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Abstract. We highlight a perhaps important but hitherto unobserved insight: The attention
module in a transformer is a smoothed cubic spline. Viewed in this manner, this mysterious
but critical component of a transformer becomes a natural development of an old notion deeply
entrenched in classical approximation theory. More precisely, we show that with ReLU-activation,
attention, masked attention, encoder–decoder attention are all cubic splines. As every component
in a transformer is constructed out of compositions of various attention modules (= cubic splines)
and feed forward neural networks (= linear splines), all its components — encoder, decoder, and
encoder–decoder blocks; multilayered encoders and decoders; the transformer itself — are cubic or
higher-order splines. If we assume the Pierce–Birkhoff conjecture, then the converse also holds, i.e.,
every spline is a ReLU-activated encoder. Since a spline is generally just C2, one way to obtain
a smoothed C∞-version is by replacing ReLU with a smooth activation; and if this activation is
chosen to be SoftMax, we recover the original transformer as proposed by Vaswani et al. This
insight sheds light on the nature of the transformer by casting it entirely in terms of splines, one of
the best known and thoroughly understood objects in applied mathematics.

The transformer [45] underlies many modern AI technologies in the current news cycle. Splines,
on the other hand, are among the oldest tools in classical approximation theory, studied since the
1940s, and culminated in the 1980s [14] before taking on a new life in the form of wavelets (e.g., the
celebrated Cohen–Daubechies–Feauveau wavelet [9] that underlies JPEG 2000 compression comes
from a B-spline). Indeed, the word “spline” originally refers to the flexible wooden strip that serves
as a bendable ruler for shipbuilders and draftsmen to draw smooth shapes since time immemorial;
the Wright brothers had notably used such wooden splines to design their aircraft. It is therefore
somewhat surprising that a notion so old is nearly one and the same as a notion so new — we will
show that every ReLU-activated attention module F : Rn×p → Rm×p is a multivariate cubic spline,
and, if we assume a conjecture of Garrett Birkhoff and Richard Pierce from 1956 [5], then conversely
every multivariate spline G : Rm → Rn is a ReLU-activated encoder. The usual SoftMax-activated
attention module is thus a simple and natural way to make a cubic spline, which is at most a
C2-function, into a smooth function — by replacing the nonsmooth ReLU with a smooth SoftMax.

Why did approximation theorists not discover the transformer then? We posit that it is due to
a simple but fundamental difference in how they treat the decomposition of a complicated function
into simpler ones. In approximation theory and harmonic analysis, one decomposes a complicated
function F into a sum of simpler functions f1, . . . , fr,

(1) F = f1 + f2 + · · ·+ fr;

in artificial intelligence, one decomposes F into a composition of simpler functions F1, . . . , Fr,

(2) F = F1 ◦ F2 ◦ · · · ◦ Fr.

This fundamental difference in modeling a function is a key to the success of modern AI models.
Suppose F : Rn → Rn. If we model F as a sum in (1), the number of parameters scales like ndn:

F (x) =
d∑

i1=1

· · ·
d∑

in=1

n∑
j=1

ai1i2···injφi1(x1)φi2(x2) · · ·φin(xn)ej ;

whereas if we model F as a composition in (2), it scales like dn2 + (d− 1)n:

F (x) = Adσd−1Ad−1 · · ·σ2A2σ1A1x
1
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with Ai ∈ Rn×n, σi parameterized by a vector in Rn. Note that even if d = 2, the size n2n quickly
becomes untenable. Evidently, these ball park estimates are made with some assumptions: The root
cause of this notorious curse of dimensionality is that there are no good general ways to construct
the basis function fi in (1) except as a tensor product of low (usually one) dimensional basis
functions, i.e., as φi1 ⊗φi2 ⊗ · · · ⊗φin ⊗ ej . The compositional model (2) allows one to circumvent
this problem beautifully. Take the simplest case of a d-layer feed forward neural network, as we
did above; then it is well known that d can be small [11, 25].

An important feature of (1) and (2) is that both work well with respect to derivative by virtue
of linearity

DF = Df1 +Df2 + · · ·+Dfr

or chain rule

DF = DF1 ◦DF2 ◦ · · · ◦DFr.

The former underlies techniques for solving various PDEs, whether analytically or numerically;
the latter underlies the back-propagation algorithm for training various AI models (where the
former also plays a role through various variants of the stochastic gradient descent algorithm). The
bottom line is that the conventional way to view a cubic spline, as a sum of polynomials supported
on disjoint polygonal regions or a sum of monomials, takes the form in (1). A ReLU-attention
module is just the same cubic spline expressed in the form (2), and in this form there is a natural
and straightforward way to turn it into a smooth function, namely, replace all nonsmooth Fi’s with
smooth substitutes — if we replace ReLU by SoftMax, we obtain the attention module as defined
in [45]. This is a key insight of our article.

It is well-known [1] that a ReLU-activated feed forward neural network may be viewed as a
linear spline expressed in the form of (2). When combined with our insight that a ReLU-activated
attention module is a cubic spline, we deduce that every other intermediate components of the
ReLU-transformer — encoder, decoder, encoder–decoder — are either cubic or higher-order spline,
as they are constructed out of compositions and self-compositions of ReLU-activated feed forward
neural networks and ReLU-activated attention modules.

A word of caution: We are not claiming that SoftMax would be a natural smooth replacement for
ReLU. We will touch on this in Section 4. Indeed, according to recent work [48], this replacement
may be wholly unnecessary — when it comes to transformers, ReLU would be an equally if not
superior choice of activation compared with SoftMax.

0.1. Understanding transformers via splines. Our main contribution is to explain a little-
understood new technology using a well-understood old one. For the benefit of approximation
theorists who may not be familiar with transformers or machine learning theorists who may not be
familiar with splines, we will briefly elaborate.

The transformer has become the most impactful technology driving AI. It has revolutionized
natural language processing, what it was originally designed for [45], but by this point there is no
other area in AI, be it computer vision [19], robotics [50], autonomous vehicles [38], etc, that is
left untouched by transformers. This phenomenal success is however empirical, the fundamental
principles underlying the operation of transformers have remained elusive.

The attention module is evidently the most critical component within a transformer, a fact
reflected in the title of the paper that launched the transformer revolution [45]. It is arguably
the only new component — the remaining constituents of a transformer are ReLU-activated feed
forward neural networks, which have been around for more than 60 years [40] and thoroughly
investigated. Unsurprisingly, it is also the least understood. An attention module is still widely
understood by way of “query, key, value” and a transformer as a flow chart, as in the article where
the notion first appeared [45]. The main goal of our article is to understand the attention module in
particular and the transformer in general, by tying them to one of the oldest and best-understood
object in approximation theory.
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Splines are a mature, well-understood technology that has been thoroughly studied and widely
used [41, 42, 12, 13, 15, 8, 47, 44, 35, 14], one of our most effective and efficient methods for
approximating known functions and interpolating unknown ones. They have numerous applications
and we will mention just one: representing intricate shapes in computer graphics and computer-
aided design. Readers reading a hard copy of this article are looking at fonts whose outlines are
defined by splines [26]; those viewing it on screen are in addition using a device likely designed
with splines [20]. Splines have ushered in a golden age of approximation theory, and were studied
extensively c. 1960–1980, until wavelets supplanted them. One could not have asked for a better
platform to understand a new technology like the attention module and transformer.

Nowhere is this clearer than our constructions in Section 3.3 to show that every spline is an
encoder of a ReLU-transformer. These constructions reveal how each feature of the transformer —
attention, heads, layers, feed forward neural networks — plays an essential role. We made every
attempt to simplify and failed: Omit any of these features and we would not be able to recreate
an arbitrary spline as an encoder. It were as if the inventors of transformer had designed these
features not with any AI applications in mind but to construct splines as compositions of functions.

1. Mathematical description of the transformer

A transformer is typically presented in the literature as a flow chart [45, Figure 1]. We show a
version in Figure 1.
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Figure 1. Transformer as flow chart.

Without a rigorous definition of the transformer, it will be difficult if not impossible to prove
mathematical claims about it. We will nail down in mathematically precise terms the full inner
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workings of a transformer. While it is common to find descriptions that selectively present parts as
well-defined maps and revert to words and pictures when it becomes less convenient, what sets us
apart below is thoroughness — nothing will be swept under the rug. On occasions we had to look
into the source codes of common implementations to unravel inconvenient details left ambiguous
in the literature. This section is our small side contribution and a public service.

The heart of Figure 1 are the two parts enclosed in red dash lines, called encoder and decoder
respectively. They are constructed out of feed forward neural networks, defined in Section 1.2,
and attention modules, defined in Section 1.3, chained together via function compositions. The
simplest version is the encoder in Section 1.4 and is what the uninitiated reader should keep in
mind. We add the bells and whistles later: Section 1.5 defines the masked attention in the right-half
of Figure 1, from which we obtain the decoder in Section 1.6. Section 1.7 explains the encoder–
decoder structure — the left- and right-halves in Figure 1. Section 1.8 puts everything together
to define the transformer. Section 1.10 discusses the one omission in Figure 1, the “add & norm”
layers found in [45, Figure 1].

1.1. Notations. We write all vectors in Rn as column vectors, i.e., Rn ≡ Rn×1. Let x1, . . . , xn ∈ R.
When enclosed in parentheses (x1, . . . , xn) denotes a column vector, i.e.,

(x1, . . . , xn) :=

x1...
xn

 ∈ Rn.

When enclosed in brackets [x1, . . . , xn] ∈ R1×n is a row vector.
We will apply this convention more generally: For matrices X1, . . . , Xn ∈ Rm×p, we write

(X1, . . . , Xn) :=

X1
...
Xn

 ∈ Rmn×p

and [X1, . . . , Xn] ∈ Rm×np.
When we write (f1, . . . , fh) for functions fi : Rn×p → Rm×p, i = 1, . . . , h, it denotes the function

(f1, . . . , fh) : Rn×p → Rmh×p, X 7→

f1(X)
...

fh(X)

 .
The function SoftMax : Rn → Rn takes a vector x = (x1, . . . , xn) ∈ Rn and outputs a probability

vector of the same dimension,

SoftMax(x) :=

(
ex1∑n
i=1 e

xi
, . . . ,

exn∑n
i=1 e

xi

)
.

When SoftMax is applied to a matrix X ∈ Rn×p, it is applied columnwise to each of the p columns
of X. So SoftMax : Rn×p → Rn×p.

Although we will write R throughout to avoid clutter, we will allow for −∞ in the argument of
our functions on occasion, which will be clearly indicated. Note that SoftMax(x)i = 0 if xi = −∞.

1.2. Feed forward neural network. The rectified linear unit ReLU : R → R is defined by
ReLU(x) = max(x, 0) =: x+ and extended coordinatewise to vectors in Rn or matrices in Rn×p.
We also introduce the shorthand x− := ReLU(−x). Clearly, X = X+ −X− for any X ∈ Rn×p.

An l-layer feed forward neural network is a map φ : Rn → Rnl+1 defined by a composition:

φ(x) = Al+1σlAl · · ·σ2A2σ1A1x+ bl+1

for any input x ∈ Rn, weight matrix Ai ∈ Rni×ni−1 , with n0 = n, σi(x) := σ(x+ bi), with bi ∈ Rni

the bias vector, and σ : R → R the activation function, applied coordinatewise. In this article, we
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set σ = ReLU throughout. To avoid clutter we omit the ◦ for function composition within a feed
forward neural network unless necessary for emphasis, i.e., we will usually write AσB instead of
A ◦ σ ◦B. When φ is applied to a matrix X ∈ Rn×p, it is always applied columnwise to each of the
p columns of X. So φ : Rn×p → Rnl+1×p. We will also drop the “feed forward” henceforth since all
neural networks that appear in our article are feed forward ones.

1.3. Attention. The attention module is known by a variety of other names, usually a combination
of attention/self-attention module/mechanism, and usually represented as flow charts as in Figure 2.

Q K V

MatMul

Scale

SoftMax

MatMul

(a) SoftMax attention

Q K V

MatMul

Scale

ReLU

MatMul

(b) ReLU attention

Figure 2. Attention module as flow chart

Mathematically, it is a map α : Rn×p → Rm×p,

(3) α(X) := V (X) SoftMax
(
K(X)TQ(X)

)
,

where Q : Rn×p → Rd×p, K : Rn×p → Rd×p, V : Rn×p → Rm×p are linear layers, i.e., given by
affine maps

(4) Q(X) = AQX +BQ, K(X) = AKX +BK , V (X) = AVX +BV ,

with weight matrices AQ, AK ∈ Rd×n, AV ∈ Rm×n, and bias matrices BQ, BK ∈ Rd×p, BV ∈ Rm×p.
Here we have used the more general affine form of these linear layers as attention modules are
implemented in practice,1 as opposed to the linear form in [45] where the biases are set to zero.
The SoftMax in (3) is applied columnwise and outputs a p× p matrix.

The map α implements the mechanism of taking a query and a set of key–value pairs to an
output. Interpreted in this way, the input X ∈ Rn×p is a data sequence of length p, with each
data point xi ∈ Rn, i = 1, . . . , p. The columns of Q(X) and K(X) represent queries and keys
respectively — note that these are vectors in Rd and d is generally much smaller than m or n. The
columns of V (X) represent values.

More generally, a multihead or h-headed attention module is a map α : Rn×p → Rmh×p given by

(5) α(X) = (α1(X), . . . , αh(X))

where αi : Rn×p → Rm×p are attention modules as in (3), i = 1, . . . , h. The reader is reminded of
our convention in Section 1.1: parentheses denote column, which is why in our constructions we
will often the phrase “stacking α1, . . . , αh to obtain α” to mean (5).

1https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html#torch.nn.

MultiheadAttention; the affine form is obtained by setting add bias kv = True.

https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html#torch.nn.MultiheadAttention
https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html#torch.nn.MultiheadAttention
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1.4. Encoder. An encoder block, or more precisely a h-head encoder block, is a map ε : Rn×p →
Rnl+1×p obtained by composing the output of a h-head attention module α : Rn×p → Rmh×p, with
an l-layer ReLU-neural network φ : Rmh×p → Rnl+1×p,

(6) ε = φ ◦ α.

More generally, an encoder or t-layer encoder, εt : Rn×p → Rnt+1×p is obtained by composing t
encoder blocks, i.e.,

(7) εt = φt ◦ αt ◦ φt−1 ◦ αt−1 ◦ · · · ◦ φ1 ◦ α1,

where φi : Rmi×p → Rni+1×p are neural networks and αi : Rni×p → Rmi×p are attention modules,
i = 1, . . . , t, n1 = n. In Figure 1, the encoder is the part enclosed within the red dash lines on
the left. The structure in (7) appears to require alternate compositions of attention modules and
neural networks but one may skip some or all of the φi’s. The reason is that we may choose
these φi’s to be an identity map, which can be represented as a one-layer neural network as x =
ReLU(x)− ReLU(−x).

While we allow the neural networks appearing in (7) to have multiple hidden layers, the original
proposed model in [45] requires that they be single-layer. We will show in Lemma 3.7 that these
are in fact equivalent: Any encoder of the form (7) may be written as one where all φi’s have only
one hidden layer, but at the expense of a larger t.

1.5. Masked attention. In many applications of transformers, particularly large language models,
the data is of a sequential nature. So the function f we want to learn or approximate is expected
to be autoregressive [45], i.e., f : Rn×p → Rm×p takes the form

(8) [x1, . . . , xp] 7→ [f1(x1), f2(x1, x2), . . . , fp(x1, . . . , xp)].

In other words fj : Rn×j → Rm depends only on the first j columns x1, . . . , xj , j = 1, . . . , p. In
general f will be nonlinear, but when f is linear, then this simply means it is given by an upper
triangular matrix. So an autoregressive function may be viewed as a nonlinear generalization of an
upper triangular matrix.

To achieve this property in attention module, we define the function mask : Rp×p → Rp×p by

mask(X)ij =

{
xij if i ≤ j,

−∞ if i > j.

A masked attention module is then given by

(9) β(X) = V (X) SoftMax
(
mask(K(X)TQ(X))

)
.

It is easy to check that a masked attention module is always autoregressive.

1.6. Decoder. A decoder block is the analogue of an encoder block where we have a masked
attention in (6):

(10) δ = φ ◦ β.

We may also replace any or all of the αi’s in (7) by masked versions βi’s. If we replace all, then
the resulting map

(11) δt = φt ◦ βt ◦ φt−1 ◦ βt−1 ◦ · · · ◦ φ1 ◦ β1,

is autoregressive but more generally we will just selectively replace some αi’s with βi’s. We call
the resulting map a decoder. Note that the part enclosed within red dash lines in the right-half of
Figure 1 is not quite a decoder as it takes a feed from the left-half; instead it is an encoder–decoder,
as we will discuss next.
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1.7. Encoder–decoder attention. The multihead attention in the right-half of Figure 1 accepts
a feed from outside the red dash box. When used in this manner, it is called an encoder–decoder
attention module [45], as it permits one to use queries from the decoder, but keys and values from
the encoder. Mathematically, this is a map γ : Rn×p × Rr×p → Rm×p,

(12) γ(X,Y ) := V (X) SoftMax
(
K(X)TQ(Y )

)
,

where Q,K, V are as in (4) but while K,V are functions of X, Q is now a function of Y . The
independent matrix variables X and Y take values in Rn×p and Rr×p respectively. As a result we
have to adjust the dimensions of the weight matrices slightly: AQ ∈ Rd×r, AK ∈ Rd×n, AV ∈ Rm×n.
The encoder–decoder attention is partially autoregressive, i.e., autoregressive in Y but not in X,
taking the form

(X, [y1, . . . , yp]) 7→ [f1(X, y1), f2(X, y2), . . . , fp(X, y1, . . . , yp)].

1.8. Transformer. An encoder–decoder block τ : Rn×p×Rr×p → Rnl+1×p is defined by a multihead
masked attention module β, a multihead encoder–decoder attention module γ, and a neural network
φ, via

τ(X,Y ) = φ
(
γ(X,β(Y ))

)
.

An (s + t)-layer encoder–decoder is then constructed from an s-layer encoder εs, and t encoder–
decoder blocks given by β1, γ1, φ1, . . . , βt, γt, φt. We define τi recursively as

τi(X,Y ) = φi

(
γi
(
εs(X), βi(τi−1(X,Y ))

))
for i = 1, . . . , t, τ0(X,Y ) = Y . We call τt the encoder–decoder. For all mathematical intents and
purposes, τt is the transformer. As we will see in Sections 1.10 and 1.11, the other components in
Figure 1 or [45, Figure 1] are extraneous to the operation of a transformer.

We stress that the word “transformer” is sometimes used to refer to just the encoder or the
decoder alone. We choose to make the distinction in our article but many do not. For example,
Google’s BERT [16], for Bidirectional Encoder Representations from Transformers, is an encoder
whereas OpenAI’s GPT [6], for Generative Pretrained Transformer, is a decoder.

1.9. ReLU-transformer. The definitions in Sections 1.2–1.8 are faithful mathematical transcrip-
tions of components as described in Vaswani et al. original article [45]. In this section we take a
small departure — replacing every occurrence of SoftMax with ReLU to obtain what is called a
ReLU-transformer. This is not new either but proposed and studied in [3, 48].

We begin by defining ReLU-attention modules. They have the same structures as (3), (9), (12)
except that SoftMax is replaced by ReLU, i.e.,

(13)

α(X) = V (X)ReLU
(
K(X)TQ(X)

)
,

β(X) = V (X)ReLU
(
mask(K(X)TQ(X))

)
,

γ(X,Y ) = V (X)ReLU
(
K(X)TQ(Y )

)
.

An encoder, decoder, or encoder–decoder constructed out of such ReLU-attention modules will
be called a ReLU-encoder, ReLU-decoder, or ReLU-encoder–decoder respectively. In particular, a
ReLU-transformer is, for all mathematical intents and purposes, a ReLU-encoder–decoder.

These ReLU-activated variants are essentially “unsmoothed” versions of their smooth SoftMax-
activated cousins in Sections 1.2–1.8. We may easily revert to the smooth versions by a simple
smoothing process — replace all ReLU-activated attentions by the original SoftMax-activated ones
(but the neural networks would remain ReLU-activated).

ReLU-transformers work naturally with our claims and proofs in Section 3. Nevertheless, even
in practice ReLU-transformers can have desirable, possibly superior, features compared to the
original SoftMax-transformers: investigations in [48] provided extensive empirical evidence that
substituting SoftMax with ReLU causes no noticeable loss and occasionally even affords a slight
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gain in performance across both language and vision tasks; it is also easier to explain the in-context-
learning capability of ReLU-transformers [3].

More generally, the use of alternative activations in a transformer is a common practice. There
are various reasons to replace SoftMax, one of which is to avoid the considerable training cost
associated with the use of SoftMax activation. In [30], SoftMax is replaced with a Gaussian kernel;
in [27], only the normalization part of SoftMax is kept; in [22], it is shown that an activation does
not need to map into the probability simplex. Linearized attentions are used in [39], and sparse
attentions in [37]; these are intended primarily to accelerate the SoftMax operator but they have
other features too.

1.10. Layer normalization and residual connection. Comparing our Figure 1 and [45, Fig-
ure 1], one might notice that we have omitted the “add & norm” layers.

The “add” step, also called residual connection [23], may be easily included in our analysis —
all our results and proofs in Section 3 hold verbatim with the inclusion of residual connection. For
an encoder block ε : Rn×p → Rn×p, a residual connection simply means adding the identity map
ι : Rn×p → Rn×p, X 7→ X, i.e.,

ε+ ι : Rn×p → Rn×p, X 7→ ε(X) +X,

and likewise for a decoder block δ : Rn×p → Rn×p. For an encoder–decoder block τ : Rn×p×Rr×p →
Rr×p, a residual connection simply means adding the projection map π : Rn×p × Rr×p → Rr×p,
(X,Y ) 7→ Y , i.e.,

τ + π : Rn×p × Rr×p → Rr×p, (X,Y ) 7→ τ(X,Y ) + Y.

As will be clear from the proofs in Section 3, all results therein hold with or without residual
connection.

The “norm” step, also called layer normalization [2] refers to statistical standardization, i.e.,
mean centering and scaling by standard deviation of each column vector in X. This is an ubiquitous
process routinely performed in just about any procedure involving any data for practical reasons.
But this innocuous process introduces additional nonlinearity that does not fit in our framework.

We do not consider either of these critical to the workings of a transformer. They are by no
means unique and may be easily replaced with other data standardization process, as shown in [22].

1.11. Miscellany. The “input/output embedding” and “position embedding” in Figure 1 convert
sentences or images (or whatever real-world entity the transformer is used for) to an input in Rn×p;
the “linear layer” and “SoftMax” in the right half assign probability values to the output. These are
just auxiliary components necessary in any situation involving human-generated input or requiring
human-interpretable output. They are common to all practical AI models and we do not regard
them as part of the transformer architecture.

2. Splines

This section covers the salient aspects of splines relevant for us. We write R[x1, . . . , xn] for the
ring of polynomials with real coefficients in variables (x1, . . . , xn) =: x and R[x11, . . . , xnp] for that
in (xij)

n,p
i,j=1 =: X.

Splines have a rich history and a vast literature in applied and computational mathematics, this
being precisely the reason we chose them as our platform to understand a new technology like
the transformer. Mathematical splines, as opposed to the mechanical ones used by draftsmen and
shipbuilders, were first named in [42]. A one-line summary of its early history, with many regretful
omissions, is that univariate splines were first proposed in [41], multivariate splines in [4], B-Splines
in [10], and box splines in [15].

An important departure of our discussion of splines in this article is that we will not concern
ourselves with differentiability, avoiding the usual efforts to ensure that a piecewise-defined function
is Cr at points where the different pieces meet. The reason is simple: our results in the next section
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will show that every continuous spline is a ReLU-transformer (and vice versa) and when presented
as such, there is a straightforward and natural way to smooth a spline to any desired degree-of-
smoothness r, namely, by replacing ReLU with a Cr-activation. So there is no need for us to even
introduce the notions of knots, tangential continuity, curvature continuity, etc. Indeed, viewed in
this manner, the transformer with its SoftMax activation is the first example of a “C∞-spline” —
an impossible object in classical constructions of splines as the degree-of-smoothness of a spline can
never exceed the degree of its polynomial pieces.

2.1. Scalar-valued splines. In its simplest form a spline is a piecewise-polynomial real-valued
function f : Rn → R defined over a partition of its domain Rn. The classical and most basic
partition is a triangulation, i.e., a subdivision into n-dimensional simplices whose union is Rn and
intersecting only along faces; more generally one may also use convex polytopes in place of simplices
[13, 8, 35]. We will need a slightly more sophisticated partition called a semialgebraic partition
[18, 17, 43]. For any b ∈ N, let

(14) Θb :=
{
θ : {1, . . . , b} → {1, 0,−1}

}
,

a finite set of size 3b. Note that this is really just the set of ternary numerals with b (ternary) bits.

Definition 2.1 (Partition). Any π1, . . . , πb ∈ R[x1, . . . , xn] induces a sign partition of Rn via

Πθ := {x ∈ Rn : sgn(πi(x)) = θ(i), i = 1, . . . , b}.

Then {Πθ : θ ∈ Θb} is a partition of Rn, the semialgebraic partition induced by π1, . . . , πb.

Note that the domain of θ in (14) merely serves as a placeholder for any b-element set and does
not need to be {1, . . . , b}. Indeed we will usually write θ : {π1, . . . , πb} → {1, 0,−1} to emphasize
that it is an index for the partition induced by π1, . . . , πb. Any triangulation or partition into
polytopes can be obtained by choosing appropriate linear polynomials π1, . . . , πb so Definition 2.1
generalizes the basic one that requires partition to be piecewise linear.

Definition 2.2 (Spline). Let {Πθ : θ ∈ Θb} be the semialgebraic partition induced by π1, . . . , πb ∈
R[x1, . . . , xn]. A continuous function f : Rn → R is a polynomial spline of degree k if for each
i = 1, . . . , b,

(i) πi has degree not more than k;
(ii) if Πθ ̸= ∅, then f restricts to a polynomial of degree not more than k on Πθ, i.e., f(x) =

ξθ(x) for all x ∈ Πθ, for some ξθ ∈ R[x1, . . . , xn] of degree not more than k.

Henceforth, “spline” will mean “polynomial spline,” “degree-k” will mean “degree not more
than k,” and “partition” will mean “semialgebraic partition.” The small cases k = 1, 2, 3, 5 are
customarily called linear, quadratic, cubic, and quintic splines respectively. The standard notation
for the set of all r-times differentiable degree-k splines with partition induced by π1, . . . , πb is
Sr
k(π1, . . . , πb) but since we will only need the case r = 0 and splines as defined in Definition 2.2

are always continuous, we may drop the superscript r.
Observe that Sk(π1, . . . , πb) is a finite-dimensional real vector space. So it is straightforward to

extend Definition 2.2 to V-valued splines f : Rn → V for any finite-dimensional real vector space V
using tensor product, namely, they are simply elements of Sk(π1, . . . , πb) ⊗ V [29, Example 4.30].
For the benefit of readers unfamiliar with tensor product constructions, we go over this below in a
concrete manner for V = Rn and Rn×p.

2.2. Vector-valued splines. A vector-valued degree-k spline f : Rn → Rm is given by

f(x) =
m∑
i=1

fi(x)ei for all x ∈ Rn,
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where f1, . . . , fm ∈ Sk(π1, . . . , πb) and e1, . . . , em ∈ Rm are the standard basis vectors. This
is equivalent to requiring f be a degree-k spline coordinatewise, i.e., f = (f1, . . . , fm) where
f1, . . . , fm ∈ Sk(π1, . . . , πb).

Traditionally, vector-valued splines are the most important class of splines for practical applica-
tions. Special cases include spline curves (n = 1, m = 2 or 3) and spline surfaces (n = 2, m = 2 or
3), used to parameterize curves and surfaces that pass near a collection of given data points. These
are of fundamental importance in computer graphics and computer-aided design [20, 44].

2.3. Matrix-valued splines. In this case we are interested in splines that are not just matrix-
valued but also matrix-variate. One nice feature with our treatment of splines in Section 2.1 is that
we can define matrix-variate splines over Rn×p by simply replacing all occurrences of R[x1, . . . , xn]
with R[x11, . . . , xnp]. A matrix-valued degree-k spline f : Rn×p → Rm×p is then given by

(15) f(X) =
m∑
i=1

p∑
j=1

fij(X)Eij for all X ∈ Rn×p,

where fij ∈ Sk(π1, . . . , πb) and Eij ∈ Rm×p, i = 1, . . . ,m, j = 1, . . . , p. Here Eij is the stan-
dard basis matrix with one in (i, j)th entry and zeros everywhere else. Again, an alternative but
equivalent way to define them would be in a coordinatewise fashion, i.e., f = (fij)

m,p
i,j=1 where

fij ∈ Sk(π1, . . . , πb), i = 1, . . . ,m, j = 1, . . . , p. Note that p = 1 reduces to the case in Section 2.2.

2.4. Pierce–Birkhoff conjecture. Garrett Birkhoff, likely the person first to realize the impor-
tance of splines in applications though his consulting work [49], also posed one of the last remaining
open problems about splines [5].

Conjecture 2.3 (Pierce–Birkhoff). For every spline f : Rn → R, there exists a finite set of
polynomials ξij ∈ R[x1, . . . , xn], i = 1, . . . ,m, j = 1, . . . , p such that

(16) f = max
i=1,...,m

min
j=1,...,p

ξij .

This conjecture is known to be true for n = 1 and 2 but is open for all higher dimensions [33].
Our results in Section 3.3 will be established on the assumption that the Pierce–Birkhoff conjecture
holds true for all n, given that there is significant evidence [31, 46, 34] for its validity.

The kind of functions on the right of (16) we will call max-definable functions in the variables
x1, . . . , xn. These are functions f : Rn → R generated by 1, x1, . . . , xn under three binary oper-
ations: addition (x, y) 7→ x + y, multiplication (x, y) 7→ x · y, maximization (x, y) 7→ max(x, y);
and scalar multiplication x 7→ λx by λ ∈ R. Note that minimization comes for free as min(x, y) :=
−max(−x,−y). Using the identity xy+ = max

(
min(xy, x2y + y),min(0,−x2y − y)

)
, any max-

definable functions can be reduced to the form maxi=1,...,mminj=1,...,p ξij with ξij ∈ R[x1, . . . , xn]
[24]. The notion may be easily extended to matrix-variate, matrix-valued functions f : Rn×p →
Rm×p coordinatewise, i.e., by requiring that each fij : Rn×p → R be a max-definable function in
the variables x11, x12, . . . , xnp.

Clearly, the set of max-definable functions is contained within the set of splines. Pierce–Birkhoff
conjecture states that the two sets are equal. Both are examples of an “f -ring” as defined in [5],
now christened “Pierce–Birkhoff ring” after the two authors. If we drop multiplication from the
list of binary operations generating the max-definable functions, the resulting algebraic object is
the renown max-plus algebra or tropical semiring [32].

3. Equivalence of splines and transformers

We will show that every component of the transformer defined in Section 1 is a spline — neu-
ral network, attention module, masked attention module, encoder block, decoder block, encoder,
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decoder, encoder–decoder — so long as they are ReLU-activated. More importantly, if Conjec-
ture 2.3 is true, then the converse also holds in the sense that every spline is an encoder. The
equivalence between ReLU-activated feed-forward neural networks and linear splines is well-known
[1]. The other equivalences will be established below. Henceforth we will assume ReLU-activation
throughout this section and will not specify this unless necessary for emphasis.

3.1. Transformers are splines. We will first remind readers of the main result in [1] establishing
equivalence between neural networks and linear splines.

Theorem 3.1 (Arora–Basu–Mianjy–Mukherjee). Every neural network φ : Rn → R is a linear
spline, and every linear spline ℓ : Rn → R can be represented by a neural network with at most
⌈log2(n+ 1)⌉+ 1 depth.

Compositions of spline functions are by-and-large uncommon in the literature for reasons men-
tioned in the beginning — one usually combines splines by taking sums or linear combinations.
Matrix-valued splines also appear to be somewhat of a rarity in the literature. Consequently we
are unable to find a reference for what ought to be a fairly standard result about degrees under
composition and matrix multiplication, which we state and prove below.

Lemma 3.2. (i) Let g : Rn → Rm be a spline of degree k and f : Rm → Rp a spline of degree
k′. Then f ◦ g is a spline of degree kk′.

(ii) Let f : Rr×s → Rm×n and g : Rr×s → Rn×p be splines of degrees k and k′. Then fg :
Rr×s → Rm×p, X 7→ f(X)g(X), is a spline of degree k + k′.

Proof. We first assume that p = 1, i.e., f : Rm → R is a spline of degree k′. For a degree-k spline
g = (g1, . . . , gm) : Rn → Rm, we claim that the composition f ◦ g is a spline of degree at most kk′.

A partition induced by any π1, . . . , πb can be refined to π1, . . . , πb, πb+1, . . . , πb+c by adding finitely
many polynomials. Any spline in Sk(π1, . . . , πb) is also a spline in Sk(π1, . . . , πb+c). By passing
through such refinements, we may assume that g1, . . . , gm are defined over a common partition. So
let g1, . . . , gm ∈ Sk(π1, . . . , πb) with

gi(x) = ξi,θ(x) for x ∈ Πθ, θ ∈ Θb

where Θb =
{
θ : {π1, . . . , πb} → {−1, 0, 1}

}
. Let f ∈ Sk(ρ1, . . . , ρc) with

f(x) = ζϕ(x) for x ∈ Πϕ, ϕ ∈ Φc

where Φc =
{
ϕ : {ρ1, . . . , ρc} → {−1, 0, 1}

}
. Let L := {π1, . . . , πb} and

M := L ∪ {ρj ◦ (ξ1,θ, . . . , ξm,θ) : j = 1, . . . , c, θ ∈ Θb}.
Any ϕ :M → {1, 0,−1} can be restricted to L, giving ϕ|L : L→ {1, 0,−1}. Let

H := {ρj ◦ (ξ1,ϕ|L , . . . , ξm,ϕ|L) : j = 1, . . . , c} ⊆ L.

Then ϕ can also be restricted to H, giving ϕ|H : H → {1, 0,−1}. For any nonempty Πϕ, we have

f ◦ g(x) = ζϕ|H ◦ (ξ1,ϕ|L , . . . , ξm,ϕ|L)(x)

for x ∈ Πϕ where ϕ ∈ Φc. So f ◦g ∈ Skk′(M). This shows (i) for p = 1. For general p, we may again
assume, by passing through a refinement if necessary, that f1, . . . , fp share a common partition, we
then apply the same argument coordinatewise.

We then deduce (ii) from (i), by composing the spline (f, g) with the polynomial (and therefore
spline) function (X,Y ) → XY . □

With the ground work laid in Section 1, i.e., having the components of a transformer rigorously
defined, it becomes relatively straightforward to show that these components are all splines.

Theorem 3.3 (Components of a transformer as splines).
(i) An attention module is a cubic spline.
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(ii) A masked attention module is a cubic spline.
(iii) An encoder–decoder attention module is a cubic spline.
(iv) An encoder block is a cubic spline.
(v) A decoder block is a cubic spline.
(vi) An encoder–decoder block is a quintic spline.
(vii) A t-layer encoder is a spline of degree 3t.
(viii) A t-layer decoder is a spline of degree 3t.
(ix) An encoder–decoder with s-layer of encoder blocks and t-layer of encoder–decoder blocks is

a spline of degree 3t+s + 3t − 3s.

Proof. Let f, g : Rn → R be splines of degree k. Since x + y, max(x, y) are linear spline, it
follows from Lemma 3.2(i) that f + g and max(f, g) are splines of degree k. In the attention
module, K(X), Q(X), V (X) are linear splines, it follows from Lemma 3.2(ii) that K(X)TQ(X) is
a quadratic spline. Hence ReLU(K(X)TQ(X)) = max(K(X)TQ(X), 0) is also a quadratic splines
and α(X) = V (X)ReLU(K(X)TQ(X)) is a cubic spline. Similarly, the masked attention β(X) and
encoder–decoder attention γ(X,Y ) in (13) are also cubic splines. Note that the encoder–decoder
attention is a quadratic spline with respect to the first variable X, and a linear spline with respect
to the second variable Y ; but overall it is a cubic spline with respect to (X,Y ).

A neural network is a linear spline by Theorem 3.1. So the encoder block in (6) and decoder block
in (10) remain cubic splines by Lemma 3.2(i). The encoder–decoder block τ(X,Y ) = φ(γ(X,β(Y )))
is quadratic in X and cubic in Y , and thus quintic in (X,Y ). Since a t-layer encoder or decoder is a
composition of (masked) attention modules and neural networks, it is a spline of degree 3t. For an
encoder–decoder with s layers of encoder blocks and t layers of encoder–decoder blocks, induction
on t gives 2× 3s + 3× (3t+s−1 + 3t−1 − 3s) = 3t+s + 3t − 3s as its degree. □

The splines in (ii), (iii), (v), (viii) are autoregressive and those in (vi) and (ix) partially autore-
gressive. The term “autoregressive spline” does appear in the literature but it is used in a sense
entirely unrelated to (8). We will have more to say about this in Corollary 3.10.

3.2. Veronese map. The degree-k Veronese embedding vk is a well-known map in algebraic ge-
ometry [21, pp. 23–25] and polynomial optimization [28, pp. 16–17]. Informally it is the map that
takes variables x1, . . . , xn to the monomials of degree not more than k in x1, . . . , xn. This defines
an injective smooth function

(17) vk : Rn → R(
n+k
k ), (x1, . . . , xn) 7→ (1, x1, . . . , xn, x

2
1, x1x2, . . . , x

k
n).

The value
(
n+k
k

)
gives the number of monomials in n variables of degree not more than k. Two simple

examples: vk : R → Rk, vk(x) = (1, x, x2, . . . , xk); v2 : R2 → R6, v2(x, y) = (1, x, y, x2, xy, y2).
In algebraic geometry [21, pp. 23–25] the Veronese map is usually defined over projective spaces

whereas in polynomial optimization [28, pp. 16–17] it is usually defined over affine spaces as in (17).
Nevertheless this is a trivial difference as the former is just a homogenized version of the latter.

As is standard in algebraic geometry and polynomial optimization alike, we leave out the domain
dependence from the notation vk to avoid clutter, e.g., the quadratic Veronese map v2 : R2 → R6

and v2 : R6 → R28 are both denoted by v2. This flexibility allows us to compose Veronese maps
and speak of vk ◦ vk′ for any k, k′ ∈ N. For example we may write v2 ◦ v2 : R2 → R28, using the
same notation v2 for two different maps.

The Veronese map is also defined over matrix spaces: When applied to matrices, the Veronese

map simply treats the coordinates of an n × p matrix as np variables. So vk : Rn×p → R(
np+k

k ) is
given by

vk(X) = (1, x11, x12, . . . , xnp, x
2
11, x11x12, . . . , x

k
np).

For example v2 : R2×2 → R15 evaluated on [ x y
z w ] gives

(1, x, y, z, w, x2, xy, xz, xw, y2, yz, yw, z2, zw,w2).



ATTENTION IS A SMOOTHED CUBIC SPLINE 13

An important observation for us is the following.

Lemma 3.4. Let k, k′ ∈ N. Then every coordinate of vkk′(X) occurs in vk(vk′(X)).

Proof. This is a consequence of the observation that any monomial of degree not more than kk′

can be written as a product of k monomials, each with degree not more than k′. □

Another result that we will need is the following equivalent formulation of Pierce–Birkhoff con-
jecture in terms of Veronese map.

Lemma 3.5. The Pierce–Birkhoff conjecture holds if and only if for any spline f : Rn → R, there
exist k ∈ N and a linear spline ℓ : R(

n+k
k ) → R such that f = ℓ ◦ vk.

Proof. Firstly note that Pierce–Birkhoff conjecture holds for k = 1: Any linear spline ℓ can be
represented in the form minimaxj ξij where ξij are linear polynomials [36]. Conversely, if ℓ can be
represented in the form minimaxj ξij , then it is clearly a linear spline.

Assuming that Pierce–Birkhoff conjecture holds in general, then any polynomial spline f can be
written as minimaxj ξij , which is a linear spline over monomials of ξij , i.e., f = ℓ ◦ vk for some
linear spline ℓ. Conversely, if every polynomial spline f can be written as ℓ ◦ vk for some linear
spline ℓ, then since ℓ can always be written as ℓ = minimaxj ξij , we have f = minimaxj ξij ◦ vk for
some linear polynomials ξij ’s. Thus we recover the statement of Pierce–Birkhoff conjecture. □

Observe that Lemma 3.5 applies verbatim to matrix-variate splines f : Rn×p → R, except that
n would have to be replaced by np throughout and we have

(18) vk : Rn×p → R(
np+k

k ), ℓ : R(
np+k

k ) → R.

3.3. Splines are transformers. We will show that any matrix-valued spline f : Rn×p → Rr×p is
an encoder. First we will prove two technical results. We will use i, ı̂, ı̄, j, ȷ̂, ȷ̄ to distinguish between
indices. We remind the reader that x+ := ReLU(x).

Lemma 3.6 (Quadratic Veronese as encoders). Let v2 : Rn×p → R(np+2)(np+1)/2 be the quadratic
Veronese map. There exists a two-layer encoder ε2 : Rn×p → Rn2×p such that every column of
ε2(X) contains a copy of v2(X) in the form

ε2(X) =


v2(X) 0 · · · 0

0 v2(X) · · · 0
...

...
. . .

...
0 0 · · · v2(X)

 ∈ Rn2×p.

More precisely, there is a h1-headed attention module α1 : Rn×p → Rmh1×p, a one-layer neural
network, φ1 : Rmh1×p → Rn1×p, a h2-headed attention module α2 : Rn1×p → Rmh2×p, and another
one-layer neural network φ2 : Rmh2×p → Rn2×p, such that

(19) ε2 = φ2 ◦ α2 ◦ φ1 ◦ α1.

In particular, any monomial of degree not more than two in the entries of X appears in every
column of ε2(X).

Proof. We will first construct a multihead attention module α with the property that each of the
p columns of α(X) contains every entry of X, i.e., xij , i = 1, . . . , n, j = 1, . . . , p. Fix any (̂ı, ȷ̂, j)
and consider the single-head attention module αı̂ȷ̂j : Rn×p → Rm×p as in (3) with

AV = E1ı̂, BV = 0, AK = 0, BK = E1ȷ̂, AQ = 0, BQ = E1j ,

as in (4). Then the (1, j)th entry of αı̂ȷ̂j(X) is exactly xı̂ȷ̂ and all other entries in the first row are
zeros. If we repeat this for all ı̂ ∈ {1, . . . , n}, ȷ̂, j ∈ {1, . . . , p} and stack these np2 attention modules
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together, we obtain the multihead attention α. By construction any column of α(X) contains every
entry of X.

For the required α1, we need to augment α so that every column of α1(X) will also contain the

constant 1. Consider the single-head attention module α(j) : Rn×p → Rm×p with

AV = 0, BV = E11, AK = 0, BK = E11, AQ = 0, BQ = E1j .

Then the (1, j)th entry of α(j)(X) is 1, and all other entries in the first row are zeros. We repeat

this for all j ∈ {1, . . . , p} and stack α(1), . . . , α(p) with α to obtain the required α1. Note that α1

has h1 = np2 + p heads.
Because x = ReLU(x) − ReLU(−x), the coordinate function f(x1, . . . , xn) = xi = ReLU(xi) −

ReLU(−xi) can be represented using a one-layer neural network. So there exists a one-layer neural
network φ1 that only keeps all first rows of the above attention modules, and ε1 = φ1 ◦ α1 gives

ε1(X) =


v1(X) 0 · · · 0

0 v1(X) · · · 0
...

...
. . .

...
0 0 · · · v1(X)

 ∈ Rn1×p.

We will now construct α2. We first repeat the construction above so that the first np2 + p heads
of α2 will produce all linear monomials (i.e., the entries of X), and the constant. In particular, by
the end of our construction, every column of α2 ◦ φ1 ◦ α1(X) will contain every entry of X and 1,
and each of these entries is the only nonzero entry in its row.

We then construct the next batch of heads of α2 that will produce all quadratic monomials.
Consider the attention module αı̂̄ıj defined by

AV = E1ı̂, BV = 0, AK = 0, BK = E1j , AQ = E1ı̄, BQ = 0.

Then the (1, j)th entry of αı̂̄ıj(X) is xı̂j(xı̄j)
+. In other words we can form quadratic terms in jth

column out of entries in jth column. If we repeat this for all ı̂, ı̄ ∈ {1, . . . ,mh1}, j ∈ {1, . . . , p},
and stack these attention modules together, we obtain a multihead attention α+

2 .
By our previous construction, among the rows of φ1 ◦ α1(X) are two with only the jth column

nonzero, taking values xı̂ȷ̂ and xı̄ȷ̄ respectively. Composing with α2, we obtain a row with jth entry

xı̂ȷ̂(xı̄ȷ̄)
+, and other entries zeros. So the composition α+

2
◦ φ1 ◦ α1(X) contains all quadratic terms

of the form xı̂ȷ̂(xı̄ȷ̄)
+ in any column, and each of those entries is the only nonzero entry in its row.

We may repeat the same argument to obtain a multihead attention α−
2 with the property that the

composition α−
2

◦ φ1 ◦ α1(X) contains all quadratic terms of the form xı̂ȷ̂(−xı̄ȷ̄)+ in any column,
and each of those entries is the only nonzero entry in its row. The required α2 is then obtained by
stacking α+

2 , α
−
2 , together with the first np2+p heads that give the linear monomials and constant.

The one-layer neural network φ2 is then chosen so that it gives the quadratic monomial

xı̂ȷ̂xı̄ȷ̄ = xı̂ȷ̂(xı̄ȷ̄)
+ − xı̂ȷ̂(−xı̄ȷ̄)+,

for ı̂, ı̄ ∈ {1, . . . , n} and ȷ̂, ȷ̄ ∈ {1, . . . , p}. □

Recall from Section 1.2 that whenever a neural network takes a matrix input X = [x1, . . . , xp] ∈
Rn×p, it is applied columnwise to each column xj ∈ Rn. In general an attention module and a
neural network are distinct objects. But there is one special case when they are related.

Lemma 3.7 (One-layer neural networks as encoder blocks). Let φ : Rn → Rn2 be a one-layer
neural network. Then

φ : Rn×p → Rn2×p, [x1, . . . , xp] 7→ [φ(x1), . . . , φ(xp)],

is an encoder block of the form φ1 ◦ α1 where φ1 is also a one-layer neural network and α1 is an
attention module.
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Proof. Consider the attention module αij : Rn×p → Rm×p given by

AV = E1i, BV = 0, AK = 0, BK = E1j , AQ = 0, BQ = E1j .

The first row of αij(X) has xij in its (1, j)th entry and zeros elsewhere. If we stack these attention
modules αij , i ∈ {1, . . . , n}, j ∈ {1, . . . , p} together, we obtain an np-headed attention module
α : Rn×p → Rmnp×p. By construction, α(X) contains a submatrix of the form

(20)


x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xp

 ∈ Rnp×p,

where xj ∈ Rn is the jth column of X ∈ Rn×p, j = 1, . . . , p. Let ψ : Rnp → Rp be the affine map
given by

Rnp ∋


x1
x2
...
xp

 7→ x1 + x2 + · · ·+ xp ∈ Rn.

We apply ψ columnwise to α(X), extending its domain so that ψ maps every row outside the
submatrix in (20) to zero. Then the submatrix in (20) is transformed as

x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xp

 7→ [x1, x2, . . . , xp] = X

and every other row outside of this submatrix gets mapped to zero. In other words ψ is a left
inverse of α. The required statement then follows from (φ ◦ψ) ◦α = φ ◦ (ψ ◦α) = φ, with φ1 = φ ◦ψ
and α1 = α. □

While the definition of an encoder as in Section 1.4 does not require the neural networks within
it to have only one hidden layer, the original version in [45] does. Lemma 3.7 shows that this is
not really a more stringent requirement since whenever we are presented with a multilayer neural
network we may repeatedly apply Lemma 3.7 to turn it into the form required in [45].

Assuming the Pierce–Birkhoff conjecture, we may now show that any matrix-valued spline f :
Rn×p → Rr×p is an encoder. We prove the most general case possible so that other special cases
follow effortlessly: the corresponding result for vector-valued splines is obtained by setting p = 1
and that for scalar-valued splines by setting r = p = 1. Note also that the result below applies to
splines defined on any semialgebraic partition — the most common rectilinear partition obtained
through triangular of domain is also a special case.

Theorem 3.8 (Splines as encoders). Let f : Rn×p → Rr×p be a max-definable function. Then f is
a t-layer encoder for some finite t ∈ N. More precisely, there exist t attention modules α1, . . . , αt

and t one-layer neural networks φ1, . . . , φt such that

f = φt ◦ αt ◦ φt−1 ◦ αt−1 ◦ · · · ◦ φ1 ◦ α1.

If the Pierce–Birkhoff conjecture holds, then any degree-k spline is an encoder.

Proof. Let f(X) = [f1(X), . . . , fp(X)] ∈ Rr×p with fj(X) ∈ Rr, j = 1, . . . , p. By Lemma 3.5, we
may write fj = ℓj ◦ vkj where ℓj is a linear spline and vkj the Veronese map of degree kj . Let
s := max(k1, . . . , kp). Then by padding ℓj with extra terms with zero coefficients, we may assume

(21) fj = ℓj ◦ vkj = ℓj ◦ vs.
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Note that ℓj : R(
np+s

s ) → Rr.
It follows from Lemma 3.4 that we may obtain all monomials of degree not more than s by

composing the quadratic Veronese map with itself sufficiently many times. So by composing ⌈log2 s⌉
copies of the encoder constructed in Lemma 3.6, we obtain an encoder

(22) ε := ε2 ◦ · · · ◦ ε2
with the property that any column of ε(X) contains a copy of Veronese map of degree s, i.e.,

ε(X) =


vs(X) 0 · · · 0

0 vs(X) · · · 0
...

...
. . .

...
0 0 · · · vs(X)

 ∈ Rnt×p.

There is a slight abuse of notation in (22): We have assumed that the (i + 1)th copy of ε2 has
input dimension ni+1 := (nip+ 2)(nip+ 1)/2, the output dimension of the ith copy of ε2. Strictly
speaking these are different maps since domains and codomains are different although we denote
all of them as ε2. Also, in the final layer, we drop any rows that we do not need — this is not a
problem as “dropping rows” is just a modification of the neural network in the last layer φt, which
we will be modifying anyway below.

Expanding each copy of ε2 as in (19), we obtain the structure in (7), i.e.,

(23) ε = φt ◦ αt ◦ φt−1 ◦ αt−1 ◦ · · · ◦ φ1 ◦ α1

for some t ∈ N. We will modify the attention module αt : Rnt×p → Rmt×p in the last layer. For
i = 1, . . . , 2r, we let α(i) : Rnt×p → Rm×p be a (single-head) attention module with

A
(i)
V = 0, A

(i)
K = 0, A

(i)
Q = 0, B

(i)
V = E11, B

(i)
K = E11,

and B
(i)
Q is a nonnegative constant matrix to be determined later. The first row of α(i)(X) is

the first row of B
(i)
Q , i.e., α(i)(X) contains a row of nonnegative constants. By stacking 2r heads

α(1), . . . , α(2r) onto αt, we obtain a modified attention module with 2r extra heads,

α̂t := (α(1), . . . , α(2r), αt) : Rnt×p → R(2mr+mt)×p

Prefixing these heads to αt will allow us to add 2r rows of nonnegative constants to ε(X).
First, by modifying the neural network φt to φ̂t, one that keeps the first row of each those 2r

extra heads, we see that φ̂t ◦ α̂t(X) will have 2r rows of nonnegative constants irrespective of X.
We may also choose φ̂t so that these occur as the first through 2rth rows, denoted as[

b1 b2 · · · bp
b′1 b′2 · · · b′p

]
∈ R2r×p,

for some bi, b
′
i ∈ Rr

+, i = 1, . . . , p. Note that each row of the matrix above comes from one of the

added heads α(1), . . . , α(2r).
By replacing φt and αt in (23) with φ̂t and α̂t, we obtain an encoder ε̂ : Rn×p → R(2r+nt)×p,

ε̂ := φ̂t ◦ α̂t ◦ φt−1 ◦ αt−1 ◦ · · · ◦ φ1 ◦ α1.

By our construction we must have

ε̂(X) =



b1 b2 · · · bp
b′1 b′2 · · · b′p

vs(X) 0 · · · 0
0 vs(X) · · · 0
...

...
. . .

...
0 0 · · · vs(X)


∈ R(2r+nt)×p.
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Define the linear spline ℓ : R2r+(np+s
s )p → R(p+2)r by

ℓ(x, x′, x1, . . . , xp) =
(
x, x′, ℓ1(x1), . . . , ℓp(xp)

)
.

Here x, x′ ∈ Rr, x1, . . . , xp ∈ R(
np+s

s ). By Theorem 3.1, linear splines are exactly neural networks.
Recall from Section 1.2 that when we apply a neural network to a matrix, we apply it columnwise.
Hence

ℓ ◦ ε̂(X) =



b1 b2 · · · bp
b′1 b′2 · · · b′p

f1(X) ℓ1(0) · · · ℓ1(0)
ℓ2(0) f2(X) · · · ℓ2(0)
...

...
. . .

...
ℓp(0) ℓp(0) · · · fp(X)


,

where we have used (21). Now we set

bi = ReLU
(
−
∑
j ̸=i

ℓj(0)
)
, b′i = ReLU

(∑
j ̸=i

ℓj(0)
)
,

for each i = 1, . . . , p. Let ψ : R(p+2)r → Rr be the linear map defined by

ψ(y, y′, y1, . . . , yp) = y − y′ + y1 + · · ·+ yp,

where y, y′, y1, . . . , yp ∈ Rr. Then the composition of ψ ◦ ℓ ◦ ε̂ has

ψ ◦ ℓ ◦ ε̂(X) = [f1(X), . . . , fp(X)] = f(X),

as required. At this point we have obtained f as an encoder according to the definition in Section 1.4
since ψ ◦ ℓ ◦ φ̂t is clearly a multilayer neural network. By our remark after the proof of Lemma 3.7,
it may be converted into an alternate composition of attention modules and single-layer neural
networks. □

In case the reader is wondering the value of s in the proof above is not necessarily k and can
be strictly larger. To the best of our knowledge, there is not even a conjectural effective version
of Conjecture 2.3 in the literature. So unlike Theorem 3.1, any bounds on the number of encoder
blocks, number of heads of attention modules, width of the neural networks, etc, are beyond reach
at this point.

Just as Theorem 3.1 establishes the equivalence between ReLU-neural networks and linear splines,
various parts of the results in this article collectively establish the equivalence between ReLU-
encoders and splines, assuming the validity of the Pierce–Birkhoff conjecture.

Corollary 3.9. If the Pierce–Birkhoff conjecture holds, then the following classes of functions are
all equal:

(i) splines;
(ii) encoders;
(iii) max-definable functions;
(iv) linear splines composed with the Veronese map.

While our article is about understanding transformers in terms of splines, there is a somewhat
unexpected payoff: the proof of Theorem 3.8 yields a way to construct autoregressive splines.
There appears to be no universally agreed-upon meaning for the term “autoregressive spline” in
the existing literature. In particular none replicates (8) and we are unaware of any construction
that yields a spline that is autoregressive in the sense of (8).
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Corollary 3.10 (Autoregressive splines as decoders). Let k ∈ N and f : Rn×p → Rm×p be an
autoregressive max-definable function. Then f is a t-layer decoder for some finite t ∈ N. More pre-
cisely, there exist t masked attention modules β1, . . . , βt and t one-layer neural networks φ1, . . . , φt

such that

f = φt ◦ βt ◦ φt−1 ◦ βt−1 ◦ · · · ◦ φ1 ◦ β1.

If the Pierce–Birkhoff conjecture holds, then any degree-k autoregressive spline is a decoder.

Proof. The proof of Lemma 3.6 applies almost verbatim. In fact it is slightly simpler since in the
(1, j)th entry, we only need to construct monomials of the form xı̂ȷ̂, xı̂ȷ̂xı̄ȷ̄ for ȷ̂, ȷ̄ ≤ j. The same
constructions used to obtain AV , BV , AK , BK , AQ, BQ produce these required monomials when
we use masked attention modules in place of attention modules. The proofs of Lemma 3.7 and
Theorem 3.8 then apply with masked attention modules in place of attention modules. □

A similar construction can be extended to construct partially autoregressive splines as encoder–
decoders.

4. Conclusion

It is an old refrain in mathematics that one does not really understand a mathematical proof
until one can see how every step is inevitable. This is the level of understanding that we hope
Section 3.3 provides for the transformer.

4.1. Insights. Arora et al. [1] have shown that neural networks are exactly linear splines. Since
compositions of linear splines are again linear splines, to obtain more complex functions we need
something in addition to neural networks. Viewed in this manner, the attention module in Sec-
tion 1.3 is the simplest function that serves the role. Lemma 3.6 shows that the quadratic Veronese
map, arguably the simplest map that is not a linear spline, can be obtained by composing two
attention modules. The proof reveals how heads and layers are essential: It would fail if we lacked
the flexibility of having multiple heads and layers. The proof also shows how a neural network
works hand-in-glove with attention module: It would again fail if we lack either one. The proof
of Theorem 3.8 then builds on Lemma 3.6: By composing quadratic Veronese maps we can obtain
Veronese map of any higher degree; and by further composing it with linear splines we obtain all
possible splines. The resulting map, an alternating composition of attention modules and neural
networks, is exactly the encoder of a transformer.

There are some other insights worth highlighting. Lemma 3.7 explains why the neural networks
within a transformer require no more than one hidden layer; Vaswani et al. [45] likely arrived at
this same conclusion through their experimentation. Theorem 3.3(vii) shows why layering attention
modules and neural networks makes for an effective way to increase model complexity — the degree
of the spline 3t increases exponentially with the number of layers t.

4.2. Recommendations. Recent work of Wortsman et al. [48] shows that a ReLU-transformer is
perfectly capable of achieving results of similar quality as the original SoftMax-transformer, offering
significant computational savings. We also advocate the use of ReLU activation, if only for turning
a nearly-mystical and sometimes-feared technology into a familiar friendly one. In which case we
could drop the word “smoothed” in our title — attention is a cubic spline.

If a smooth function is desired, we argue for using SoftPlus instead of SoftMax as activation. The
SoftMax function is the natural smooth proxy for argmax as well as the derivative of SoftPlus, also
known as the log-sum-exp function, which is in turn the natural smooth proxy for ReLU. Indeed
SoftPlus has been used in place of ReLU to construct smooth neural networks with encouraging
results [7]. Despite their intimate relationship, SoftMax makes for a poor proxy for ReLU. On
the basis of our work, a SoftPlus-activation would be natural, smooth, and preserves fidelity with
splines.
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Lastly, Section 3.3 points to the importance of a nearly forgotten seventy-year-old conjecture
about splines by one of its pioneers. Indeed, Theorem 3.8 shows that the Pierce–Birkhoff conjecture
is true if and only if every spline is an encoder. Perhaps this article will rekindle interest in the
conjecture and point a way towards its resolution.

References

[1] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks with rectified linear units.
In International Conference on Learning Representations, 2018.

[2] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv:1607.06450, 2016.
[3] Y. Bai, F. Chen, H. Wang, C. Xiong, and S. Mei. Transformers as statisticians: Provable in-context learning with

in-context algorithm selection. In Workshop on Efficient Systems for Foundation Models @ ICML2023, 2023.
[4] G. Birkhoff and H. L. Garabedian. Smooth surface interpolation. J. Math. and Phys., 39:258–268, 1960.
[5] G. Birkhoff and R. S. Pierce. Lattice-ordered rings. An. Acad. Brasil. Ci., 28:41–69, 1956.
[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,

A. Askell, et al. Language models are few-shot learners. volume 33, pages 1877–1901, 2020.
[7] G. C. Calafiore, S. Gaubert, and C. Possieri. Log-sum-exp neural networks and posynomial models for convex

and log-log-convex data. IEEE Trans. Neural Netw. Learn. Syst., 31(3):827–838, 2020.
[8] C. K. Chui. Multivariate splines, volume 54 of CBMS-NSF Regional Conference Series in Applied Mathematics.

Society for Industrial and Applied Mathematics, Philadelphia, PA, 1988.
[9] A. Cohen, I. Daubechies, and J.-C. Feauveau. Biorthogonal bases of compactly supported wavelets. Comm. Pure

Appl. Math., 45(5):485–560, 1992.
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2002.
[37] B. Peters, V. Niculae, and A. F. Martins. Sparse sequence-to-sequence models. In Annual Meeting of the Asso-

ciation for Computational Linguistics, pages 1504–1519, 2019.
[38] A. Prakash, K. Chitta, and A. Geiger. Multi-modal fusion transformer for end-to-end autonomous driving. In

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7077–7087, 2021.
[39] Z. Qin, W. Sun, H. Deng, D. Li, Y. Wei, B. Lv, J. Yan, L. Kong, and Y. Zhong. cosFormer: Rethinking softmax

in attention. In International Conference on Learning Representations, 2021.
[40] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain.

Psychol. Rev., 65:386–408, 1958.
[41] I. J. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions. Part

A. On the problem of smoothing or graduation. A first class of analytic approximation formulae. Quart. Appl.
Math., 4:45–99, 1946.

[42] I. J. Schoenberg. Spline functions and the problem of graduation. Proc. Nat. Acad. Sci. U.S.A., 52:947–950,
1964.

[43] B. Shekhtman and T. Sorokina. A note on intrinsic supersmoothness of bivariate semialgebraic splines. Comput.
Aided Geom. Design, 98:Paper No. 102137, 5, 2022.

[44] E. V. Shikin and A. I. Plis. Handbook on splines for the user. CRC Press, Boca Raton, FL, 1995.
[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L. Kaiser, and I. Polosukhin. Attention

is all you need. In Advances in Neural Information Processing Systems, volume 30, 2017.
[46] S. Wagner. On the Pierce-Birkhoff conjecture for smooth affine surfaces over real closed fields. Ann. Fac. Sci.

Toulouse Math. (6), 19:221–242, 2010.
[47] G. Wahba. Spline models for observational data, volume 59 of CBMS-NSF Regional Conference Series in Applied

Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990.
[48] M. Wortsman, J. Lee, J. Gilmer, and S. Kornblith. Replacing softmax with ReLU in vision transformers.

arXiv:2309.08586, 2023.
[49] D. M. Young. Garrett Birkhoff and applied mathematics. Notices Amer. Math. Soc., 44(11):1446–1450, 1997.
[50] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, A. Wahid, Q. Vuong,

V. Vanhoucke, H. Tran, R. Soricut, A. Singh, J. Singh, P. Sermanet, P. R. Sanketi, G. Salazar, M. S. Ryoo,
K. Reymann, K. Rao, K. Pertsch, I. Mordatch, H. Michalewski, Y. Lu, S. Levine, L. Lee, T.-W. E. Lee,
I. Leal, Y. Kuang, D. Kalashnikov, R. Julian, N. J. Joshi, A. Irpan, B. Ichter, J. Hsu, A. Herzog, K. Hausman,
K. Gopalakrishnan, C. Fu, P. Florence, C. Finn, K. A. Dubey, D. Driess, T. Ding, K. M. Choromanski, X. Chen,
Y. Chebotar, J. Carbajal, N. Brown, A. Brohan, M. G. Arenas, and K. Han. RT-2: Vision-language-action models
transfer web knowledge to robotic control. In Conference on Robot Learning, volume 229, pages 2165–2183, 2023.

Department of Mathematics, University of Texas, Austin, TX 78712
Email address: zehua.lai@austin.utexas.edu

Computational and Applied Mathematics Initiative, Department of Statistics, University of Chicago,
Chicago, IL 60637

Email address: lekheng@uchicago.edu

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332
Email address: yucongliu@gatech.edu


	0.1. Understanding transformers via splines
	1. Mathematical description of the transformer
	1.1. Notations
	1.2. Feed forward neural network
	1.3. Attention
	1.4. Encoder
	1.5. Masked attention
	1.6. Decoder
	1.7. Encoder–decoder attention
	1.8. Transformer
	1.9. ReLU-transformer
	1.10. Layer normalization and residual connection
	1.11. Miscellany

	2. Splines
	2.1. Scalar-valued splines
	2.2. Vector-valued splines
	2.3. Matrix-valued splines
	2.4. Pierce–Birkhoff conjecture

	3. Equivalence of splines and transformers
	3.1. Transformers are splines
	3.2. Veronese map
	3.3. Splines are transformers

	4. Conclusion
	4.1. Insights
	4.2. Recommendations

	References

