan block
J ∈ Cd×d with eigenvalue λ ∈ R,

f(J) =



f(λ) f ′(λ) f ′′(λ)
2! . . . f (d−1)(λ)

(d−1)!

f(λ) f ′(λ) . . . f (d−2)(λ)
(d−2)!

. . . . . . ...
f(λ) f ′(λ)

f(λ)


and so

lim
n→∞

1
n

n−1∑
m=0

m∑
k=−m

f̂(k)eikJ = lim
n→∞

1
n

n−1∑
m=0

m∑
k=−m

f̂(k)



eikλ ikeikλ (ik)2eikλ
2! . . . (ik)d−1eikλ

(d−1)!

eikλ ikeikλ . . . (ik)d−2eikλ

(d−2)!
. . . . . . ...

eikλ ikeikλ

eikλ



=



f(λ) f ′(λ) f ′′(λ)
2! . . . f (d−1)(λ)

(d−1)!

f(λ) f ′(λ) . . . f (d−2)(λ)
(d−2)!

. . . . . . ...
f(λ) f ′(λ)

f(λ)

 = f(J).

Now let X = W diag(J1, . . . , Jr)W−1 be its Jordan decomposition with Jordan blocks J1, . . . , Jr.
Then

lim
n→∞

1
n

n−1∑
m=0

m∑
k=−m

f̂(k)eikX = lim
n→∞

1
n

n−1∑
m=0

m∑
k=−m

f̂(k)T

e
ikJ1

. . .
eikJr

T−1

= T

f(J1) . . .
f(Jr)

T−1 = f(X). □

Proposition 3.6 provides a way to remedy the Gibbs phenomenon for matrix Fourier series, which
we will illustrate numerically in Section 8.1.

Before moving to our next method, we would like to point out that what may appear to be an
innocuous change to a series could affect the value obtained using the summation methods in this
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article. For example, if we had added zeros to every third term of the Grandi’s series 1−1+1−1+· · ·
to obtain the series 1− 1 + 0 + 1− 1 + 0 + · · · , its Cesáro sum decreases from 1/2 to 1/3.

3.2. Euler method. Euler summation methods are another class of sequential summation meth-
ods. Its name comes from the (E, 1)-method for scalar series, which involves the Euler transform
[31, 20]. Here we will extend Euler transform and Euler summation to matrices. Let P ∈ Cd×d be
a positive definite matrix. Observe that for A• = (Ak)∞k=0 ∈ s(Cd×d),

∞∑
k=0

Ak =
∞∑
k=0

(
(I + P )−1[I − P (I + P )−1]−1)k+1

Ak =
∞∑
k=0

n∑
k=0

(
n

k

)
(I + P )−n−1Pn−kAk

and thus we introduce the shorthand

EP
n (A•) :=

n∑
k=0

(
n

k

)
(I + P )−n−1Pn−kAk, (3.8)

and call it the P -Euler transform of
∑∞

k=0Ak.

Definition 3.7. For P ≻ 0, A• ∈ s(Cd×d), the matrix series
∑∞

k=0Ak is Euler summable to S ∈
Cd×d with respect to P or (E, P )-summable to S if

∞∑
n=0

EP
n (A•) = S.

We denote this by
∞∑
k=0

Ak
(E,P )= S.

For the special case P = ρI where ρ > 0 is a scalar, we just write (E, ρ) instead of (E, ρI).

Let P ≻ 0. Then

(I + P )n+1
n∑

k=0
EP
k (A•) = (I + P )n+1

n∑
m=0

EP
m(A•) =

n∑
m=0

(I + P )n−m
m∑
r=0

(
m

r

)
Pm−rAr

=
n∑

k=0

k∑
r=0

n∑
m=0

(
n−m

k − r

)(
m

r

)
Pn−kAr

=
n∑

k=0

k∑
r=0

(
n+ 1
k + 1

)
Pn−kAr =

n∑
k=0

(
n+ 1
k + 1

)
Pn−kSk.

Here we have used the Chu–Vandermonde’s identity [2]: for any integers 0 ≤ r ≤ k ≤ n,
n∑

m=0

(
n−m

k − r

)(
m

r

)
=
(
n+ 1
k + 1

)
.

The Euler method is thus a sequential summation method (3.1) with a choice of

Cn,k =


(
n+ 1
k + 1

)
Pn−k(I + P )−n−1 if k ≤ n,

0 if k > n.

Corollary 3.8 (Regularity of Euler summation). For A• ∈ s(Cd×d) and P, S ∈ Cd×d such that
P ≻ 0, if

∑∞
k=0Ak = S, then

∑∞
k=0Ak

(E,P )= S.
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Proof. This follows directly from Theorem 3.1, where the three conditions may be verified as follows:
Since

∞∑
k=0

(
n+ 1
k + 1

)
Pn−k(1 + P )−n−1 = I − Pn+1(I + P )−n−1 ≺ I

and limn→∞ I − Pn+1(I + P )−n−1 = I, Conditions (i) and (iii) hold. Condition (ii) follows from

lim
n→∞

(
n+ 1
k + 1

)
Pn−k(I + P )−n−1 = 0. □

Euler summability depends highly on the choice of P ≻ 0. The next result partially characterizes
it for commuting P1 and P2 via Loewner order.

Theorem 3.9. Let A• ∈ s(Cd×d) and P1, P2 ∈ Cd×d be such that P2 ≻ P1 ≻ 0 and P1P2 = P2P1.
If
∑∞

k=0Ak
(E,P1)= S, then

∑∞
k=0Ak

(E,P2)= S.

Proof. For any P ∈ Cd×d with P ≻ 0 and P1P = PP1,
m∑

n=0

n∑
k=0

(
m

n

)(
n

k

)
Pm−n(I + P )−m−1Pn−k

1 (I + P1)−n−1Ak

=
m∑
k=0

(
m

k

)
(P1 + P + P1P )m−k(1 + P1 + P + P1P )−m−1Ak = EP1+P+P1P

m (A). (3.9)

Suppose
∑∞

k=0Ak
(E,P1)= S. Since

∑∞
n=0 EP1

n (A) = S, it is Euler summable for any P ≻ 0. Set
P = (P2 − P1)(I + P1)−1. By the regularity in Corollary 3.8,

∑∞
n=0 EP1

n (A) (E,P )= S, i.e.,
∞∑

m=0

m∑
k=0

(
m

k

)
Pm−k
2 (I + P2)−m−1Ak = S.

Hence
∑∞

k=0Ak
(E,P2)= S. □

Equation (3.9) reveals the composition rule for Euler transforms: If P1 and P2 commutes, then
the P1-Euler transform of the P2-Euler transform is the (P1+P2+P1P2)-Euler transform. To gain
more insights, we apply it to the Neumann series.

Proposition 3.10 (Euler summability of Neumann series). For X ∈ Cd×d, P ≻ 0, and PX = XP ,
∞∑
k=0

Xk (E,P )=(I −X)−1

if and only if λ
(
(I + P )−1(P +X)

)
⊆ D.

Proof. The P -Euler transform of the Neumann series is

EP
n (X) = (I + P )−n−1(P +X)n. (3.10)

Therefore,
∞∑
n=0

EP
n (X) = (I + P )−1

∞∑
n=0

((I + P )−1(P +X))n,

which is conventionally summable to (I −X)−1 if and only if λ
(
(I + P )−1(P +X)

)
⊆ D. □

The case of P = ρI for a scalar ρ > 0 is worth stating separately as they commute with all
X ∈ Cd×d.
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Corollary 3.11. For X ∈ Cd×d, ρ > 0,
∞∑
k=0

Xk (E,ρ)=(I −X)−1

if and only if λ(X) ⊆ {z ∈ C : |z + ρ| < 1 + ρ}.
Intuitively, choosing a “small” P ∈ Cd×d ought to increase the rate of convergence. But it

is difficult to obtain a universal relationship as the convergence rate invariably depends on the
series. For scalar series, this is discussed in [30] and [41]. For matrix series, we will illustrate this
numerically in Section 8.3.

Euler methods are generalized by the Borel methods. We will discuss their relationship in
Section 4.3.

4. Functional summation methods

In sequential summation methods, we have a partial function R : s(Cd×d) 99K c(Cd×d) and the
sum is the value of a limiting process as n → ∞. In functional summation methods, we have a
partial function R : s(Cd×d) 99K c(Cb(Ω)d×d) and the sum is the value of two limiting processes —
a sequential limit as n→∞ followed by a continuous limit as x→ x∗ in Ω.

We now lay out the details. Let Ω ⊆ R and x∗ ∈ Ω or x∗ =∞. Let R : s(Cd×d) 99K c(Cb(Ω)d×d)
be a partial function defined by

R(A•)(x) =
∞∑
k=0

Dk(x)Ak (4.1)

for some Dk ∈ Cb(Ω)d×d, k ∈ N. The R-sum is defined to be
S := lim

x→x∗
R(A•)(x)

if the limit exists, and in which case we write
∑∞

k=0Ak
R= S. The careful reader might notice that

while we wrote R : s(Cd×d) 99K c(Cb(Ω)d×d), (4.1) seems to imply that R : s(Cd×d) 99K Cb(Ω)d×d.
The reason is that for a convergent series we do not distinguish between its sequence of partial
sums in c(Cb(Ω)d×d) and its limit in Cb(Ω)d×d.

We begin with a sufficient condition for the regularity of functional summation methods (4.1).
Unlike Theorem 3.1, the following result is not extended from any analogous result for scalar series
but [20, Theorem 25] comes closest.
Theorem 4.1. Let Ω ⊆ R, x∗ ∈ Ω or x∗ =∞, Dk ∈ Cb(Ω)d×d, and k ∈ N. Suppose

(i) there exists η0 > 0 such that ∥D0(x)∥ ≤ η0 for all x ∈ Ω;
(ii) limx→x∗ Dk(x) = I for each k ∈ N;
(iii) there exists η1 > 0 such that

∑∞
k=0∥Dk(x)−Dk+1(x)∥ < η1 for all x ∈ Ω.

Then for any A• ∈ s(Cd×d) such that
∑∞

k=0Ak = S, the series
∑∞

k=0Dk(x)Ak is summable in the
conventional sense for each x ∈ Ω with

∞∑
k=0

Dk(x)Ak ∈ Cb(Ω)d×d and lim
x→x∗

∞∑
k=0

Dk(x)Ak = S. (4.2)

Proof. Let Sn =
∑n

k=0Ak, n ∈ N. Then
n∑

k=0
Dk(x)Ak =

n−1∑
k=0

(Dk(x)−Dk+1(x))Sk +Dn(x)Sn.

By Conditions (i) and (iii), for each x ∈ Ω and n ∈ N,

lim
k→∞
∥Dk(x)−Dk+1(x)∥ = 0, ∥Dn(x)∥ ≤ ∥D0(x)∥+

n−1∑
k=0
∥Dk(x)−Dk+1(x)∥ ≤ η0 + η1.
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So the sequence (Dk(x))∞k=0 is convergent for each x ∈ Ω and∥∥∥ lim
k→∞

Dk(x)
∥∥∥ ≤ η0 + η1.

Thus there exists a bounded function D(x) such that limk→∞Dk(x) = D(x) for each x ∈ Ω.
We start with the left equality in (4.2). As S• is convergent, it is bounded by some β > 0. By

Condition (iii),

sup
x∈Ω

∞∑
k=0
∥Dk(x)Ak∥ ≤ sup

x∈Ω

[ ∞∑
k=0
∥Dk(x)−Dk+1(x)∥ · ∥Sk∥+ ∥D(x)∥ · ∥S∥

]

≤ sup
x∈Ω

[ ∞∑
k=0
∥Dk(x)−Dk+1(x)∥ · ∥Sk∥

]
+ sup

x∈Ω
∥D(x)∥ · ∥S∥ <∞.

As absolute summability implies summability in a Banach space, we have
∑∞

k=0Dk(x)Ak ∈ Cb(Ω)d×d.
For the limit in (4.2), assume first that S = 0. For ε > 0, choose m ∈ N sufficiently large so that

∥Sk∥ < ε/2η1 for all k > m. By Condition (ii),

lim
x→x∗

m∑
k=0

(Dk(x)−Dk+1(x))Sk = 0.

By Condition (iii),∥∥∥∑
k≥m

(Dk(x)−Dk+1(x))Sk

∥∥∥ ≤ ε

2η1

∑
k≥m

∥Dk(x)−Dk+1(x)∥ ≤
ε

2 .

Therefore,

lim
x→x∗

∞∑
k=0

Dk(x)Ak = lim
x→x∗

∞∑
k=0

(Dk(x)−Dk+1(x))Sk +D(x)S = 0.

For S ̸= 0, we just apply the same argument to A′
• = (A′

k)∞k=0 with

A′
k :=

{
A0 − S k = 0,
Ak k = 1, 2, . . . .

□

Theorem 4.1 may be interpreted as follows: A functional summation method (4.1) that satisfies
Condition (ii) is a perturbation of the original series. If the perturbation functions Dk’s are uni-
formly bounded, i.e., Condition (i) holds, and if the changes are small enough at each step in the
sense of Condition (iii), then we have regularity. We will use Theorem 4.1 to establish regularity
of two powerful matrix summation methods.

4.1. Abelian means. The scalar version of this class of summation methods gained its name from
the Abel summation method, which contains the well-known Abel’s Theorem for power series as a
special case [19]. We will generalize it to matrix series.

Definition 4.2. Let P• := (Pk)∞k=0 be an unbounded sequence of positive definite matrices strictly
increasing in the Loewner order, i.e., 0 ≺ P0 ≺ P1 ≺ · · · , and limk→∞∥Pk∥ = ∞. For A• =
(Ak)∞k=0 ∈ s(Cd×d), the series

∑∞
k=0Ak is summable in Abelian means to S ∈ Cd×d with respect to

P• if
∑∞

k=0Ake
−Pkx is conventionally summable for all x ∈ (0,∞) and

lim
x→0

∞∑
k=0

Ake
−Pkx = S.

We denote this by
∞∑
k=0

Ak
(A,P•)= S.
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The exponential function, when applied to a matrix argument, refers to the matrix exponential
[24, Section 10.8].

Corollary 4.3 (Regularity of Abelian means). Let P• := (Pk)∞k=0 be such that 0 ≺ P0 ≺ P1 ≺ · · ·
and limk→∞∥Pk∥ =∞. For any A• ∈ s(Cd×d), if

∑∞
k=0Ak = S, then

∑∞
k=0Ak

(A,P•)= S.

Proof. Summation by Abel means with respect to P• is of the form (4.1). So we just need to check
the conditions of Theorem 4.1. For any x ∈ (0,∞),

∞∑
k=0

(
e−Pkx − e−Pk+1x

)
= e−P0x − lim

k→∞
e−Pkx = e−P0x ⪯ I.

So Conditions (i) and (iii) are satisfied. Condition (ii) is also satisfied as limx→0+ e−Pkx = I for
any k ∈ N. □

The special case P• = (0, I, 2I, . . . ), which reduces to a power series under the change-of-variable
t = e−x, gives us the matrix analogue of the well-known Abel summability.

Definition 4.4. For A• = (Ak)∞k=0 ∈ s(Cd×d), the series
∑∞

k=0Ak is Abel summable to S ∈ Cd×d if∑∞
k=0Akx

k is conventionally summable for all x ∈ (0, 1) and

lim
x→1−

∞∑
k=0

Akx
k = S.

We denote this by
∞∑
k=0

Ak
A= S.

We will see next that Abel summability is implied by Cesáro summability.

Theorem 4.5. For A• ∈ s(Cd×d) and S ∈ Cd×d, if
∑∞

k=0Ak
C= S, then

∑∞
k=0Ak

A= S.

Proof. Suppose
∑∞

k=0Ak
C= S. For any n ∈ N, let Sn =

∑n
k=0Ak and

Σn = 1
n

n−1∑
k=0

Sk.

For any x ∈ (0, 1), we have Sn = (n+ 1)Σn+1 − nΣn and
n∑

k=0
Akx

k = Snx
n +

n−1∑
k=0

Skx
k(1− x). (4.3)

Since limn→∞ nxn = 0 and limn→∞Σn = S, we get limn→∞ Snx
n = 0. By (4.3),∥∥∥∥ ∞∑

k=0
Akx

k − S

∥∥∥∥ = ∥∥∥∥ ∞∑
k=0

Skx
k(1− x)− S

1− x
(1− x)

∥∥∥∥ = ∥∥∥∥ ∞∑
k=0

Skx
k(1− x)−

∞∑
k=0

Sxk(1− x)
∥∥∥∥

=
∥∥∥∥ ∞∑
k=0

(Sk − S)xk(1− x)
∥∥∥∥ ≤ ∞∑

k=0
∥Sk − S∥xk(1− x).

For x ∈ (0, 1), ε > 0, choose m sufficiently large such that if k, p, q > m,

∥Σk − S∥ < (1− x)
2 ε and ∥Σp − Σq∥ <

(1− x)
2 ε.

Then
∞∑
k=0
∥Sk − S∥xk(1− x) = (1− x)

[ m∑
k=0

xk∥Sk − S∥+
∞∑

k=m+1
xk∥Sk − S∥

]
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= (1− x)
[ m∑
k=0

xk∥Sk − S∥+
∞∑

k=m+1
xk∥k(Σk+1 − Σk) + (Σk+1 − S)∥

]

≤ (1− x)
[ m∑
k=0

xk∥Sk − S∥+
∞∑

k=m+1
xk
(
k∥Σk+1 − Σk∥+ ∥Σk+1 − S∥

)]

< (1− x)
[ m∑
k=0

xk∥Sk − S∥+
∞∑

k=m+1
xk(k + 1)(1− x)ε

]

= (1− x)
m∑
k=0

xk∥Sk − S∥+ ε(1− x)2
∞∑

k=m+1
(k + 1)xk

< (1− x)
m∑
k=0

xk∥Sk − S∥+ ε.

Taking limit x→ 1−, we deduce the required Abel summability. □

Again, we will use the Neumann series as a test case. From the perspective of summing the
Neumann series, Abel summation is the “right” generalization of Cesáro summation in that it
overcomes the difficulty associated with Jordan blocks of size greater than 1, which we discussed
after Proposition 3.5.

Lemma 4.6. Let Jλ ∈ Cd×d be a Jordan block with eigenvalue λ. Then
∞∑
k=1

Jk
λ

A= (I − Jλ)−1

if and only if λ ∈ D \ {1}.

Proof. If |λ| > 1, then
∑∞

k=0 J
k
λx

k is not summable for x > 1/λ, so the series is not Abel summable.
If λ = 1, then limx→1−

∑∞
k=0 J

k
λx

k does not exist, so the series is not Abel summable either.
For the converse, suppose λ ∈ D \ {1}. Let 0 < x < 1. By (3.6), for i, j = 1, . . . , d with j ≥ i,

the (i, j)th entry of the matrix( ∞∑
k=0

Jk
λx

k
)
ij

= xj−i
∞∑
k=0

(
k + j − i

j − i

)
(λx)k = xj−i

(1− λx)j−i+1 .

Therefore,

∞∑
k=1

Jk
λ

A=



1
1−λ

1
(1−λ)2

1
(1−λ)3 . . . 1

(1−λ)d−1
1

1−λ
1

(1−λ)2 . . . 1
(1−λ)d−2

. . . . . . ...
1

1−λ
1

(1−λ)2
1

1−λ

 = (I − Jλ)−1. □

We then apply the lemma to a Jordan decomposition to deduce what we are after.

Corollary 4.7 (Abel summability of Neumann series). For X ∈ Cd×d,
∞∑
k=0

Xk A= (I −X)−1

if and only if λ(X) ⊆ D \ {1}.
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Proof. Let λ(X) = {λ1, . . . , λr} ⊆ D \ {1} counting multiplicities and X = WJW−1 be a Jordan
decomposition with J = diag(Jλ1 , . . . , Jλr) and Jλi the Jordan block corresponding to λi, i =
1, . . . , r. Then

∞∑
k=0

Xk =
∞∑
k=0

W


Jk
λ1

. . .
Jk
λr

W−1 A= W

(I − Jλ1)−1

. . .
(I − Jλr)−1

W−1 = (I −X)−1.

For the converse, suppose without loss of generality that λ1 /∈ D \ {1}. Then

∞∑
k=0

W


Jk
λ1

. . .
Jk
λr

W−1

is not Abel summable as the first Jordan subblock is not Abel summable. □

4.2. Lambert method. The original Lambert summation method, named after Johann Heinrich
Lambert, played an important role in the number theory [21, 31, 46], and is a particularly potent
tool for summing Dirichlet series, as we will see in Section 8.4. Here we will generalize Lambert
summation to matrix series.
Definition 4.8. For A• = (Ak)∞k=0 ∈ s(Cd×d), the series

∑∞
k=1Ak is Lambert summable to S ∈ Cd×d

if
∑∞

k=1 kAkx
k/(1 + x+ · · ·+ xk−1) is conventionally summable for every x ∈ (0, 1) and

lim
x→1−

(1− x)
∞∑
k=1

kxk

1− xk
Ak = S.

We denote this by
∞∑
k=1

Ak
L= S.

Corollary 4.9 (Regularity of Lambert summation). For A• ∈ s(Cd×d) and S ∈ Cd×d, if
∑∞

k=0Ak =
S, then

∑∞
k=0Ak

L= S.
Proof. Lambert summation is of the form (4.1), so we check the conditions of Theorem 4.1. Since
|x| < 1 for x ∈ (0, 1), Condition (i) is satisfied. For each k ∈ N,

lim
x→1−

kxk

1 + x+ · · ·+ xk−1 = 1,

so Condition (ii) is satisfied. Condition (iii) is also satisfied as for any x ∈ (0, 1),
∞∑
k=0

(1− x)
∣∣∣∣ kxk

1− xk
− (k + 1)xk+1

1− xk+1

∣∣∣∣ = x ≤ 1. □

4.3. Borel and Mittag-Leffler methods. The scalar versions of Borel summation methods,
named after Émile Borel [5], have important applications in physics [15, 44]. They come in two
variants (weak and strong) and we will extend them to matrix series.
Definition 4.10. For A• = (Ak)∞k=0 ∈ s(Cd×d), its weak Borel transform is

WB(A•)(x) =
∞∑
k=0

Sk
xk

k!

for all x > 0, where Sn =
∑n

k=0Ak. The series
∑∞

k=0Ak is weakly Borel summable to S ∈ Cd×d if
e−x WB(A•)(x) is conventionally summable for all x > 0 and

lim
x→∞

e−x WB(A•)(x) = S.
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We denote this by
∞∑
k=0

Ak
WB= S.

Theorem 4.11 (Regularity of weak Borel summation). For A• ∈ s(Cd×d), if
∑∞

k=0Ak = S, then∑∞
k=0Ak

WB= S.
Proof. Let Sn =

∑n
k=0Ak, n ∈ N. As S• is a convergent sequence, it is bounded by some β > 0.

For each x > 0,

∥e−x WB(A•)(x)∥ =
∥∥∥∥e−x

∞∑
k=0

xk

k! Sk

∥∥∥∥ ≤ βe−x
∞∑
k=0

xk

k! = β.

Hence e−x∑∞
k=0 Skx

k/k! is conventionally summable for all x > 0. Moreover,∥∥ lim
x→∞

e−x WB(A•)(x)− S
∥∥ = ∥∥∥∥ limx→∞

e−x
∞∑
k=0

xk

k! Sk − lim
x→∞

e−x
∞∑
k=0

xk

k! S
∥∥∥∥

≤ lim
x→∞

e−x
∞∑
k=0

xk

k! ∥Sk − S∥ = 0. □

Definition 4.12. For A• = (Ak)∞k=0 ∈ s(Cd×d), its strong Borel transform is

SB(A•)(x) :=
∞∑
k=0

Ak
xk

k!

for x > 0. The series
∑∞

k=0Ak is strongly Borel summable to S ∈ Cd×d if∫ x

0
e−t SB(A•)(t) dt

is conventionally summable for all x > 0 and∫ ∞

0
e−x SB(A•)(x) dx = S. (4.4)

We denote this by
∞∑
k=0

Ak
SB= S.

It turns out that, for a series of scalars, the strong Borel method is a special case of the Mittag-
Leffler summation. We will show that the same is true for a series of matrices with the following
matrix generalization of the latter.
Definition 4.13. For A• = (Ak)∞k=0 ∈ s(Cd×d), the series

∑∞
k=0Ak is Mittag-Leffler summable to

S ∈ Cd×d with respect to α > 0 if ∫ x

0
e−t

∞∑
k=0

Akt
αk

Γ(1 + αk) dt

is conventionally summable for all x > 0 and∫ ∞

0
e−x

∞∑
k=0

Akx
αk

Γ(1 + αk) dx = S.

We denote this by
∞∑
k=0

Ak
M= S.

The implicit choice of α is not reflected in the notation. Here Γ(x) :=
∫∞
0 tx−1e−t dt is the Gamma

function.
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If we set α = 1 above, we obtain the strong Borel method.

Theorem 4.14 (Regularity of Mittag-Leffler summation). For α > 0 and A• ∈ s(Cd×d), if∑∞
k=0Ak = S, then

∑∞
k=0Ak

M= S. In particular, if
∑∞

k=0Ak = S, then
∑∞

k=0Ak
SB= S.

Proof. This follows from

S =
∞∑
k=0

Ak =
∞∑
k=0

(∫ ∞

0
e−xxαk dx

)
Ak

Γ(1 + αk) =
∫ ∞

0
e−x

∞∑
k=0

Akx
αk

Γ(1 + αk) dx. □

We will next justify the ‘weak’ and ‘strong’ designations and see when they are equivalent [7, 44],
generalizing [20, Theorem 123] to matrices.

Theorem 4.15. Let A• = (Ak)∞k=0 ∈ s(Cd×d). If
∑∞

k=0Ak
WB= S, then

∑∞
k=0Ak

SB= S. The converse
holds if and only if limx→∞ e−x SB(A•)(x) = 0.

For easy reference, we reproduce two lemmas used in the proof of [20, Theorem 122].

Lemma 4.16 (Hardy). Let f : R → C be differentiable. If limx→∞ f(x) + f ′(x) = 0, then
limx→∞ f(x) = 0.

Lemma 4.17 (Hardy). Let a• ∈ s(C). The series WB(a•)(x) is conventionally summable for all
x > 0 if and only if SB(a•)(x) is conventionally summable for all x > 0.

Proof of Thoerem 4.15. Suppose
∑∞

k=0Ak
WB= S. Then WB(A•)(x) is conventionally summable for

all x > 0. Applying Lemma 4.17 entrywise shows that SB(A•)(x) is conventionally summable for
all x > 0. Taking derivative,

SB(A•)′(x) =
∞∑
k=0

Ak+1
xk

k! and WB(A•)′(x) =
∞∑
k=0

Sk+1
xk

k! .

Therefore,

e−x WB(A•)(x)−A0 =
∫ x

0

d

dt

(
e−t WB(A•)(t)

)
dt =

∫ x

0
e−t(WB(A•)′(t)− WB(A•)(t)

)
dt

=
∫ x

0

∞∑
k=0

(Sk+1 − Sk)
e−ttk

k! dt =
∫ x

0

∞∑
k=0

Ak+1
e−ttk

k! dt

=
∫ x

0
e−t SB(A•)′(t) dt = e−x SB(A•)(x)−A0 +

∫ x

0
e−t SB(A•)(t) dt.

Rearranging terms,

e−x WB(A•)(x) =
∫ x

0
e−t SB(A•)(t) dt+ e−x SB(A•)(x). (4.5)

Taking limit x → ∞, the left-hand side gives the weak Borel sum while the first term on the
right-hand side gives the strong Borel sum. Since

lim
x→∞

e−x WB(A•)(x) = lim
x→∞

(∫ x

0
e−t SB(A•)(t) dt+ e−x SB(A•)(x)

)
= lim

x→∞

(∫ x

0
e−t SB(A•)(t) dt+

d

dx

∫ x

0
e−t SB(A•)(t) dt

)
= S,

we may apply Lemma 4.16 entrywise so that

lim
x→∞

e−x SB(A•)(x) = 0 and lim
x→∞

∫ x

0
e−t SB(A•)(t) dt = S.
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Suppose
∑∞

k=0Ak
SB= S. Then SB(A•)(x) is conventionally summable for all x > 0 and so is

WB(A•)(x) by applying Lemma 4.17 entrywise. By (4.5),

lim
x→∞

e−x WB(A•)(x) = lim
x→∞

∫ x

0
e−t SB(A•)(t) dt+ lim

x→∞
e−x SB(A•)(x)

= S + lim
x→∞

e−x SB(A•)(x).

Hence
∑∞

k=0Ak
WB= S if and only if limx→∞ e−x SB(A•)(x) = 0. □

As we mentioned at the end of Section 3.2, both Borel methods generalize the Euler methods.

Theorem 4.18. Let A• = (Ak)∞k=0 ∈ s(Cd×d) and P ∈ Cd×d be such that P ≻ 0. If
∑∞

k=0Ak
(E,P )= S,

then
∑∞

k=0Ak
WB= S and

∑∞
k=0Ak

SB= S.

Proof. Let Sn =
∑n

k=0Ak, n ∈ N. By definition of Euler summability,
∑∞

k=0Ak
(E,P )= S if and only

if limn→∞ Zn = S where

Zn =
n∑

k=0
EP
k (A•) = (I + P )−n−1

n∑
k=0

(
n+ 1
k + 1

)
Pn−kSk.

Then

ePx
∞∑
k=0

Sk
xk

k! =
[ ∞∑
k=0

(Px)k

k!

][ ∞∑
k=0

Sk
xk

k!

]
=

∞∑
k=0

[
Sk

k! +
PSk−1
(k − 1)! +

P 2Sk−2
(k − 2)!2! + · · ·+

P kS0
k!

]
xk

=
∞∑
k=0

(I + P )kxk

k! Zk.

Thus,

e−x
∞∑
k=0

xk

k! Sk = e−(I+P )x
∞∑
k=0

(I + P )kxk

k! Zk. (4.6)

Weak Borel summability follows as∥∥∥ lim
x→∞

e−x
∞∑
k=0

xk

k! Sk − S
∥∥∥ = ∥∥∥ lim

x→∞
e−(I+P )x

∞∑
k=0

(I + P )kxk

k! Zk − lim
x→∞

e−(I+P )x
∞∑
k=0

(I + P )kxk

k! S
∥∥∥

≤ lim
x→∞

e−(I+P )x
∞∑
k=0

(I + P )kxk

k! ∥Zk − S∥ = 0.

By Theorem 4.15, we obtain
∑∞

k=0Ak
SB= S. □

As before we will use the Neumann series as our basic test case. The proof below sheds further
light on how Borel summation generalize Euler summation.

Proposition 4.19 (Borel summability of Neumann series). For X ∈ Cd×d, the following are
equivalent:

(i)
∑∞

k=0X
k WB= (I −X)−1;

(ii)
∑∞

k=0X
k SB= (I −X)−1;

(iii) λ(X) ⊆ {z ∈ C : Re(λ) < 1}.

Proof. Let λ(X) = {λ1, . . . , λr}. We show that (ii) and (iii) are equivalent. If 1 ∈ λ(X), then the
integral ∫ ∞

0
e−x

∞∑
k=0

(xX)k

k! dx
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is divergent, so the Neumann series
∑∞

k=0X
k is not strongly Borel summable. If 1 /∈ λ(X), then∫ ∞

0
e−x

∞∑
k=0

(xX)k

k! dx =
∫ ∞

0
ex(X−I) dx = (X − I)−1

(
lim
x→∞

ex(X−I) − I
)
, (4.7)

so the Neumann series is strongly Borel summable to (I −X)−1 if and only if

lim
n→∞

en(X−I) = 0. (4.8)

As limn→∞An = 0 if and only if λ(A) ⊆ D; |eλ−1| < 1 if and only if Re(λ) < 1; and λ(eX−I) =
{eλ1−1, . . . , eλr−1}; we deduce that (4.8) holds if and only if (iii) holds.

We next show that (i) and (iii) are equivalent. The geometric series
∑∞

k=0 λ
k is not weakly Borel

summable at λ = 1 as

lim
x→∞

e−x
∞∑
k=0

xk

(k − 1)! = lim
x→∞

e−x d

dx
(xex) = lim

x→∞
1 + x = +∞.

So the Neumann series is not weakly Borel summable if 1 ∈ λ(X). If 1 /∈ λ(X), then

lim
x→∞

e−x
∞∑
k=0

(I −X)−1(I −Xk+1)x
k

k! = lim
x→∞

e−x(I −X)−1
∞∑
k=0

(I −Xk+1)x
k

k!

= lim
x→∞

e−x(I −X)−1(exI −XexX)

= (I −X)−1 − lim
x→∞

Xex(X−I).

As in the case of (4.8), the last limit is zero if and only if (iii) holds. □

In this context, Borel summation may be viewed as a limiting case of Euler summation as ρ→∞:
By Corollary 3.11,

∑∞
k=0X

k (E,ρ)=(I −X)−1 if and only if λ(X) ⊆ {z ∈ C : |z + ρ| < 1 + ρ}; and⋃
ρ>0
{z ∈ C : |z + ρ| < 1 + ρ} = {z ∈ C : Re(λ) < 1}.

5. From theory to computations

In principle, every summation method discussed in Sections 3 and 4 yields a numerical method
for summing a matrix series. But in reality issues related to rounding errors will play an important
role and have to be carefully treated. We will discuss these in the next two sections after making
some observations.

The theoretical results in Sections 3 and 4 are all about convergence (whether a method converges
or diverges) but say nothing about the rate of convergence. Readers familiar with the matrix
functions literature [24] may think that convergence rates should be readily obtainable but this is
an illusion — the matrix series appearing in the matrix functions literature are invariably power or
Taylor series, whereas the series appearing in Sections 3 and 4 can be any arbitrary matrix series
— Fourier, Dirichlet, Hadamard powers, etc.

For special matrix series whose kth term takes a simple fixed form like Xk, sin(kX), exp(X log k),
X◦k, there is some hope of deriving a ‘remainder’ that gives the convergence rate but even that
may be a difficult undertaking. For an arbitrary matrix series

∑∞
k=0Ak, where the kth term can

be any matrix Ak ∈ Cd×d, such ‘remainder’ do not generally exist even when it is a scalar series
[4, 20, 38, 44].

To sum an arbitrary matrix series of complete generality, we may thus only assume that the
truncated sum

∑n
k=0Ak ≈

∑∞
k=0Ak is ascertained to be a good approximation through some other

means and that n is given as part of the input — there is no ‘remainder’ that allows one to estimate
n a priori. We will have more to say about this issue in Section 6, where we will also discuss matrix
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adaptations of compensated summation [28], block and mixed block summations [3], methods that
were originally developed for sums of scalars.

The special case of Taylor or power series, i.e., where Ak = ckA
k, deserves special attention

because of their central role in matrix functions [24]. In Section 7, we discuss how one may adapt
the Padé approximation [25] and Schur–Parlett [37] algorithms to work with any of the regular
sequential summation methods R in Section 3, i.e., compute the R-sum S

R=
∑∞

k=0 ckA
k for a given

A ∈ Cd×d using these algorithms.
Henceforth we assume the standard model for floating-point arithmetic [23, Section 2.2]:

fl(a ∗ b) = (a ∗ b)(1 + δ), |δ| ≤ u, ∗ ∈ {+,−,×,÷},
with fl(a) the computed value of a ∈ R in floating-point arithmetic and u the unit roundoff. For any
computations in floating-point arithmetic involving more than a single operation, we denote by Ŝ
the final computed output of a quantity S. This is to avoid having to write, say, fl(a+fl(b+fl(c+d))),
for the output of a+ b+ c+ d, unless it is strictly necessary (like in Algorithm 2).

6. Accurate and fast numerical summation

In this section there will be no loss of generality in restricting our discussions to R, since complex
addition is performed separately for real and imaginary parts as real additions. As we alluded to
in Section 5, for a general matrix series S =

∑∞
k=0Ak where Ak has no special form, computing it

means to approximate S up to some desired ε-accuracy by a partial sum Sn =
∑n

k=0Ak, i.e., with
∥Sn − S∥ < ε. There are two considerations in choosing n ∈ N.

Firstly, for a given ε > 0, the value of n depends on the summation method we choose. This
is in fact an important motivation for the summation methods in Sections 3 and 4, namely, they
often require a smaller n to achieve the same ε-accuracy. For example, take any scalar alternating
series

∑∞
k=0 ak = s that is conventionally summable; it is known [41] that for∣∣∣∣s− n1∑

k=0
ak

∣∣∣∣ < ε,

∣∣∣∣s− n2∑
k=0

E1
k(a•)

∣∣∣∣ < ε,

we need only n2 < n1 terms. Here E1
k(a•) is the 1-Euler transform as defined in (3.8). In other words,

Euler summation gets us to the same ε-accuracy with fewer terms than conventional summation.
This advantage extends to series of matrices, as we will see with the Neumann series in Section 8.3.

Secondly, for a fixed choice of summation method and a fixed ε > 0, the value of n is highly
sensitive to the order of summation and termination criteria. This is already evident in conventional
summation of scalar series s =

∑∞
k=0 ak. Clearly we could not rely on |sn − s| = |

∑∞
k=n+1 ak| < ε

as a termination criterion since the value of s is precisely what needs to be determined.
Suppose we use |ak| < ε (using |ak|/|sk| < ε would not make much of a difference) as termination

criterion with ε = 10−6 and we use the geometric series with ak = 2−k for illustration since we know
s = 2. A straightforward summation algorithm is given by setting s ← a0 = 1/2 and iteratively
computing

s← s+ ak for k = 1, . . . , n, (6.1)
until |an| < 10−6, which gives the correct answer ŝ = 2 in single precision. However, if we apply
the same algorithm to what is essentially the same series with a single zero added as the first term:

bk =
{
0 k = 0,
ak−1 k ≥ 1,

then although s =
∑∞

k=0 bk =
∑∞

k=0 ak, the computed sum is now ŝ = 0 as it terminates at n = 0.
The bottom line is that there is no universal termination criterion — n has to be ascertained on
a case-by-case basis and for a general series we will have to assume that it is given as part of our
input. Henceforth we will assume this and our goal is to compute s := sn =

∑n
k=1 ak accurately.
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The näıve algorithm in (6.1) is called recursive summation [23, Section 4.1]. It computes s with
an error given by

ŝ =
n∑

k=0
ak(1 + δk), |δk| ≤ nu+O

(
u2
)
. (6.2)

The algorithm extends immediately to matrix sums S =
∑n

k=1Ak ∈ Rd×d. Since matrix addition
is computed entrywise, if we write sij and aijk for the (i, j)th entry of S and Ak respectively, then
(6.2) generalizes to

ŝij =
n∑

k=0
aijk

(
1 + δijk

)
, |δijk| ≤ nu+O

(
u2
)
, i, j = 1, . . . , d,

or, in terms of the Hadamard product ◦ and writing ∆k := (δijk) ∈ Rd×d,

Ŝ =
n∑

k=0
Ak ◦ (1+∆k), |δijk| ≤ nu+O

(
u2
)
, i, j = 1, . . . , d. (6.3)

Since for A,B ∈ Rd×d,
∥A ◦B∥ ≤ ∥A∥ max

i,j=1,...,d
|bij |, (6.4)

we obtain the forward error bound

∥S − Ŝ∥ ≤
n∑

k=0
∥Ak ◦∆k∥ ≤ nu

n∑
k=0
∥Ak∥+O

(
u2
)
.

This serves as a baseline bound — we will discuss three more accurate summation methods that
can significantly reduce the coefficient nu to O(

√
nu), O(u), and even O(u2).

For a scalar series, a simple strategy [23, Section 4.2] to improve accuracy of (6.1) is to reorder
the summands in decreasing magnitudes to minimize the rounding error at each step. Note that
this does not work for matrix series since there is no natural total order on Rd×d and reordering
often improves the accuracy of one entry at the expense of decreased accuracy in another.

6.1. Block summation algorithm. Assume without loss of generality that b ∈ N divides n+ 1.
The block summation algorithm in Algorithm 1 modifies recursive summation (6.1) by dividing the
sum into blocks of size b. In particular, it allows the block sums to be computed in parallel.

Algorithm 1 Block summation
input: A0, . . . , An ∈ Rd×d, block size b;
1: for k = 1, . . . , (n+ 1)/b do
2: compute Si =

∑ib−1
k=(i−1)bAk with recursive summation (6.1);

3: end for
4: compute S =

∑(n+1)/b
i=1 Si with the recursive summation (6.1);

output: S.

As in our discussion of (6.1), it is straightforward to extend [3, Equation 2.4] to a sum of matrices:
Algorithm 1 satisfies

Ŝ =
n∑

k=0
Ak ◦ (1+∆k), |δijk| ≤

(
b+ n+ 1

b
− 2

)
u+O

(
u2
)
, i, j = 1, . . . , d,

with notations as in (6.3). By (6.4), we obtain the forward error bound for Algorithm 1:

∥S − Ŝ∥ ≤
(
b+ n+ 1

b
− 2

)
u

n∑
k=0
∥Ak∥+O

(
u2
)
.
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The optimal bound 2
√
n+ 1− 2 is easily seen to be attained with b =

√
n+ 1 although in practice

it is common to choose b to be a constant such as 128 or 256.
The parallelism in Algorithm 1 requires summands to be independent and may be lost in situa-

tions like computing a matrix polynomial
∑n

k=0 ckA
k with Horner’s method (Algorithm 5).

6.2. Compensated summation algorithm. This is also known as Kahan summation [28] and
is based on a clever exploitation of the floating point system. By observing that the rounding error
in a floating-point addition of two matrices is itself a floating-point matrix, Algorithm 2 simply
approximates this error with a correction term C ∈ Rd×d at each step of recursive summation to
adjust the computed sum.

Algorithm 2 Compensated summation
input: A0, . . . , An ∈ Rd×d;
1: initialize S ← 0, C ← 0;
2: for k = 0, . . . , n do
3: Y ← fl(Ak − C);
4: T ← fl(S + Y );
5: C ← fl(fl(T − S)− Y );
6: S ← T ;
7: end for

output: S.

Since the rounding error in floating point arithmetic is, by definition, the unit round-off u, a
straightforward matrix adaptation of [23, Equation 4.8] for Algorithm 2 yields

Ŝ =
n∑

k=0
Ak ◦ (1+∆k), |δijk| ≤ 2u+O

(
u2
)
, i, j = 1, . . . , d, (6.5)

with notations as in (6.3). By (6.4), we obtain the forward error bound for Algorithm 2:

∥S − Ŝ∥ ≤ 2u
n∑

k=0
∥Ak∥+O

(
u2
)
.

Remarkably, Algorithm 2 eliminates n from the error bound. This enhanced accuracy is achieved at
the cost of three extra matrix additions per loop, and is often more expensive than simply switching
to higher precision [3]. So compensated summation is usually deployed only when computations
are already taking place at the highest available precision.

6.3. Mixed block summation algorithm. Assume without loss of generality that b ∈ N divides
n + 1. Algorithm 3 is a variant of Algorithm 1 that strikes a balance between a fast algorithm
FastSum and an accurate algorithm AccurateSum.

Algorithm 3 Mixed block summation
input: A0, . . . , An ∈ Rd×d, block size b, FastSum, AccurateSum;
1: for k = 1, . . . , (n+ 1)/b do
2: compute Si =

∑ib−1
k=(i−1)bAk with FastSum;

3: end for
4: compute S =

∑(n+1)/b
i=1 Si with AccurateSum;

output: S.

When b = 1, Algorithm 3 is exactly AccurateSum and when b = n+1, Algorithm 3 is exactly
FastSum. The scalar version of this algorithm was proposed by Higham and Blanchard in [3] and
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we merely adapted it for matrices. The following corollary of [3, Theorem 3.1] follows from the
same arguments used in Sections 6.1 and 6.2. Recall that we write ∆k := (δijk) ∈ Rd×d.

Corollary 6.1 (Error bound of mixed block summation algorithm). Let the sum computed with
FastSum satisfy

ŜF =
n∑

k=0
AF

k ◦
(
1+∆F

k

)
, |δF

ijk| ≤ εF(n), i, j = 1, . . . , d,

and likewise for AccurateSum with A in place of F in the superscript. Then the sum computed
with Algorithm 3 satisfies

Ŝ =
n∑

k=0
Ak ◦ (1+∆k), |δijk| ≤ ε(n, b) := εF(b) + εA(n/b) + εF(b)εA(n/b), i, j = 1, . . . , d,

and thus
∥S − Ŝ∥ ≤ ε(n, b)

n∑
k=0
∥Ak∥.

In particular, if AccurateSum is calculated in double precision, i.e., εA(n) = O(u2), then the
error bound is ε(n, b) = εF(b) + O(u2). Various options for the subroutines AccurateSum and
FastSum are discussed in [3].

7. Summing matrix power series

Unlike the general matrix series considered in the last section, matrix power series admit more
efficient algorithms. They are also intimately connected to the study of matrix functions [24]. The
benefit of this connection goes both ways — the algorithms used to evaluate matrix functions,
notably Padé approximation and Schur–Partlett algorithm, may be adapted to implement the
summation methods in Sections 3 and 4 numerically; the summation methods in Sections 3 and 4
may in turn be used to enhance these algorithms and to extend the domains of matrix functions.

For these purposes, the following basic definition of a matrix function [24] suffices: If X ∈ Cd×d

and the power series f(z) =
∑∞

k=0 ak(z − z0)k converges in a neighborhood of z0 ∈ Ω, then

f(X) :=
∞∑
k=0

ak(X − z0I)k

whenever the matrix power series on the right is summable in the conventional sense. By definition,
the domain of f is confined to Ω ⊆ Cd×d comprising matrices with conventionally summable Taylor
series. With hindsight from Sections 3 and 4, we may define

f(X) R=
∞∑
k=0

ak(X − z0I)k

with respect to any regular summation method R, extending the domain of f to a potentially
bigger domain ΩR ⊇ Ω. This portends a new vista in the study of matrix functions but any further
exploration would take us too far afield.

We will instead limit our attention to the numerics and only to regular sequential summation
methods in Section 3 as these work hand-in-glove with numerical algorithms for matrix functions.
In this regard, there is no loss of generality to assume that z0 = 0. As is the case in Section 6, we
begin by approximating f(X) with its truncated Taylor Series

∑n
k=0 akX

k for some n ∈ N. But
unlike the case of a general matrix series

∑∞
k=0Ak, working with a matrix power series

∑n
k=0 akX

k

permits us to ascertain n in advance to achieve a desired ε-accuracy,∥∥∥∥f(X)−
n∑

k=0
akX

k

∥∥∥∥ < ε
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as in [16, Theorem 11.2.4] or [34, Corollary 2] (see also [24, Theorem 4.8]).
We next see how we may add a summation method to the process. Let R be a regular sequential

summation method (3.1) such that Cn,k ∈ Cd×d for all n, k ∈ N and Cn,k = 0 for all k > n. The
Nörlund means (with Cesáro summation as a special case) in Section 3.1 and Euler summation
methods in Section 3.2 all meet this criterion. Let Bn,j :=

∑n
k=j Cn,k. Then for any Ak ∈ Cd×d,

k ∈ N, and Sn =
∑n

k=0Ak, observe that
n∑

k=0
Cn,kSk =

n∑
k=0

Bn,kAk. (7.1)

So the summation method R is characterized by the matrix weights {Bn,k ∈ Cd×d : k ≤ n, k, n ∈ N},
or, more precisely, by the sums

Dn,k :=
n∑

j=k

ajBn,j (7.2)

for k ≤ n, k, n ∈ N. Let ε > 0. If
∑∞

k=0 akX
k is R-summable to f(X), then for some n ∈ N,∥∥∥∥f(X)−

n∑
k=0

Dn,kX
k

∥∥∥∥ = ∥∥∥∥f(X)−
n∑

j=0

( n∑
k=j

ajBn,k

)
Xj

∥∥∥∥ < ε. (7.3)

Using this, we will generalize Padé approximation and the Schur–Parlett algorithm to work with
Nörlund means and Euler summation. At this point, truncation error bounds like [16, Theo-
rem 11.2.4] or [34, Corollary 2] that allow one to estimate n from a given ε are beyond our reach
for (7.3). We will assume below, as we did in Section 6, that n is furnished as part of our inputs.

7.1. Padé approximation. This is one of the most powerful methods in matrix functions com-
putations [24, Section 4.4.2]. The expm method in Matlab, which implements the scaling-and-
squaring method to compute the matrix exponential [25], is testament to one of the greatest wins2
of Padé approximation. We will augment it with a regular sequential summation method R.

An (m,n)-Padé approximant of f(z) =
∑∞

k=0 akz
k with respect to R is a rational function [p/q](z)

where p(z) =
∑m

k=0 βkz
k, q(z) =

∑n
k=0 γkz

k, γ0 = 1, and

p(X)q(X)−1 =
m+n∑
k=0

Dm+n,kX
k, (7.4)

with Dm+n,0, Dm+n,1, . . . , Dm+n,m+n ∈ Cd×d as defined in (7.1) and (7.2). By this definition, the
standard Padé approximation in [24, Section 4.4.2] is then exactly the Padé approximation with
respect to conventional summation.

Right multiplying q(X) on both side of (7.4), we get
m∑
k=0

βkX
k =

m+n∑
k=0

( k∑
j=0

γk−jDm+n,j

)
Xk.

Since this holds for all X ∈ Cd×d, we may equate coefficients of Xk on both sides to get

βkI =
k∑

j=0
γk−jDm+n,j , k = 0, . . . ,m+ n,

where we set βm+1 = · · · = βm+n = 0. For simplicity, we may choose a summation method R with
Cn,k = cn,kI for some cn,k ∈ C in (7.1) so that Dn,k = dn,kI for some dn,k ∈ C in (7.2). This
simplification is not overly restrictive as it includes important methods such as Cesáro summation

2https://blogs.mathworks.com/cleve/2024/01/25/nick-higham-1961-2024/

https://blogs.mathworks.com/cleve/2024/01/25/nick-higham-1961-2024/
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and Euler summation with P = ρI for ρ > 0. The upside is that the coefficients of p/q may be
easily determined by solving for βk and γk in a system of m+ n+ 1 linear equations:

βk = hk +
k−1∑
j=0

hjγk−j , k = 0, . . . ,m+ n,

hj :=
m+n∑
k=j

ajdm+n,k =
m+n∑
k=j

( k∑
i=j

(k − i+ 1)ai
)
cm+n,k.

(7.5)

We summarize this in Algorithm 4.

Algorithm 4 Padé approximation with sequential summation
input: X ∈ Cd×d, m,n ∈ N, ak, cm+n,k ∈ C for k = 0, . . . ,m+ n;
1: for j = 0, . . . ,m+ n do
2: compute hj =

∑m+n
k=j

(∑k
l=j(k − l + 1)al

)
cm+n,k;

3: end for
4: for k = m+ 1, . . . ,m+ n do
5: initialize βk ← 0;
6: end for
7: solve the linear system (7.5) for βk for k = 0, . . . ,m and γk for k = 0, . . . , n;
8: compute P =

∑m
k=0 βkX

k and Q =
∑n

k=0 γkX
k with Algorithm 5;

output: PQ−1.

Algorithm 5 Horner’s method
input: a0, . . . , an ∈ R, X ∈ Rd×d;
1: initialize P ← X, S ← a0I + a1X;
2: for k = 2, . . . , n do
3: P ← PX;
4: S ← S + akP ;
5: end for

output: S.

7.2. Schur–Parlett algorithm. The ‘Schur’ part of this algorithm is routine: To evaluate f(X) =∑∞
k=0 akX

k for X ∈ Cd×d, a Schur decomposition X = QRQ∗ with unitary Q ∈ Cd×d and upper
triangular R ∈ Cd×d yields f(X) = Qf(R)Q∗, thus reducing the problem to computing f(R).

The ‘Parlett’ part of this algorithm is where the innovation lies: Partition R ∈ Cd×d into an r×r
block matrix R = (Rij), i, j ∈ 1, . . . , r, with square diagonal blocks Rii, i = 1, . . . , r. Parlett [37]
observed that the matrix F = f(R) commutes with R; has the same block structure F = (Fij);
and upon evaluating the diagonal blocks Fii = f(Rii), the superdiagonal blocks can be obtained
from a system of Sylvester equations

RiiFij − FijRjj = FiiRij −RijFjj +
j−1∑

k=i+1
(FikRkj −RikFkj), 1 ≤ i < j ≤ d. (7.6)

The system (7.6) is nonsingular if and only if Rii and Rjj have no eigenvalue in common [24,
Section D.14]. Fortunately this may be guaranteed [12] by further transforming R into an identically
partitioned upper triangular matrix T = V RV ∗ with some unitary V ∈ Cd×d such that for a fixed
δ > 0,

(i) min{|λi − λj | : λi ∈ λ(Tii), λj ∈ λ(Tjj), i ̸= j} > δ;
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(ii) if the block Tii has dimension greater than 1, then every λ ∈ λ(Tii) has a corresponding
µ ∈ λ(Tii) with µ ̸= λ and |λ− µ| ≤ δ.

Essentially (i) says that between-block eigenvalues are well separated; and (ii) says that within-
block eigenvalues are closely clustered. Since X = (QV ∗)T (QV ∗)∗ and F = (QV ∗)f(T )(QV ∗)∗,
we may use T in place of R. This additional transformation from R to T carries other numerical
advantages [24, Section 9.3] in the solution of (7.6).

We augment the Schur–Parlett algorithm with a regular sequential summation method R by
computing the diagonal blocks Fii as R-sums, i.e.,

Fii = f(Rii) ≈
n∑

k=0
Dn,kR

k
ii =

n∑
k=0

( n∑
j=k

akBn,j

)
Rk

ii, i = 1, . . . , r, (7.7)

where Dn,k, Bn,j ∈ Cd×d are as defined in (7.1) and (7.2). Note that the diagonal blocks Rii’s in
(7.7) would in general have different dimensions for different i, which means that the matrices Dn,k,
Bn,j would need to have dimensions the same as Rii’s and therefore chosen differently for each i.
While there is no reason why we cannot do this we provide a simple workaround — we just set
Bn,k = bn,kI for some bn,k ∈ C as we did in Section 7.1.

This simplification in turn constraints us to use Cn,k = cn,kI for some cn,k ∈ C in (7.1) but the
result is both dimension-independent and computationally efficient as it only requires computing
scalar coefficients

∑n
k=j ajbn,k as opposed to matrix coefficients. We summarize this in Algorithm 6.

Algorithm 6 Schur–Parlett algorithm with sequential summation
input: X ∈ Cd×d, n ∈ N, ak, cn,k ∈ C for k = 0, . . . , n;
1: for j = 0, . . . , n do
2: compute bn,j =

∑n
k=j cn,k;

3: end for
4: compute the Schur decomposition X = QRQ∗;
5: compute T = V RV ∗ with block partition satisfying Conditions (i) and (ii);
6: R← T ;
7: Q← QV ∗;
8: for i = 1, . . . , r do
9: compute Fii =

∑n
k=0(

∑n
j=k akbn,j)Rk

ii by Algorithm 5;
10: end for
11: for j = 2, . . . , r do
12: for i = j − 1, j − 2, . . . , 1 do
13: solve for Fij in the Sylvester equation (7.6);
14: end for
15: end for
output: QFQ∗.

Compared to directly summing (7.3), Algorithm 6 dramatically improves computational time,
as we will see in Section 8.2.

8. Numerical experiments

We will present numerical experiments to illustrate the use of the summation methods in Sec-
tions 3 and 4 in conjunction with the numerical algorithms in Sections 6 and 7. Because of the large
number of possible combinations, it is not possible to be exhaustive although we try to present a
diverse selection. Our experiments will see four types of matrix series (Taylor, Fourier, Dirichlet,
Hadamard); two sequential summations (Cesáro and Euler), two functional summations (Borel and
Lambert); and three numerical algorithms (Schur–Parlett algorithm, recursive, and compensated
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summations). Each experiment is designed to showcase a different utility of these methods and
algorithms.
Section 8.1: using Cesáro sums to alleviate Gibbs phenomenon in matrix Fourier series;
Section 8.2: using Euler and strong Borel sums to extend matrix Taylor series;
Section 8.3: using Euler sums for high accuracy evaluation of matrix functions;
Section 8.4: using Lambert sums to investigate matrix Dirichlet series;
Section 8.5: using compensated summation for accurate evaluation of Hadamard power series.

All experiments are performed with Matlab R2023a in double precision (u = 2−52 ≈ 2.22×10−16)
arithmetic. Plots presented in log scale would all be in base 10. All codes have been made available
at https://github.com/thomasw15/Summing-Divergent-Matrix-Series.

8.1. Avoiding Gibbs phenomenon with Cesáro summation. When one attempts to approx-
imate a discontinuous function with its Fourier series, the Fourier approximation inevitably over-
shoots near a point of discontinuity — the notorious Gibbs phenomenon. The canonical example
is given by the square wave function f : R→ R,

f(x) =
{
1 2kπ ≤ x < (2k + 1)π, k ∈ Z,
−1 (2k − 1)π ≤ x < 2kπ, k ∈ Z.

(8.1)

Attempting to approximate f by its 1000-term Fourier series

f1000(x) =
1000∑
k=1

2
πk

(
1− (−1)k

)
sin(kx) (8.2)

produces the blue curve in Figure 2(a), which prominently overshoots near 0 and ±π, the points
of discontinuity. A close-up look at the absolute value of the errors in a neighborhood of x = 0
further reveals the wildly oscillatory nature of f1000, shown in the blue curve in Figure 2(b).
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(a) Approximating square wave.
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(b) Absolute value of errors near 0.

Figure 2. Gibbs phenomena in Fourier series corrected with Cesáro sum.

While the Gibbs phenomenon may be ameliorated with ad hoc recipes like the Lanczos factor
[1], a superior remedy would be to use Cesáro summation. The same data in (8.2) yields the Cesáro
partial sum

σ1000(x) =
1

1000

999∑
n=1

n∑
k=1

2
πk

(
1− (−1)k

)
sin(kx), (8.3)

https://github.com/thomasw15/Summing-Divergent-Matrix-Series
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which nearly eliminates the wild oscillations completely, as shown in the red curves in Figures 2(a)
and 2(b). While this is well known, the following matrix version is new, as far as we know.

Consider the following matrix Fourier series and its corresponding Cesáro sum:

F100(X(t)) =
100∑
k=1

2
πk

(
1− (−1)k

)
sin(kX(t)),

Σ100(X(t)) = 1
99

99∑
n=1

n∑
k=1

2
πk

(
1− (−1)k

)
sin(kX(t))

(8.4)

where X : R → R1000×1000 is a continuous matrix-valued function with λ(X(0)) = 0. Note that
each summand involves a matrix sine function [24, Chapter 12].

In a neighborhood of x = 0 the square wave function (8.1) is identical to the sign function, i.e.,
sign(x) = 1 if x ≥ 0 and −1 if x < 0. It is therefore conceivable that the same would hold for
matrix functions and that the sums in (8.4) should approximate the matrix sign function sign(X)
[24, Chapter 5] in a neighborhood of X = 0. Surprisingly this is only true if X is diagonalizable
and false otherwise, a fact we discovered through the following numerical experiments.

Consider the obviously nondiagonalizable matrix X(t) = diag(J1(t), . . . , J100(t)) where Ji : R→
R10×10 is given by

Ji(t) =


tλi 1

. . . . . .
. . . 1

tλi

 .
Using the compensated summation in Algorithm 2, we compute the two sums in (8.4) and compare
their norms with that of the matrix sign function in Figure 3.

-1 -0.5 0 0.5 1
0
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15

Figure 3. Failure to approximate matrix sign function for nondiagonalizable X.

The result shows that the sums in (8.4) bear no resemblance to the matrix sign function — both
∥F100(X(t))∥ and ∥Σ100(X(t))∥ are orders of magnitude away from ∥sign(X(t))∥. With hindsight,
the reason is clear, as the sums in (8.4) will always involve the superdiagonal of 1’s, whereas these
play no role in the matrix sign function. While we have chosen X(t) above to accentuate this effect,
the argument holds true as long as there is a single Jordan block of size at least 2× 2, i.e., as long
as the matrix is not diagonalizable.
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On the other hand, the sums in (8.4) give a fair approximation of sign(X) for a diagonalizable
matrix X and, as expected, we see prominent Gibbs phenomenon in F100(X) that is alleviated
in Σ100(X). We will give a symmetric and a nonsymmetric example by randomly generating
λ1, . . . , λ1000 ∈ R, orthogonal Q and nonsingular tridiagonal T ∈ R1000×1000, and defining

Y (t) = Q diag(tλ1, . . . , tλ1000)QT, Z(t) = T diag(tλ1, . . . , tλ1000)T−1.

We approximate the square wave function with the matrix Fourier series and its Cesáro sum in
(8.4), with Y (t) and Z(t) in place of X(t), relying again on Algorithm 2 to compute the sums.

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) symmetric matrices
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Figure 4. Matrix sign function approximated by matrix Fourier and Cesáro sums.

Outside t = 0, where the matrix sign function is undefined, both F100 and Σ100 provide fair
approximations as quantified by ∥F100(Y (t))−sign(Y (t))∥ and ∥Σ100(Y (t))−sign(Y (t))∥ in Figure 4.
We expect the approximation errors to further decrease as the number of terms increases beyond
100. For comparison the more accurate approximations in Figure 2(a) for the scalar series took a
1000-term approximation, which is beyond our reach here for 1000× 1000 matrix series.
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Figure 5. Gibbs phenomena in matrix Fourier series corrected with Cesáro sum.
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In a neighborhood of t = 0, we see the unmistakable mark of Gibbs phenomenon in F100, reflected
in the norms of ∥F100(Y (t))∥ and ∥F100(Z(t))∥, the blue curves in Figures 5(a) and 5(b) respectively.
The oscillatory behavior vanishes when we instead look at the corresponding Cesáro sums Σ100,
whose norms are given by the red curves in Figure 5. This indicates that for diagonalizable matrices,
Cesáro summation is a remedy for Gibbs phenomenon in matrix Fourier series.

8.2. Accurate summation with Euler method and strong Borel method. These experi-
ments accomplish two goals. We first verify numerically that the Euler and strong Borel methods in-
deed extend the domain of Neumann series beyond D, which we demonstrated analytically in Corol-
lary 3.11 and Proposition 4.19. The experiments for Euler methods are also used to show that the
Schur–Parlett algorithm for Euler summation, i.e., Algorithm 6 with cn,k =

(n+1
k+1
)
ρn−k(1 + ρ)−n−1,

is less accurate but dramatically faster than directly computing with Algorithm 2.
We generate fifty matrices X ∈ C1000×1000 such that λ(X) ⊆ {z ∈ C : |z + ρ| < 1 + ρ} for

ρ = 104 and λ(X) ̸⊆ D. Note that the Neumann series
∑∞

k=0X
k for such matrices will not be

conventionally summable. Our goal is to verify that Euler method and strong Borel method will
however yield the expected (I −X)−1 numerically. For Euler method, we compute the truncated
(E, ρ) sum as defined in (3.10),

Ŝ(E,ρ) :=
10000∑
k=0

Eρ
k(X•)

where X• = (Xk)∞k=0, first with compensated summation and then with the Schur–Parlett algo-
rithm. For the strong Borel method, we use the Matlab function integral with tolerance level
10−12 to compute the Borel sum ŜSB as in (4.7).

We plot the forward errors ∥Ŝ− (I −X)−1∥ in Figure 6 and the backward errors ∥Ŝ(I −X)− I∥
in Figure 7, where Ŝ is either Ŝ(E,ρ) or ŜSB. The near zero errors are strong numerical evidence that
both Euler and strong Borel methods analytically extend the Neumann series to (I −X)−1, which
we of course know is true by virtue of Corollary 3.11 and Proposition 4.19.
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Figure 6. Log forward errors of strong Borel and Euler summations.

Observant readers might have noticed an issue here. We do not really have (I − X)−1 exactly
but only the output of the inv function in Matlab, which is also subjected to floating point and
approximation errors. Indeed our ‘forward errors’ here are simply a measure of deviation from Ŝinv,
the result of inv applied to I−X. The backward errors ∥Ŝ(I−X)− I∥ for Ŝinv, Ŝ(E,ρ), ŜSB provide
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a more equitable comparison and therein lies a surprise — when computed with compensated
summation, Ŝ(E,ρ), the result of Euler method, is more accurate than Ŝinv, the result of Matlab’s
inv, as is evident in Figure 7(b).
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Figure 7. Log backward errors of strong Borel and Euler summations.

As both forward and backward errors in Figures 6(b) and 7(b) reveal, the Schur–Parlett algorithm
gives less accurate results for Euler sums than compensated summation. However, a comparison of
their running times in Figure 8 shows that the former is significantly faster.
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Figure 8. Run time comparison of compensated summation and Schur–Parlett
algorithm on Euler sums.

8.3. High accuracy sums with Euler methods. The surprising accuracy of Euler method
computed with compensated summation uncovered in Section 8.2 deserves a more careful look.
Here we will examine how the value of ρ impacts its accuracy.

We generate twenty bidiagonal matrices X ∈ R1000×1000 whose diagonal entries are negative with
probability α ∈ {0, 0.01, . . . , 0.99, 1}. These matrices are generally not diagonalizable but we may
readily prescribe their eigenvalue distribution. Again we will use the Neumann series

∑∞
k=0X

k,
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whose value S = (I−X)−1 is known, as our test case. We approximate it with a 100-term truncated
Taylor series and a 100-term Euler sum

Ŝ :=
100∑
k=0

Xk and Ŝ(E,ρ) :=
100∑
k=0

Eρ
k(X•),

with ρ ∈ {1, 1/2, 1/4}, using compensated summation in Algorithm 2 to compute these sums. For a
bidiagonal X we know S = (I −X)−1 exactly in closed form and do not need to rely on Matlab’s
inv, we may compute the forward errors ∥Ŝ(E,ρ) − S∥ and ∥Ŝ − S∥. The logarithm of these values
averaged over the twenty trials are plotted against α in Figure 9.
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Figure 9. Log errors from Euler methods.

We highlight two observations. Firstly, the downward trend of the curves for Euler method with
increasing α shows that when the eigenvalues are predominantly negative, a truncated Euler sum
gives a much higher level of accuracy with 100 terms than a truncated Taylor series with the same
number of terms. This implies that Euler sums converge much faster than Taylor series. Secondly,
when using Euler summation, smaller values of ρ lead to faster convergence than larger ones.

8.4. Matrix Dirichlet series with Lambert summation. A Dirichlet series is a scalar series
∞∑
n=0

an
nz

where a• ∈ s(C) and z is a complex variable. The best-known Dirichlet series is the Riemann zeta
function

ζ(z) =
∞∑
n=1

1
nz

.

Another well-known Dirichlet series is one whose coefficients are given by an = µ(n), where

µ(n) =


1 n is square-free with an even number of prime factors,
−1 n is square-free with an odd number of prime factors,
0 n is not square-free,

is the Möbius function. It turns out that for any z ∈ C with Re(z) > 1,
∞∑
n=1

µ(n)
nz

= 1
ζ(z)



SUMMING DIVERGENT MATRIX SERIES 35

and
lim
z→1

∞∑
n=1

µ(n)
nz

= 0. (8.5)

An important application of the scalar Lambert summation [35, Lemma 2.3.7] is to show that
∞∑
n=1

µ(n)
n

L= 0 (8.6)

and our goal here is to verify a matrix analogue numerically.
It is straightforward to extend the definitions above. A matrix Dirichlet series is a matrix series

∞∑
n=0

ann
−X

where X is a complex matrix variable that takes values in Cd×d and
nX := exp(log(n)X),

with exp the matrix exponential function [24, Chapter 10]. Our numerical experiments show that
if X ∈ Cd×d has Re(X) ⪰ I, then

∞∑
n=1

µ(n)n−X (8.7)

is Lambert summable in the sense of Definition 4.8 and

lim
X→I

( ∞∑
n=1

µ(n)n−X
)

L= 0. (8.8)

This is a matrix analogue of (8.5) and (8.6). Unlike the scalar version in (8.5), which is convention-
ally summable, our matrix version in (8.8) requires Lambert summation as the matrix Dirichlet
series (8.7) is not conventionally summable if 1 ∈ λ(X), but is nevertheless Lambert summable.
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Figure 10. Lambert approximation of the Dirichlet series.

To verify (8.8) numerically, we generate random matrices X ∈ C1000×1000 with Re(X) ⪰ I and
∥X − I∥ = δ for δ = 2−2, 2−3, . . . , 2−7, and compute

Ŝ = (1− x)
10000∑
n=1

nxn

1− xn
µ(n)n−X
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to approximate the Lambert sum as x→ 1−. As shown in Figure 10, for each δ, ∥Ŝ∥ approaches a
limiting value as x→ 1−, and ∥Ŝ∥ → 0 as δ → 0 or, equivalently, X → I.

8.5. Recursive versus compensated summations. We present two sets of experiments to com-
pare recursive summation in (6.1) with compensated summation in Algorithm 2, focusing on how
the errors scale with respect to series length and matrix dimensions.

For X ∈ Rd×d, we consider the n-term Neumann series
n−1∑
k=0

Xk = (I −Xn)(I −X)−1 =: S (8.9)

for fixed n = 1000 and d = 1, . . . , 1000. We also consider its n-term Hadamard analogue, i.e., with
power taken with respect to the Hadamard product

n−1∑
k=0

X◦k = S◦, s◦ij =
1− xnij
1− xij

, i, j = 1, . . . , d, (8.10)

for fixed d = 1000 and n = 1, . . . , 5000. In both cases we have the respective closed-form expressions
for S and S◦ on the right of (8.9) and (8.10) that give their exact values and thereby permit
calculation of forward errors.

We compute Ŝ, the sum on the left of (8.9), and Ŝ◦ the sum on the left of (8.10) using both
recursive summation in (6.1) and compensated summation in Algorithm 2. The forward errors
∥Ŝ − S∥F and ∥Ŝ◦ − S◦∥F are shown in Figures 11(a) and 11(b) respectively. The result is clear:
compensated summation is consistently more accurate than recursive summation, particularly with
respect to increasing series length n, where the increase in errors follow significantly different trends.

While our forward error bound (6.5) predicts that the errors in compensated summation should
be free of any dependence on n, this is assuming that we know the kth term exactly. In our sum
(8.10), the kth term X◦k is computed, and the increase in errors we see in Figure 11(b) is a result
of the multiplication errors accumulating in Ŝ◦ as n increases.
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Figure 11. Errors for recursive and compensated summation algorithms.

In case the reader is wondering why we did two different sets of experiments with respect to
standard and Hadamard products: Hadamard products will not reveal the dependence on d in
Figure 11(a) as they are computed entrywise; whereas standard products will result in the mul-
tiplicative errors masking the trend in Figure 11(b) showing dependence on n, as computing Xk

requires an order of magnitude more multiplications than computing X◦k.
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9. Conclusion

This article is likely the first systematic study of summation techniques, both theoretical and
numerical, for matrix series. Indeed we are unable to find much discussion of general numerical
algorithms even for summing conventionally convergent matrix series, let alone the more convoluted
summation methods for matrix series divergent in the conventional sense. The handful of previous
works we found [12, 24, 25] had all focused on conventional summation of specific matrix Taylor
series related to matrix functions, and said nothing of other summation methods or more general
matrix series. Despite the length of our article, it still leaves significant room for future work, with
several immediate open problems that we will briefly describe.

Our extensions of matrix Abelian mean in Definition 4.2, matrix Lambert sum in Definition 4.8,
weak and strong matrix Borel sums in Definitions 4.10 and 4.12, leave open the question of whether
one may further extend them by replacing the scalar parameter x in these definitions by a pos-
itive definite matrix. One may also ask a similar question of the matrix Mittag-Leffler sum in
Definition 4.13: Could the gamma function be replaced by the matrix gamma function [27]?

Another aspect beyond the scope of this article is that of conditioning, which likely explains the
surprising accuracy of Euler method over matrix inversion uncovered in Section 8.2. Note that the
left- and right-hand sides of (1.2), despite being equal in value, involve two different computational
problems and almost surely have entirely different condition numbers. What is lacking is a study
of the condition numbers of the summation methods in Sections 3 and 4.

The numerical methods in Sections 6 and 7 are mainly designed with accuracy in mind. They
work well when adapted for matrix series and in conjunction with the summation methods in
Sections 3 and 4. When it comes to speed, there are many acceleration methods for scalar series
such as Aitken’s δ2-process and the vector ε-algorithm [9, 17, 39], but these involve nonlinear
transforms and adapting them for matrix series is a challenge we save for the future.

As we alluded to in the introduction, these summation methods will allow for numerical inves-
tigations of “random matrix series,” one that has its kth term Ak randomly generated according
to some distributions like Wishart or GUE [6]. Many celebrated results in random matrix theory
were indeed discovered first through numerical experiments and only rigorously proved much later.
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