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Abstract. We derive three families of orthogonally-equivariant matrix submanifold models for
the Grassmann, flag, and Stiefel manifolds respectively. These families are exhaustive — every
orthogonally-equivariant submanifold model of the lowest dimension for any of these manifolds is
necessarily a member of the respective family, with a small number of low-dimensional exceptions.
They have several computationally desirable features. The orthogonal equivariance allows one to
obtain, for various differential geometric objects and operations, closed-form analytic expressions
that are readily computable with standard numerical linear algebra. The minimal dimension trans-
lates directly to a speed advantage in computations. And having an exhaustive list of all possible
matrix models permits one to identify the model with the lowest matrix condition number, which
translates to an accuracy advantage in computations. As an interesting aside, we will see that the
family of models for the Stiefel manifold is naturally parameterized by the Cartan manifold, i.e.,
the positive definite cone equipped with its natural Riemannian metric.

1. Introduction

As abstract manifolds, the Grassmannian is a set of subspaces, the flag manifold a set of nested
sequences of subspaces, and the Stiefel manifold a set of frames. To work with these manifolds, not
least perform computations, one needs a model, i.e., a system of extrinsic coordinates, for them.
From the perspective of numerical computations, the best models are matrix models, representing
these manifolds by a quotient manifold or submanifold of matrices, thereby permitting differential
geometric objects to be expressed in terms of matrix operations computable with standard numer-
ical linear algebra. Among such models, submanifold models are preferable to quotient manifold
models as points and tangent vectors are represented by actual matrices instead of equivalence
classes of matrices, which require artificial choices and additional computations to further repre-
sent as actual matrices, bearing in mind that standard numerical linear algebra only works with
actual matrices, not equivalence classes of matrices. For numerical stability, these models should
be equivariant under orthogonal group action, as orthogonal matrices are the basis of numerically
stable algorithms.

For the Grassmannian [27] and flag manifold [9], these considerations lead us to the follow-
ing models. Let S2(Rn) be the space of n × n real symmetric matrices, a, b ∈ R distinct and
a1, . . . , ap+1 ∈ R generic real numbers. We will show that the quadratic model

Gra,b(k, n) :=
{
X ∈ S2(Rn) : (X − aI)(X − bI) = 0, tr(X) = ak + b(n− k)

}
is diffeomorphic to Gr(k,Rn), the Grassmannian of k-planes in Rn; and the isospectral model

Flaga1,...,ap+1
(k1, . . . , kp, n) :=

{
X ∈ S2(Rn) :

p∏
j=0

(X − aj+1In) = 0, tr(X) =

p∑
j=0

(kj+1 − kj)aj+1

}
is diffeomorphic to Flag(k1, . . . , kp,Rn), the manifold of (k1, . . . , kp)-flags in Rn. Here we have
assumed that 0 < k < n and 0 =: k0 < k1 < · · · < kp+1 := n are all integers. Evidently the
quadratic model is the p = 1 case of the isospectral model.

The quadratic model is so-called because the roots of a monic quadratic matrix polynomial
(X − aI)(X − bI) = 0 are called quadratic matrices [10], well-known in studies of numerical range
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[7, 30]. The special cases (a, b) = (1, 0) gives projection matrices with X2 = X and (a, b) = (1,−1)
gives involutory matrices with X2 = I. So the classical projection model Gr1,0(k, n) = {X ∈
S2(Rn) : X2 = X, tr(X) = k} [21, 26] and the more recent involution model Gr1,−1(k, n) = {X ∈
S2(Rn) : X2 = I, tr(X) = 2k − n} [16] are both special cases of the quadratic model.

The descriptions of these models above are implicit. We will prove in Section 4 that they are
equivalent to the following explicit descriptions:

Gra,b(k, n) =

{
Q

[
aIk 0
0 bIn−k

]
QT ∈ S2(Rn) : Q ∈ SOn(R)

}
,

Flaga1,...,ap+1
(k1, . . . , kp, n) =

Q

a1In1 0 · · · 0

0 a2In2

...
...

. . . 0
0 · · · 0 ap+1Inp+1

QT ∈ S2(Rn) : Q ∈ SOn(R)

 ,

where SOn(R) is the set of orthogonal matrices with unit determinant. This matrix manifold is
known for more than thirty years [4, 8, 14, 18, 1, 12, 25] under the names isospecral manifold
or spectral manifold. It has been shown in [14, Section 2.2] that Flaga1,...,ap+1

(k1, . . . , kp, n) is

diffeomorphic to a flag manifold for a1 > · · · > ap+1, and in [25, Lemma 6.1] for distinct a1, . . . , ap+1.
We wish to acknowledge their precedence here. Nevertheless, our results in Section 4 will go further
in establishing that these models are complete in an appropriate sense.

One might also ask how these discussions apply to the Stiefel manifold [28] of orthonormal k-
frames in n-space. As an addendum, we will show in Section 6 that for the Stiefel manifold, there
is an analogous family of minimal SOn(R)-equivariant models, the Cholesky models

VA(k, n) := {X ∈ Rn×k : XTX = A},
parameterized by A ∈ S2++(Rk), the set of k× k symmetric positive definite matrices. This descrip-
tion is implicit; but Cholesky models too have an explicit description that justifies the name,

VA(k, n) =

{
Q

[
R
0

]
: Q ∈ On(R)

}
,

where R ∈ GLk(R) is the unique Cholesky factor with positive diagonal of A.
It will become clear in Section 6 that the relevant structure on S2++(Rk) is that of a Riemannian

manifold with metric tr(A−1XA−1Y ), and not its more common structure as an Euclidean cone.
Note that A = I gives the usual model of the Stiefel manifold as n× k matrices with orthonormal
columns but more generally a Cholesky model allows for A−1-orthonormal columns.1

1.1. Computational significance. From a computational perspective, these families of models
have two desirable features and are unique in this regard:

(i) orthogonal equivariance: Let Q ∈ O(n). Then X ∈ S2(Rn) is in an isospectral model iff
QTXQ is in the model; X ∈ Rn×k is in a Cholesky model iff QX is in the model.

(ii) minimal dimension: There is no model for the flag (resp. Stiefel) manifold in an ambient
space of dimension smaller than 1

2(n− 1)(n+ 2) (resp. nk) with property (i).
(iii) exhaustive: Any model for the flag (resp. Stiefel) manifold with properties (i) and (ii) must

be among the family of isospectral (resp. Cholesky) models.

Property (i) is key to deriving closed-form analytic expressions for differential geometric quanti-
ties in terms of standard matrix operations stably computable with numerical linear algebra [16].

Property (ii) ensures that points on the manifold are represented with matrices of the lowest
possible dimension, which is important as the speed of every algorithm in numerical linear algebra
depends on the dimension of the matrices. The current lowest dimensional matrix model of a flag

1Fortuitously Stiefel also pioneered the use of A−1-orthonormality in computational mathematics through his
conjugate gradient method [15].
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manifold is obtained by embedding Flag(k1, . . . , kp;Rn) into a product of Grassmannians as in (9)
on p. 5. Even if we use the lowest dimensional models for these Grassmannians, the result would
involve matrices of dimension np× np whereas the isospectral model uses only n× n matrices.

For accuracy, the matrix condition number plays a role analogous to matrix dimension for speed.
Property (iii) allows us to pick from among the respective family of models the one with the smallest
condition number. Every matrix in an isospectral model Flaga1,...,ap+1

(k1, . . . , kp, n) has identical

eigenvalues and therefore condition number max(|a1|, . . . , |ap+1|)/min(|a1|, . . . , |ap+1|). For the
Grassmannian p = 1 and there is a unique (up to a constant multiple) perfectly conditioned model
with a = 1, b = −1, which is precisely the involution model in [16]. For more general flag manifolds
with p > 1, the condition number can be made arbitrarily close to one. For the Stiefel manifold,
the usual model with A = I plays the role of the involution model, namely, as the unique (up to a
constant multiple) perfectly conditioned model among all Cholesky models.

1.2. Contributions. The main intellectual effort of this article is to establish property (i) and half
of property (ii) by deriving the isospectral model (Theorem 4.1, Corollary 4.2) and demonstrating
that we may choose a1, . . . , ap+1 so that we get a submanifold of S2◦(Rn), the space of traceless

symmetric matrices with dimS2◦(Rn) = 1
2(n− 1)(n+ 2) (Corollary 4.4). To demonstrate the other

half of property (ii), i.e., no lower dimensional model exists, and to prove property (iii), one needs
an amount of representation theory far beyond the scope of our article and is relegated to [19].

The orthogonal equivariance in property (i) deserves elaboration. Firstly we really do mean
“orthogonal” — every result in this article remains true if SOn(R) is replaced by On(R). Secondly
we stress the importance of “equivariance.” The Riemannian metric is often regarded as the
center piece of any computations involving manifolds, not least in manifold optimization. This
is getting things backwards. What is by far more important is equivariance, or, as a special
case, invariance. There are uncountably many Riemannian metrics on the flag manifold even
after discounting constant multiples. The most important Riemannian metrics are the ones that
are SOn(R)-invariant; note that the standard Euclidean inner product on Rn or Rm×n has this
property. In the case of the flag, Grassmann, and Stiefel manifolds, there is an even more special
one — the SOn(R)-invariant Riemannian metric that comes from the unique bi-invariant metric on
SOn(R). It is the key to deriving explicit expressions for differential geometric objects in terms of
standard matrix operations readily computable with numerical linear algebra.

A second goal of this article is show that the Riemannian metrics arising from our equivariant
embeddings of the flag, Grassmann, and Stiefel manifolds are, up to constant weights, the ones
arising from the bi-invariant metric on SOn(R) (Section 7). As a perusal of the computational
mathematics literature would reveal, equivariance has never been brought into center stage. We
hope that our article would represent a small step in this direction.

2. Notations and some background

We generally use blackboard bold fonts for vector spaces and double brackets J · K for equivalence
classes. On two occasions we write Qj for a subspace spanned by columns of an orthogonal matrix
Q, which should not cause confusion as the rational field has no role in this article. We reserve the
letter W for R-vector spaces and V for SOn(R)-modules, usually adorned with various subscripts.
We write ∼= for diffeomorphisms of manifolds and ≃ for isomorphisms of vector spaces and modules.

2.1. Linear algebra. The real vector spaces of real symmetric, skew-symmetric, and traceless
symmetric matrices will be denoted respectively by

(1)

S2(Rn) := {X ∈ Rn×n : XT = X},
Λ2(Rn) := {X ∈ Rn×n : XT = −X},
S2◦(Rn) := {X ∈ Rn×n : XT = X, tr(X) = 0}.
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For the cone of real symmetric positive definite matrices, we write

S2++(Rn) := {X ∈ Rn×n : yTXy > 0 for all y ̸= 0}.
The Lie groups of real orthogonal, special orthogonal, and general linear groups will be denoted
respectively by

(2)

On(R) := {X ∈ Rn×n : XTX = I},
SOn(R) := {X ∈ Rn×n : XTX = I, det(X) = 1},
GLn(R) := {X ∈ Rn×n : det(X) ̸= 0}.

Let n1 + · · ·+ np = n. We will also write

S(On1(R)× · · · ×Onp(R)) := {diag(X1, . . . , Xp) ∈ On(R) :
X1 ∈ On1(R), . . . , Xp ∈ Onp(R), det(X1) · · · det(Xp) = 1}.

Note that SOn(R) is a special case of this. For each increasing sequence 0 =: k0 < k1 < · · · < kp <
kp+1 := n, we also define the parabolic subgroup of block upper triangular matrices:

Pk1,...,kp(R) =

{[
X1,1 ··· X1,p+1

...
. . .

...
0 ··· Xp+1,p+1

]
∈ GLn(R) :

Xij ∈ R(ki−ki−1)×(kj−kj−1),

i, j = 1, . . . , p+ 1

}
.

Let G be a group and V a vector space. We say that V is a G-module if there is a linear group
action G× V→ V, (g, v) 7→ g · v, i.e., satisfying

g · (a1v1 + a2v2) = a1g · v1 + a2g · v2
for any g ∈ G, a1, a2 ∈ R, and v1, v2 ∈ V. In this paper, we will mostly limit ourselves to
G = SOn(R) and two group actions on Rn and Rn×n respectively:

SOn(R)× Rn → Rn, (Q, v) 7→ Q · v := Qv,(3)

SOn(R)× Rn×n → Rn×n, (Q,X) 7→ Q ·X := QXQT.(4)

All matrix subspaces in (1) are also SOn(R)-modules under the conjugation action (4). If V is a
G-module, then a direct sum of multiple copies V⊕· · ·⊕V is automatically a G-module with action
Q · (v1, . . . , vk) := (Q · v1, . . . , Q · vk). So Rn×k = Rn ⊕ · · · ⊕ Rn is also an SOn(R)-module under
the action (3).

2.2. Differential geometry. We write Gr(k,Rn), Flag(k1, . . . , kp,Rn), and V(k,Rn) respectively
for the flag, Grassmann, and Stiefel manifold as abstract manifolds. An element of Gr(k,Rn) is a
subspace W ⊆ Rn, dimW = k. An element of Flag(k1, . . . , kp,Rn) is a flag, i.e., a nested sequence
of subspaces W1 ⊆ · · · ⊆ Wp ⊆ Rn, dimWi = ki, i = 1, . . . , p. An element of V(k,Rn) is an
orthonormal k-frame (w1, . . . , wk) in Rn.

The abstract Grassmann and flag manifolds are G-manifolds for any subgroup G ⊆ GLn(R), i.e.,
they come naturally equipped with a G-action. For Grassmann manifolds, take any W ∈ Gr(k,Rn)
and any X ∈ G ⊆ GLn(R), the action is given by

X ·W := {Xw ∈ Rn : w ∈W},
noting that dimX ·W = dimW. This action extends to Flag(k1, . . . , kp,Rn) since if W1 ⊆ · · · ⊆Wp,
then X ·W1 ⊆ · · · ⊆ X ·Wp for any X ∈ G ⊆ GLn(R). So we may write

(5) X · (W1 ⊆ · · · ⊆Wp) := (X ·W1 ⊆ · · · ⊆ X ·Wp),

again noting that since dimensions are preserved we have a well-defined action. If G is any of the
groups in (2), then this action is transitive.

The abstract Stiefel manifold is a G-manifold for any subgroup G ⊆ On(R) via the action

(6) X · (w1, . . . , wk) := (Xw1, . . . , Xwk)
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for any (w1, . . . , wk) ∈ V(k,Rn). This action is transitive if G = On(R) or SOn(R).
A notion central to this article is that of an equivariant embedding, which has been extensively

studied in a more general setting [23, 3, 20, 29].

Definition 2.1 (Equivariant embedding and equivariant submanifold). Let G be a group, V be a
G-module, and M be a G-manifold. An embedding ε : M→ V is called a G-equivariant embedding
if ε(g · x) = g · ε(x) for all x ∈ M and g ∈ G. In this case, the embedded image ε(M) is called a
G-submanifold of V.

For this article, we only need to know two special cases. For the flag manifold (and thus Grass-
mannian when p = 1), G = SOn(R), M = Flag(k1, . . . , kp,Rn), V = Rn×n, G acts on V via (4) and

on M via (5). For the Stiefel manifold, G = SOn(R), M = V(k, n), V = Rn×k, G acts on V via (3)
and on M via (6).

3. Existing models of the flag manifold

The reader may find a list of all known existing matrix models of the Grassmannian and Stiefel
manifold in [17]. Models for the flag manifold are more obscure and we review a few relevant ones
here. The model most commonly used in pure mathematics is as a quotient manifold,

(7) Flag(k1, . . . , kp,Rn) ∼= GLn(R)/Pk1,...,kp(R),

with the parabolic subgroup as defined in Section 2.1.
As for known2 models of the flag manifold in applied mathematics, the only ones we are aware

of were first proposed in [31]. We will highlight two: There is the orthogonal analogue of (7), as
the quotient manifold

(8) Flag(k1, . . . , kp,Rn) ∼= SOn(R)/S(On1(R)× · · · ×Onp+1(R)).

It has been shown in [31] that any flag manifold may be embedded as a submanifold in a product
of Grassmannians so that any model for the latter yields a model for the former. We recall this
result here: Let n1, . . . , np+1 ∈ N with n1 + · · ·+ np+1 = n. Define

(9) FlagGr(n1, . . . , np+1) :=
{
(W1, . . . ,Wp+1) ∈ Gr(n1,Rn)× · · · ×Gr(np+1,Rn) :

W1 ⊕ · · · ⊕Wp+1 = Rn
}
,

with ⊕ the orthogonal direct sum of subspaces. Then every flag manifold is diffeomorphic to a
submanifold of the form in (9) via the following lemma, where we have also included (7) and (8)
for completeness. Although we use φ1 for a different purpose in this article, its existence carries
the important implication that every model of the Grassmannian automatically gives one for the
flag manifold.

Lemma 3.1 (Change-of-coordinates for flag manifolds I). Let 0 =: k0 < k1 < · · · < kp < kp+1 := n
be integers and

(10) ni+1 = ki+1 − ki, i = 1, . . . , p.

Then the maps below are all diffeomorphisms:

Flag(k1, . . . , kp,Rn) FlagGr(n1, . . . , np+1)

GLn(R)/Pk1,...,kp(R) SOn(R)/ S(On1(R)× · · · ×Onp+1(R))

φ1

φ2 φ3

2The authors of [4, 8, 18, 1, 12] did not appear to know that they are discussing the flag manifold.
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with φ1, φ2, φ3 defined by

φ1(W1 ⊆ · · · ⊆Wp) = (W1,W2/W1, . . . ,Wp/Wp−1,Rn/Wp),

φ2(JXKGL) = (X1 ⊆ · · · ⊆ Xp), φ3(JQKSO) = (Q1, . . . ,Qp+1),

where for each i = 1, . . . , p and j = 1, . . . , p+ 1,

(a) Xi is the vector space spanned by the first ki columns of X ∈ GLn(R);
(b) Wi+1/Wi is the orthogonal complement of Wi in Wi+1, W0 := {0}, and Wp+1 := Rn;
(c) Qj is the vector space spanned by column vectors of Q ∈ SOn(R) in columns kj−1 + 1, . . . , kj.

Proof. It has been shown in [31, Proposition 3] that φ1 is a diffeomorphism, leaving φ2 and φ3.
Let e1, . . . , en ∈ Rn be the standard basis vectors and set Ej := spanR{e1, . . . , ej}, j = 1, . . . , n.
Consider the map

ρ2 : GLn(R)→ Flag(k1, . . . , kp,Rn), X 7→ X · (Ek1 ⊆ · · · ⊆ Ekp)

with the action · in (5). This map is surjective as the action of GLn(R) is transitive. The stabilizer
of (Ek1 ⊆ · · · ⊆ Ekp) ∈ Flag(k1, . . . , kp,Rn) is easily seen to be the parabolic subgroup Pk1,...,kp(R)
in Section 2.1. The orbit-stabilizer theorem then yields the required diffeomorphism φ2 from ρ2.
The same argument appied to

ρ3 : SOn(R)→ Flag(k1, . . . , kp,Rn), Q 7→ Q · (Ek1 ⊆ · · · ⊆ Ekp)

yields the required diffeomorphism φ3. □

In Section 5, we will add to the list of diffeomorphisms in Lemma 3.1 after establishing various
properties of the isospectral model.

4. Equivariant matrix models of the Grassmannian and flag manifold

We begin by deriving the isospectral model Flaga1,...,ap+1
(k1, . . . , kp, n), showing that any SOn(R)-

equivariant embedding of Flag(k1, . . . , kp,Rn) into S2(Rn) must be an isospectral model. Among
these isospectral models are a special class of traceless isospectral models when we choose a1, . . . , ap+1

to satisfy
p∑

i=0

ai+1(ki+1 − ki) = 0.

We have shown in [19] that very SOn(R)-equivariant model of a flag manifold that is minimal,
i.e., whose ambient space has the smallest possible dimension, must necessarily be a traceless
isospectral model. In other words, no matter what space V we embed Flag(k1, . . . , kp,Rn) in, as
long as the embedding ε is equivariant and the dimension of V is the smallest, then (a) we must
have V ≃ S2◦(Rn) and (b) the image of ε must be a traceless isospectral model. The proof of (a)
requires a heavy does of representation theory beyond the scope of this article but we will say a
few words about it in Corollary 4.3 to highlight this property for a special case. The claim in (b)
follows from Theorem 4.1 and Corollary 4.3.

The isospectral model given below in (11) appears more complex than the one presented in
Section 1 but it will be simplified later in Proposition 4.5 for generic parameters.

Theorem 4.1 (Isospectral model I). Let 0 =: k0 < k1 < · · · < kp < kp+1 := n be integers and

ni+1 := ki+1 − ki, i = 1, . . . , p.
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If ε : Flag(k1, . . . , kp,Rn)→ S2(Rn) is an SOn(R)-equivariant embedding, then its image must take
the form

(11) Flaga1,...,ap+1
(k1, . . . , kp, n) :=

{
X ∈ S2(Rn) :

p∏
j=0

(X − aj+1In) = 0,

tr(Xi) =

p∑
j=0

nj+1a
i
j+1, i = 1, . . . , p

}
for some distinct a1, . . . , ap+1 ∈ R.

Proof. Since ε is SOn(R)-equivariant, its image ε(Flag(k1, . . . , kp,Rn)) is the orbit of a point B ∈
ε(Flag(k1, . . . , kp,Rn)) under the action of SOn(Rn) on S2(Rn). Let b1 > · · · > bq+1 be the distinct
eigenvalues of B of multiplicities m1, . . . ,mq+1. Then we may assume that

B =

b1Im1 · · · 0
...

. . .
...

0 · · · bpImq+1

 .
It follows from the orbit-stabilizer theorem that

SOn(R)/S(On1(R)× · · · ×Onp+1(R)) ≃ ε(Flag(k1, . . . , kp,Rn))

≃ SOn(R)/ S(Om1(R)× · · · ×Omq+1(R)),

from which we deduce that q = p and {n1, . . . , np+1} = {m1, . . . ,mq+1}. Let σ ∈ Sp+1 be such that
n1 = mσ(1), . . . , np+1 = mσ(p+1). Set a1 := bσ(1), . . . , a1 := bσ(1). Then ε(Flag(k1, . . . , kp,Rn)) ⊆
Flaga1,...,ap+1

(k1, . . . , kp, n). For the reverse inclusion, since (X−a1I) · · · (X−ap+1I) = 0, any X ∈
Flaga1,...,ap+1

(k1, . . . , kp, n) has eigenvalues a1, . . . , ap+1 with multiplicities n1, . . . , np+1 determined
by the Vandermonde system

(12)


1 1 · · · 1 1
a1 a2 · · · ap ap+1

a21 a22 · · · a2p a2p+1
...

...
. . .

...
...

ap1 ap2 · · · app app+1




n1
n2
n3
...

np+1

 =


n

tr(X)
tr(X2)

...
tr(Xp)

 .
Since we also have that X ∈ S2(Rn), it must take the form X = Qdiag(a1In1 , . . . , ap+1Inp+1)Q

T for
some Q ∈ SOn(R). Hence ε(Flag(k1, . . . , kp,Rn)) ⊇ Flaga1,...,ap+1

(k1, . . . , kp, n). □

Embedded in the proof of Theorem 4.1 is an alternative parametric characterization of the
isospectral model worth stating separately.

Corollary 4.2 (Isospectral model II). Let k0, . . . , kp+1, n, n1, . . . , np+1 and a1, . . . , ap+1 be as in
Theorem 4.1. Then

(13) Flaga1,...,ap+1
(k1, . . . , kp, n) =

Q

a1In1 0 · · · 0

0 a2In2

...
...

. . . 0
0 · · · 0 ap+1Inp+1

QT ∈ S2(Rn) : Q ∈ SOn(R)

 .

As we alluded to in Section 1, we call (11) or (13) the isospectral model. For a fixed choice
of k1 < · · · < kp < n, the parameter space for the family of isospectral models in (13) is the
configuration space [11, 13] of R defined by

Confp+1(R) := Rp+1 \ {(a1, . . . , ap+1) ∈ Rp+1 : ai = aj for some i ̸= j}.
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Clearly, Confp+1(R) is the complement of p(p+1)/2 hyperplanes and therefore has 2p+1 connected
components. The models in [14, Section 2.2] are parameterized by

{(a1, . . . , ap+1) ∈ Rp+1 : a1 > · · · > ap+1},
which represents one of the 2p+1 components of Confp+1(R). We credit [25, Lemma 6.1] as the
first to realize that the requirement a1 > · · · > ap+1 is unnecessary and one only needs distinct
a1, . . . , ap+1 to establish diffeomorphism with Flag(k1, . . . , kp,Rn). Without detracting from [25],
we would like point out that Theorem 4.1 and Corollary 4.2 collectively go further: They establish
the completeness of the isospectral family of models, i.e., any orthogonally equivariant matrix
model of Flag(k1, . . . , kp,Rn) must be one of (13) for some distinct a1, . . . , ap+1.

There are two special cases of isospectral models worth highlighting separately.

Corollary 4.3 (Traceless isospectral model). Let k0, . . . , kp+1, n, n1, . . . , np+1 be as in Theorem 4.1.
Let a1, . . . , ap+1 ∈ R be such that

(14)

p∑
j=0

nj+1aj+1 =

p∑
j=0

(kj+1 − kj)aj+1 = 0.

Then

Flaga1,...,ap+1
(k1, . . . , kp, n) =

{
X ∈ S2◦(Rn) :

p∏
j=0

(X − aj+1In) = 0,

tr(Xi) =

p∑
j=0

nj+1a
i
j+1, i = 1, . . . , p

}
=

{
Qdiag(a1In1 , a2In2 , . . . , ap+1Inp+1)Q

T ∈ S2◦(Rn) : Q ∈ SOn(R)
}

has the lowest possible dimension ambient space among all possible SOn(R)-equivariant models of
the flag manifold whenever n ≥ 17.

Proof. Note that the difference here is that the matrices are traceless, i.e., we have

Flaga1,...,ap+1
(k1, . . . , kp, n) ⊆ S2◦(Rn)

and this is obvious from the parametric characterization as any X ∈ Flaga1,...,ap+1
(k1, . . . , kp, n)

has tr(X) given by the expression in (14). The minimal dimensionality and exhaustiveness of
these traceless isospectral models when n ≥ 17 have been established in [19, Theorem 3.5 and
Proposition 3.7]. Nevertheless, in part as a demonstration of how such a result is plausible, we will
prove a special case in Proposition 4.7 that avoids group representation theory entirely. □

The p = 1 special case of Theorem 4.1 is also worth stating separately. It gives a complete
classification of equivariant models of the Grassmannian, namely, they must all be quadratic models.

Corollary 4.4 (Quadratic model). If ε : Gr(k,Rn)→ S2(Rn) is an SOn(R)-equivariant embedding,
then its image must take the form

Gra,b(k, n) :=
{
X ∈ S2(Rn) : (X − aIn)(X − bIn) = 0, tr(X) = ak + b(n− k)

}
=

{
Q

[
aIk 0
0 bIn−k

]
QT ∈ S2(Rn) : Q ∈ SOn(R)

}
for some distinct a, b ∈ R.

A notable aspect of the quadratic model is that as p = 1, the Vandermonde system (12) in the
defining conditions of (11) reduces to a single trace condition. It turns out that generically this
reduction always holds, even when p > 1. In other words, all we need are the first two rows of (12),

n = n1 + · · ·+ np+1,

tr(X) = a1n1 + · · ·+ ap+1np+1.
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The reason is that n1, . . . , np+1 are positive integers, which greatly limits the number of possible
solutions; in fact for generic values, the two equations above have unique positive integer solutions
n1, . . . , np+1. There is no need to look at the remaining rows of (12).

Proposition 4.5 (Simpler isospectral model). Let k0, . . . , kp+1, n, n1, . . . , np+1 be as in Theo-
rem 4.1. For generic a1, . . . , ap+1 ∈ R,

Flaga1,...,ap+1
(k1, . . . , kp, n) =

{
X ∈ S2(Rn) :

p∏
j=0

(X − aj+1In) = 0, tr(X) =

p∑
j=0

nj+1aj+1

}
.

Proof. Let t := n1a1 + · · ·+ np+1ap+1 and denote the set on the right by Fla1,...,ap+1(t, n). For any
distinct a1, . . . , ap+1 ∈ R,

Flaga1,...,ap+1
(k1, . . . , kp, n) ⊆ Fla1,...,ap+1(t, n).

We will show that the reverse inclusion holds for generic values of a1, . . . , ap+1. Let

M := {(n1, . . . , np+1) ∈ Np+1 : n1 + · · ·+ np+1 = n},
H := {m−m′ ∈ Zp+1 : m ̸= m′, m,m′ ∈M},
C := {(a1, . . . , ap+1) ∈ Rp+1 : ai ̸= aj if i ̸= j}.(15)

The hyperplane defined by h ∈ H is

h⊥ := {a ∈ Rp+1 : aTh = a1h1 + · · ·+ ap+1hp+1 = 0}.
Since H is a finite set and C is a complement of a union of finitely many hyperplanes, C\

⋃
h∈H h⊥ is

also a complement of a union of finitely many hyperplanes. For any a ∈ C\
⋃

h∈H h⊥ andm,m′ ∈M ,
aTm = aTm′ implies that m = m′. For any X ∈ Fla1,...,ap+1(t, n), the multiplicities n1, . . . , np+1 of
a1, . . . , ap+1 are uniquely determined by the single equation tr(X) = a1n1 + · · ·+ ap+1np+1. Hence
X ∈ Flaga1,...,ap+1

(k1, . . . , kp, n). □

The genericity assumption on a1, . . . , ap+1 is essential for the simplified description in Proposi-
tion 4.5 as the following example shows.

Example 4.6. Let n = 5, p = 2, (a1, a2, a3) = (0, 1, 2), and consider the isospectral model
Flag0,1,2(1, 4, 5). Then t = 5 and we have Flag0,1,2(1, 4, 5) ⊆ Fl0,1,2(5, 5). To see that this inclusion
is strict, take

A =


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2

 , B =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 2

 ,
and observe that A ∈ Flag0,1,2(1, 4, 5) ̸= Flag0,1,2(2, 3, 5) ∋ B. We have a disjoint union of nonempty
sets

Flag0,1,2(1, 4, 5) ⊔ Flag0,1,2(2, 3, 5) = Fl0,1,2(5, 5),

which implies that
Flag0,1,2(1, 4, 5) ⊊ Fl0,1,2(5, 5).

Nevertheless the point of Proposition 4.5 is that there will always be some other choices, in fact
uncountably many, of a1, a2, a3 that work. Take (a1, a2, a3) = (0, 1,

√
2). Then t = 2

√
2 + 1 and

n1 + n2 + n3 = 5,

a1n1 + a2n2 + a3n3 = 2
√
2 + 1,

have the unique positive integer solution (n1, n2, n3) = (2, 1, 2). Hence

Flag0,1,2(2, 3, 5) = Fl0,1,2(2
√
2 + 1, 5).
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Special values of a1, . . . , ap+1 in Theorem 4.1 give us specific models with various desirable
features. For instance, we have mentioned the involution model [16] that parameterizes the Grass-
mannian with perfectly conditioned matrices, obtained by setting (a, b) = (1,−1) in Corollary 4.4.

For n = 2, Flag(1,R2) = Gr(1,R2) differs from other cases (because SO2(R) is abelian unlike
SOn(R) for n ≥ 3) and has to be treated separately. In this case all minimal SO2(R)-equivariant
embeddings of Gr(1,R2) may be easily characterized.

Proposition 4.7 (Minimal equivariant models of Flag(1,R2) = Gr(1,R2)). Any SO2(R)-equivariant
embedding of Gr(1,R2) into S2◦(R2) must take the form

Gr(1,R2)→ S2◦(R2), span

{[
x
y

]}
7→ r√

x2 + y2

[
cx− sy sx+ cy
sx+ cy −cx+ sy

]
for some r > 0 and some [ c −s

s c ] ∈ SO2(R). All such embeddings are minimal.

Proof. Write S1 := {[ xy ] ∈ R2 : x2+y2 = 1} for the unit sphere in R2. Recall that Gr(1,R2) = RP1,
the real projective line. Let f : RP1 → S2◦(R2) be an SO2(R)-equivariant embedding. We consider

(16) j : S1 ∼= RP1 f−→ S2◦(R2) ∼= R2

where the first ∼= is the usual stereographic projection of S1 onto R with north pole mapping to the
point-at-infinity; and the second ∼= is S2◦(R2) → R2,

[ x y
y −x

]
7→ [ xy ]. It is easy to see that both are

SO2(R)-equivariant. It remains to characterize all SO2(R)-equivariant embeddings j : S1 → R2.
By equivariance, we must have

j(S1) =
{[
c −s
s c

] [
x
y

]
∈ R2 :

[
c −s
s c

]
∈ SO2(R)

}
,

where j(u0) = [ x0
y0 ] ∈ R2 \ {0} for a fixed u0 ∈ S1. Let

r0 = (x20 + y20)
1/2 > 0, v0 =

1√
x20 + y20

[
x0
y0

]
∈ S1.

Then j(S1) = r0S1. Let Q = [ c −s
s c ] ∈ SO2(R) be such that Qu0 = v0. Then v0 = r−1

0 j(u0) =

r−1
0 j(QTv0). So the map S1 → R2, v 7→ r−1j(QTv) is the inclusion S1 ⊆ R2. Hence we have

j(v) = r

[
cx− sy
sx+ cy

]
for v = [ xy ] ∈ S1 and Q = [ c −s

s c ] ∈ SO2(R). Composing j with the inverses of the two diffeomor-
phisms in (16), we obtain

f

(
span

{[
x
y

]})
=

r√
x2 + y2

[
cx− sy sx+ cy
sx+ cy −cx+ sy

]
for any span

{
[ xy ]

}
∈ RP1. If the embedding above is not of minimal dimension, then there is an

embedding of S1 into R1. The image of S1 in R1 is connected and compact and thus a closed
interval [a, b], a contradiction as [a, b] is contractible and S1 is not. □

5. Change-of-coordinates for isospectral models

In this section we provide change-of-coordinates formulas to transform from one model of the
flag manifold or Grassmannian to another, focusing on the isospectral and quadratic models. We
begin with the following addendum to Lemma 3.1.
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Lemma 5.1 (Change-of-coordinates for flag manifold II). Let k0, . . . , kp+1, n, n1, . . . , np+1 and
a1, . . . , ap+1 be as in Theorem 4.1. Using the parametric characterization in Corollary 4.2, the
map

φ4 : Flaga1,...,ap+1
(k1, . . . , kp, n)→ Flag(k1, . . . , kp;Rn),

Qdiag(a1In1 , a2In2 , . . . , ap+1Inp+1)Q
T 7→ (Q1, . . . ,Qp),

where Qj ⊆ Rn is the subspace spanned by the first kj column vectors of Q, j = 1, . . . , p, is a
diffeomorphism.

Proof. First we need to check that φ4 is well-defined. Write

(17) Λa := diag(a1In1 , a2In2 , . . . , ap+1Inp+1).

Since QΛaQ
T = V ΛaV

T for Q,V ∈ On(R) if and only if V = QP for some P ∈ S(On1(R) × · · · ×
Onp+1(R)) if and only if (Q1, . . . ,Qp) = (V1, . . . ,Vp), which shows that the map φ4 is well-defined
(and injective too). To see that φ4 is a diffeomorphism, observe that φ4 factors as

(18)

Flaga1,...,ap+1
(k1, . . . , kp, n) Flag(k1, . . . , kp;Rn)

SOn(R)/ S(On1(R)× · · · ×Onp+1(R))

φ4

φ5
φ−1
1

◦φ3

where φ5 is defined by φ5(QΛaQ
T) := JQK, φ1 and φ3 are the diffeomorphisms defined earlier in

Lemma 3.1. □

In the following, let C be as in (15), the subset of Rp+1 comprising elements whose coordinates
are all distinct. Note that this set parameterizes all isospectral models of Flag(k1, . . . , kp;Rn). The
formula for the transformation between two isospectral models of the same flag manifold or two
quadratic models of the same Grassmannian is straightforward.

Proposition 5.2 (Change-of-coordinates for isospectral models). Let k0, . . . , kp+1, n, n1, . . . , np+1

be as in Theorem 4.1. We use the parametric characterization in Corollary 4.2 and write Λa as in
(17) for any (a1, . . . , ap+1) ∈ C. The map

φ : Flaga1,...,ap+1
(k1, . . . , kp, n)→ Flagb1,...,bp+1

(k1, . . . , kp, n), φ(QΛaQ
T) := QΛbQ

T

is an SOn(R)-equivariant diffeomorphism for any (a1, . . . , ap+1) and (b1, . . . , bp+1) ∈ C. In partic-
ular, for positive integers k ≤ n,

φ : Gra,b(k, n)→ Grc,d(k, n), φ

(
Q

[
aIk 0
0 bIn−k

]
QT

)
:= Q

[
cIk 0
0 dIn−k

]
QT,

is an SOn(R)-equivariant diffeomorphism for any pairs of distinct real numbers (a, b) and (c, d).

Proof. The same argument used in the proof of Corollary 4.2 shows that φ is well-defined, SOn(R)-
equivariant, bijective, and factors as

Flaga1,...,ap+1
(k1, . . . , kp, n) Flagb1,...,bp+1

(k1, . . . , kp, n)

Flag(k1, . . . , kp,Rn)

φ

φa φ−1
b

where φa amd φb are the diffeomorphism φ4 in Corollary 4.2 with respect to (a1, . . . , ap+1) and
(b1, . . . , bp+1) ∈ C. Hence φ is a diffeomorphism. □

The same proof of Proposition 5.2 may be used to establish a stronger result.
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Proposition 5.3 (Homotopy for isospectral models). With notations as in Proposition 5.2, if

(19) sign(ai − aj) = sign(bi − bj) for all i < j,

then map

Φt : Flaga1,...,ap+1
(k1, . . . , kp, n)→ Flaga1+t(b1−a1),...,ap+1+t(bp+1−ap+1)(k1, . . . , kp, n),

QΛaQ
T 7→ Φt(QΛaQ

T) := Φ(QΛaQ
T, t),

is an SOn(R)-equivariant diffeomorphism for any t ∈ [0, 1].

Proof. The map Φt in Proposition 5.3 is a homotopy along the line segment

γ : [0, 1]→ Rp+1, γ(t) = (1− t)(a1, . . . , ap+1) + t(b1, . . . , bp+1).

Note that (19) holds if and only if

(1− t)(ai − aj) + t(bi − bj) ̸= 0 for all t ∈ [0, 1].

As we saw in the proof of Proposition 4.5, the parameter space C ⊆ Rp+1 is disconnected since it is
the complement of finitely many hyperplanes. For arbitrary (a1, . . . , ap+1) and (b1, . . . , bp+1) ∈ C, it
is possible that γ(t) ̸∈ C for some t. The entire curve γ([0, 1]) ⊆ C if and only if (a1, . . . , ap+1) and
(b1, . . . , bp+1) are in the same connected component of C, which is in turn equivalent to (19). □

6. Equivariant matrix models for Stiefel manifolds

The corresponding results for the Stiefel manifold [28] are considerably easier. Recall that we
write V(k,Rn) for the abstract Stiefel manifold of orthonormal k-frames in Rn and V(k, n) := {X ∈
Rn×k : XTX = I} for its usual model as n× k orthonormal matrices.

We will call the following family of minimal SOn(R)-equivariant models of V(k,Rn),

(20) VA(k, n) := {Y ∈ Rn×k : Y TY = A},

the Cholesky models. Clearly it includes the usual model as VI(k, n) = V(k, n) and is a G-manifold
via the action

(21) SOn(R)×VA(k, n)→ VA(k, n), (Q,Y ) 7→ QY.

The choice of nomenclature and that it is indeed a model of the Stiefel manifold will be self-evident
after the next two propositions. We begin with the Stiefel manifold analogue of Theorem 4.1:

Proposition 6.1 (Cholesky model I). Let k, n ∈ N with k ≤ n. If ε : V(k,Rn) → Rn×k is an
SOn(R)-equivariant embedding, then there is some A ∈ S2++(Rk) such that

ε(V(k,Rn)) = VA(k, n).

If n ≥ 17 and k < (n− 1)/2, then VA(k, n) has the lowest possible dimension ambient space among
all possible SOn(R)-equivariant models of the Stiefel manifold.

Proof. Since ε is SOn(R)-equivariant and SOn(R) acts on V(k,Rn) transitively via (6), ε(V(k,Rn))
is an SOn(R)-orbit. Fix an arbitrary Y0 ∈ ε(V(k,Rn)). Then

ε(V(k,Rn)) = {QY0 : Q ∈ SOn(R)} ⊆ {Y ∈ Rn×k : Y TY = A}

where A := Y T
0 Y0 ∈ S2++(Rk). Conversely, if Y TY = A = Y T

0 Y0, consider the QR decompositions

Y = Q

[
R
0

]
, Y0 = Q0

[
R0

0

]
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where Q,Q0 ∈ On(R) and R,R0 ∈ GLk(R) are upper triangular matrices with positive diagonals.
Thus RTR = RT

0R0 = A are Cholesky decompositions of A ∈ S2++(Rn). By the uniqueness of the
Cholesky decomposition of a symmetric positive definite matrix, we have R = R0 and

Y = Q

[
R
0

]
= Q

[
R0

0

]
= (QQT

0)

(
Q0

[
R0

0

])
= (QQT

0)Y0 ∈ ε(V(k,Rn)).

Hence ε(V(k,Rn)) = VA(k, n). The minimality of VA(k, n) for n ≥ 17 and k < (n − 1)/2 follows
from [19, Proposition 3.8]. □

The proof of Proposition 6.1 also yields an alternative parametric characterization of the Cholesky
model, and may be viewed as the Stiefel manifold analogue of Corollary 4.2.

Corollary 6.2 (Cholesky model II). Let k, n ∈ N with k ≤ n and A ∈ S2++(Rn). Then

VA(k, n) =

{
Q

[
R
0

]
: Q ∈ On(R)

}
where R ∈ GLk(R) is the unique Cholesky factor of A ∈ S2++(Rn).

Lastly we present the change-of-coordinate formula for Cholesky models, which will also provide
a pretext for discussing some interesting features of its parameter space. We borrow the shorthand
in [2, Equation 21] and write, for any A,B ∈ S2++(Rk) and t ∈ [0, 1],

A#tB = A1/2(A−1/2BA−1/2)tA1/2.

The special case when t = 1/2 gives A#1/2B = A1/2(A−1/2BA−1/2)1/2A1/2 =: A#B, the matrix
geometric mean [2, Equation 1]. The Stiefel manifold analogue of Propositions 5.2 and 5.3 is as
follows.

Proposition 6.3 (Homotopy and change-of-coordinates for Cholesky models). Let k, n ∈ N with
k ≤ n. For any A,B ∈ S2++(Rk) and t ∈ [0, 1],

ψt : VA(k, n)→ VA#tB(k, n),

Y 7→ Y A−1/2(A−1/2BA−1/2)t/2A1/2,

is an SOn(R)-equivariant diffeomorphism. In particular the map ψ1 gives a change-of-coordinates
formula from VA(k, n) to VB(k, n).

Proof. The map ψt is well-defined as

(Y A−1/2(A−1/2BA−1/2)t/2A1/2)TY A−1/2(A−1/2BA−1/2)t/2A1/2 = A#tB

whenever Y ∈ VA(k, n). Since both A and B are positive definite, A−1/2(A−1/2BA−1/2)t/2A1/2 is
invertible, so ψt is a diffeomorphism. It is evidently SOn(R)-equivariant under (21). □

Proposition 6.3 is considerably simpler than Proposition 5.3 as the parameter space S2++(Rn) is
path connected and any two points A,B ∈ S2++(Rn) can be connected by a curve

(22) γ : [0, 1]→ S2++(Rn), γ(t) = A#tB.

Readers may recognize γ as the geodesic curve from A to B in the Cartan manifold [5, pp. 364–372],
i.e., S2++(Rn) equipped with the Riemannian metric gA(X,Y ) = tr(A−1XA−1Y ), or, as an abstract
manifold, the set of ellipsoids in Rn centered at the origin. See [22] and [24, Section 3] for a modern
exposition, and [17, Section 8] for further bibliographical references about the Cartan manifold.
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7. Equivariant Riemannian metrics

Here we will discuss SOn(R)-invariant Riemannian metrics for the flag, Grassmann, and Stiefel
manifolds that go alongside their models in this article. As we alluded to at the end of Section 1,
each of these manifolds comes equipped with a god-given Riemannian metric. This is a result of
their structure as G/H with G a compact simple Lie group and H a closed subgroup. Such a G
admits a bi-invariant metric, unique up to a constant factor, which in turn induces an invariant
metric on G/H. If their corresponding Lie algebras g and h are related by g = h ⊕ m where m is
an AdH -invariant subspace of g, then there is a one-to-one correspondence

(23) {G-invariant metrics on G/H} ←→ {H-invariant metrics on m},

a standard result in differential geometry [6, Proposition 3.16]. In particular, we have

(24) m ≃ TJeKG/H,

and e ∈ G the identity element.
Slightly less standard (we are unable to find a reference for the simple form below) is the following

simple criterion for an equivariant embedding to be isometric.

Lemma 7.1. Let V be a G-module and φ : G/H → V be a G-equivariant embedding. Let g and g′

be Riemannian metrics on G/H and M := φ(G/H) ⊆ V respectively. Consider the linear map

(25) f : m ≃ TJeKG/H
dJeKφ−−−→ Tφ(JeK)M.

Then φ is isometric if and only if f is an isometry.

Proof. Since φ is G-equivariant and G acts on both G/H and M transitively, φ is isometric if and
only if φ is isometric at JeK, i.e., the differential map dJeKφ of φ at JeK is an isometry. By (23), this
is equivalent to f being an isometry. □

For the cases of interest to us,

V(k,Rn) ∼= SOn(R)/SOn−k(R),
Gr(k,Rn) ∼= SOn(R)/S(Ok(R)×On−k(R)),

Flag(k1, . . . , kp,Rn) ∼= SOn(R)/S(On1(R)× · · · ×Onp+1(R)).

We will show that the restriction of the Euclidean inner product on Rn×k and S2(Rn) onto the
Cholesky, quadratic, and isospectral models give the Riemannian metric induced by the bi-invariant
metric on G = SOn(R) up to a choice of weights.

7.1. Quadratic model of the Grassmannian. The bi-invariant metric on SOn(R) induces an
SOn(R)-invariant metric g on SOn(R)/ S(Ok(R)×On−k(R)), and thus on Gra,b(k, n) via φ5 in (18),
whose inverse is

(26) φ−1
5 : SOn(R)/S(Ok(R)×On−k(R))→ Gra,b(k, n), φ−1

5 (JQK) = Q

[
aIk 0
0 bIn−k

]
QT.

We recall from [31, Proposition 5] that

Λ2(Rn) = Λ2(Rk)⊕ Λ2(Rn−k)⊕m,

m =

{
B =

[
0 B0

−BT
0 0

]
∈ Λ2(Rn) : B0 ∈ Rk×(n−k)

}
,

and that m is invariant under conjugation by S(Ok(R) × On−k(R)). The S(Ok(R) × On−k(R))-
invariant inner product on m is given by

(27) ⟨B,C⟩ := (a− b)2 tr(BTC) = 2(a− b)2 tr(BT
0C0)
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for any B,C ∈ m. This corresponds, via (23), to an SOn(R)-invariant metric on SOn(R)/ S(Ok(R)×
On−k(R)) and differs from the god-given metric g on Gr(k,Rn) by a weight constant.

The standard Euclidean metric tr(XY ) on S2(Rn) restricts to a metric g′ on Gra,b(k, n). We will
see that g and g′ are one and the same, up to a weight constant.

Proposition 7.2. Let SOn(R)/ S(Ok(R)×On−k(R)) and Gra,b(k, n) be equipped with Riemannian

metrics g and g′ respectively. Then φ−1
5 is an isometric SOn(R)-equivariant diffeomorphism.

Proof. The SOn(R)-equivariance of φ−1
5 is evident from its definition. Let f be the linear map in

(25) for φ−1
5 . Then by (26),

f(B) = B

[
aIk 0
0 bIn−k

]
+

[
aIk 0
0 bIn−k

]
BT = (b− a)B

for any B ∈ m. By (27),

⟨B,C⟩ = 2(a− b)2 tr(BT
0C0) = g′(f(B), f(C)).

So f is an isometry and hence so is φ−1
5 by Lemma 7.1. □

7.2. Cholesky model of the Stiefel manifold. The bi-invariant metric on SOn(R) induces an
SOn(R)-invariant metric g on SOn(R)/ SOn−k(R)), and thus on VA(k, n) via

(28) ψA : SOn(R)/ SOn−k(R)→ VA(k, n), ψA(JQK) = Q

[
R
0

]
,

which is a diffeomorphism by Proposition 6.1. Here R ∈ GLk(R) is the Cholesky factor of A =
RTR ∈ S2++(Rn). We have

Λ2(Rn) = Λ2(Rn−k)⊕m,

m =

{[
B1 −BT

2

B2 0

]
∈ Rn×n : B1 ∈ Λ2(Rk), B2 ∈ R(n−k)×k

}
,

where we identify B ∈ Λ2(Rn−k) with diag(0, B) ∈ Λ2(Rn). It is clear that m is invariant under
conjugation by SOn−k(R), where we identify Q ∈ SOn−k(R) with diag(Ik, Q) ∈ SOn(R). For
A = RTR ∈ S2++(Rn), the SOn−k(R)-invariant A-inner product on m is given by

(29) ⟨B,C⟩ := tr(RT(BT
1C1 +BT

2C2)R)

for anyB,C ∈ m. This correspond, via (23), to an SOn(R)-invariant metric gA on SOn(R)/ SOn−k(R)
and differs from the god-given metric g on V(k,Rn) by a weight matrix A. In particular, for A = I,
we have gI = g.

The standard Euclidean metric tr(XTY ) on Rn×k restricts to a metric g′ on VA(k, n). We will
see that g and g′ are one and the same, up to a weight matrix.

Proposition 7.3 (Riemannian metric on the Stiefel manifold). Let SOn(R)/ SOn−k(R) and VA(k, n)
be equipped with Riemannian metrics gA and g′ respectively. Then ψA is an isometric SOn(R)-
equivariant diffeomorphism.

Proof. The SOn(R)-equivariance of ψA is evident from its definition. Let f be the linear map in
(25) for ψA. Then by (28),

f(B) = B

[
R
0

]
=

[
B1

−BT
2

]
R,

for any B =
[
B1 −BT

2
B2 0

]
∈ m. By (29),

⟨B,C⟩ = tr(RT(BT
1C1 +BT

2C2)R) = g′(f(B), f(C)).

So f is an isometry and hence so is ψA by Lemma 7.1. □
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7.3. Isospectral model of the flag manifold. The argument here is similar to that of Section 7.1,
but involves heavier notations, and as such we think it is instructive to include the special case in
Section 7.1 for clarity. The bi-invariant metric on SOn(R) induces an SOn(R)-invariant metric g on
SOn(R)/ S(On1(R)× · · ·×Onp+1(R)), and thus on Flaga1,...,ap+1

(k1, . . . , kp, n) via φ5 in (18), whose
inverse is

φ−1
5 : SOn(R)/ S(On1(R)× · · · ×Onp+1(R))→ Flaga1,...,ap+1

(k1, . . . , kp, n), φ−1
5 (JQK) := QΛaQ

T,

where Λa as in (17). We recall from [31, Proposition 5] that

Λ2(Rn) = Λ2(Rn1)⊕ · · · ⊕ Λ2(Rnp+1)⊕m,

m = {(Bij) ∈ Rn×n : Bij = −BT
ji ∈ Rni×nj , Bii = 0, 1 ≤ i < j ≤ p+ 1},

and that m is invariant under conjugation by S(On1(R) × · · · × Onp+1(R)). The S(On1(R) × · · · ×
Onp+1(R))-invariant inner product on m is given by

(30) ⟨B,C⟩ := 2
∑

1≤i<j≤p+1

(ai − aj)2 tr(BT
ijCij),

where B,C ∈ m ⊆ Λ2(Rn) are partitioned as B = (Bij), C = (Cij) with Bij , Cij ∈ Rni×nj for i, j ∈
{1, . . . , p+1}. This corresponds via (23) to an SOn(R)-invariant metric ga on SOn(R)/ S(On1(R)×
· · · ×Onp+1(R)) and differs from the god-given metric g on Flag(k1, . . . , kp,Rn) by a weight vector
a := (a1, . . . , ap+1).

The standard Euclidean metric tr(XY ) on S2(Rn) when restricted to Flaga1,...,ap+1
(k1, . . . , kp, n)

gives a metric g′. We will see that g and g′ are one and the same, up to a weight vector.

Proposition 7.4 (Riemannian metric on the flag manifold). Let SOn(R)/S(On1(R)×· · ·×Onp+1(R))
and Flaga1,...,ap+1

(k1, . . . , kp, n) be equipped be Riemannian metrics ga and g′ respectively. Then φ−1
5

is an isometric SOn(R)-equivariant diffeomorphism.

Proof. The SOn(R)-equivariance of φ−1
5 is evident from its definition. Let f be the linear map

defined in Lemma 7.1 for φ−1
5 . Then by (18),

f(B) = BΛa + ΛaB
T = [(aj − ai)Bij ]

p+1
i,j=1

for any B ∈ m. By (30),

⟨B,C⟩ = 2
∑

1≤i<j≤p+1

(ai − aj)2 tr(BT
ijCij) = g′(f(B), f(C))

So f is an isometry and hence so is φ−1
5 by Lemma 7.1. □

8. Conclusion

We used to be able to count on one hand the number of different models for each of these
manifolds. With these families of models, we now have uncountably many choices, and having such
flexibility can provide a real benefit as different models are useful in different ways.

Take the family of quadratic models Gra,b(k, n) for example. The traceless model with (a, b) =
(n− k, k) in Corollary 4.3 has the lowest dimension but the involution model with (a, b) = (1,−1)
in [16] has the best condition number. It may appear that the projection model with (a, b) = (1, 0)
makes the worst choice from a computational perspective since it is, up to a constant, the only
model in the family with singular matrices. However we found in [17] that it is the most suitable
model for discussing computational complexity issues, as many well-known NP-hard problems have
natural formulations as optimization problems in the projection model.

We hope that these families of models for various manifolds described and classified in this article
would provide useful computational platforms for practical applications involving these manifolds.
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