Tensors in Computations III

Lek-Heng Lim

University of Chicago

recap from lecture II

recap: three definitions

- tensors capture three great ideas:
(1) equivariance
(2) multilinearity
(3) separability
- roughly correspond to three common definitions of a tensor
(1) a multi-indexed object that satisfies tensor transformation rules
(2) a multilinear map
(3) an element of a tensor product of vector spaces

recap: definition (2)

- recall: is this

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right]
$$

a tensor?

- makes no sense
- suppose it does represent a tensor, what kind of tensor is it?
- answer: can be
- covariant 2-tensor $\beta: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$
- contravariant 2-tensor $\varphi: \mathbb{V}^{*} \times \mathbb{V}^{*} \rightarrow \mathbb{R}$
- mixed 2-tensor $\Phi: \mathbb{V} \rightarrow \mathbb{V}$
- contravariant 1-tensor $\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right) \in \mathbb{V} \oplus \mathbb{V} \oplus \mathbb{V}$
- covariant 1-tensor $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \in \mathbb{V}^{*} \oplus \mathbb{V}^{*} \oplus \mathbb{V}^{*}$
- or yet other possibilities
here \mathbb{V} is any vector space of dimension three

recap: definition (2)

- say it is a mixed 2 -tensor, which $\Phi: \mathbb{V} \rightarrow \mathbb{V}$ does it represent?
- answer: with probability one, any $\Phi: \mathbb{V} \rightarrow \mathbb{V}$ can be represented as
$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]$
with respect to some choice of basis on \mathbb{V}
- moral: knowing

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right]
$$

tells us almost completely nothing about the tensor

recap: why important

- saw two examples
higher derivatives: functions defined on spaces other than \mathbb{R}^{n} like

$$
f, g: \mathbb{S}_{++}^{n} \rightarrow \mathbb{R}, \quad f(X)=\log \operatorname{det}(X), \quad g(X)=\operatorname{tr}\left(X^{-1}\right)
$$

self-concordance: essential for defining this important notion

$$
\left|\nabla^{3} f(\mathbf{x})(\mathbf{h}, \mathbf{h}, \mathbf{h})\right| \leq 2 \sigma\left|\nabla^{2} f(\mathbf{x})(\mathbf{h}, \mathbf{h})\right|^{3 / 2}
$$

$\nabla^{3} f(\mathbf{x})$ is trilinear, $\nabla^{2} f(\mathbf{x})$ is bilinear functional

- will say a bit more about these today

example: self-concordance

example: self-concordance

- log barrier for semidefinite programming

$$
f: \mathbb{S}_{++}^{n} \rightarrow \mathbb{R}, \quad f(X)=-\log \operatorname{det}(X)
$$

- inverse barrier for semidefinite programming

$$
g: \mathbb{S}_{++}^{n} \rightarrow \mathbb{R}, \quad g(X)=\operatorname{tr}\left(X^{-1}\right)
$$

- why don't we ever see the latter?

example: self-concordance

- \log barrier f

$$
\begin{aligned}
D^{2} f(X)(H, H) & =\operatorname{tr}\left(H^{\top}\left[\nabla^{2} f(X)\right](H)\right)=\operatorname{tr}\left(H X^{-1} H X^{-1}\right) \\
D^{3} f(X)(H, H, H) & =\operatorname{tr}\left(H^{\top}\left[\nabla^{3} f(X)\right](H, H)\right)=-2 \operatorname{tr}\left(H X^{-1} H X^{-1} H X^{-1}\right)
\end{aligned}
$$

- self-concordant by Cauchy-Schwarz

$$
\left|D^{3} f(X)(H, H, H)\right| \leq 2\left\|H X^{-1}\right\|^{3}=2\left[D^{2} f(X)(H, H)\right]^{3 / 2}
$$

- inverse barrier g

$$
\begin{aligned}
D^{2} g(X)(H, H) & =2 \operatorname{tr}\left(H X^{-1} H X^{-2}\right) \\
D^{3} g(X)(H, H, H) & =-6 \operatorname{tr}\left(H X^{-1} H X^{-1} H X^{-2}\right)
\end{aligned}
$$

- set $H=h l, X=x l$, then $6|h|^{3} / x^{4}>2\left(2 h^{2} / x^{3}\right)^{3 / 2}$ as $x \rightarrow 0^{+}$, self-concordant condition fails when X is near singular

example: bilinear complexity

example: bilinear complexity

- given $\mathbb{U}, \mathbb{V}, \mathbb{W}$, how to construct a bilinear operator

$$
\mathrm{B}: \mathbb{U} \times \mathbb{V} \rightarrow \mathbb{W} ?
$$

- take linear functional $\varphi: \mathbb{U} \rightarrow \mathbb{R}$, linear functional $\psi: \mathbb{V} \rightarrow \mathbb{R}$, vector $\mathbf{w} \in \mathbb{W}$, define

$$
\mathrm{B}(\mathbf{u}, \mathbf{v})=\varphi(\mathbf{u}) \psi(\mathbf{v}) \mathbf{w}
$$

for any $\mathbf{u} \in \mathbb{U}, \mathbf{v} \in \mathbb{V}$

- evaluating B requires exactly one multiplication of variables
- call such a bilinear operator rank-one
- every bilinear operator is a sum of rank-one bilinear operators

example: bilinear complexity

- for example $\mathbb{U}=\mathbb{V}=\mathbb{W}=\mathbb{R}^{3}$ with

$$
\begin{aligned}
\varphi(\mathbf{u}) & =u_{1}+2 u_{2}+3 u_{3} \\
\psi(\mathbf{v}) & =2 v_{1}+3 v_{2}+4 v_{3} \\
\mathbf{w} & =(3,4,5)
\end{aligned}
$$

then

$$
\mathrm{B}(\mathbf{u}, \mathbf{v})=\left[\begin{array}{l}
3\left(u_{1}+2 u_{2}+3 u_{3}\right)\left(2 v_{1}+3 v_{2}+4 v_{3}\right) \\
4\left(u_{1}+2 u_{2}+3 u_{3}\right)\left(2 v_{1}+3 v_{2}+4 v_{3}\right) \\
5\left(u_{1}+2 u_{2}+3 u_{3}\right)\left(2 v_{1}+3 v_{2}+4 v_{3}\right)
\end{array}\right]
$$

- multiplications like $2 u_{2}$ or $4 v_{3}$ are all scalar multiplications, i.e., one of the factors is a constant
- only variable multiplication like $\left(u_{1}+2 u_{2}+3 u_{3}\right)\left(2 v_{1}+3 v_{2}+4 v_{3}\right)$ counts

example: bilinear complexity

- this is the notion of bilinear complexity [Strassen, 1987]
- once we fixed φ, ψ, w, evaluation of these can be hardwired or hardcoded
- e.g., discrete Fourier transform

$$
\left[\begin{array}{c}
x_{0}^{\prime} \\
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime} \\
\vdots \\
x_{n-1}^{\prime}
\end{array}\right]=\frac{1}{\sqrt{n}}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \omega^{3} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} & \cdots & \omega^{2(n-1)} \\
1 & \omega^{3} & \omega^{6} & \omega^{9} & \cdots & \omega^{3(n-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n-1}
\end{array}\right]
$$

- may use FFT to evaluate DFT
- bilinear complexity of DFT or FFT all the same, namely, zero

example: bilinear complexity

- may often bound number of additions and scalar multiplications in terms of number of variable multiplications
- e.g., if an algorithm takes n^{p} variable multiplications, may show that it takes at most $10 n^{p}$ additions and scalar multiplications
- so algorithm still $O\left(n^{p}\right)$ even if we count all arithmetic operations
- most importantly, bilinear complexity $=$ tensor rank

$$
\operatorname{rank}(\mathrm{B})=\min \left\{r: \mathrm{B}(\mathbf{u}, \mathbf{v})=\sum_{i=1}^{r} \varphi_{i}(\mathbf{u}) \psi_{i}(\mathbf{v}) \mathbf{w}_{i}\right\}
$$

- if only need $\mathrm{B}(\mathbf{u}, \mathbf{v})$ up to ε-accuracy, border rank

$$
\overline{\operatorname{rank}}(\mathrm{B})=\min \left\{r: \mathrm{B}(\mathbf{u}, \mathbf{v})=\lim _{\varepsilon \rightarrow 0^{+}} \sum_{i=1}^{r} \varphi_{i}^{\varepsilon}(\mathbf{u}) \psi_{i}^{\varepsilon}(\mathbf{v}) \mathbf{w}_{i}^{\varepsilon}\right\}
$$

- due to [Strassen, 1973] and [Bini-Lotti-Romani, 1980] respectively

example: Gauss's algorithm

- complex multiplication with three real multiplications

$$
\begin{aligned}
(a+b i)(c+d i) & =(a c-b d)+i(b c+a d) \\
& =(a c-b d)+i[(a+b)(c+d)-a c-b d]
\end{aligned}
$$

- B: $\mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C},(z, w) \mapsto z w$ is \mathbb{R}-bilinear

$$
\mathrm{B}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad \mathrm{~B}\left(\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right)=\left[\begin{array}{l}
a c-b d \\
b c+a d
\end{array}\right]
$$

- usual:

$$
\mathrm{B}(z, w)=\left[\mathbf{e}_{1}^{*}(z) \mathbf{e}_{1}^{*}(w)-\mathbf{e}_{2}^{*}(z) \mathbf{e}_{2}^{*}(w)\right] \mathbf{e}_{1}+\left[\mathbf{e}_{1}^{*}(z) \mathbf{e}_{2}^{*}(w)+\mathbf{e}_{2}^{*}(z) \mathbf{e}_{1}^{*}(w)\right] \mathbf{e}_{2}
$$

- Gauss:

$$
\begin{aligned}
\mathrm{B}(z, w)=[(& \left(\mathbf{e}_{1}^{*}\right. \\
& \left.\left.+\mathbf{e}_{2}^{*}\right)(z)\left(\mathbf{e}_{1}^{*}+\mathbf{e}_{2}^{*}\right)(w)\right] \mathbf{e}_{2} \\
& +\left[\mathbf{e}_{1}^{*}(z) \mathbf{e}_{1}^{*}(w)\right]\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)-\left[\mathbf{e}_{2}^{*}(z) \mathbf{e}_{2}^{*}(w)\right]\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)
\end{aligned}
$$

example: Gauss's algorithm

- Gauss optimal in both exact and approximate sense:

$$
\operatorname{rank}(B)=3=\overline{\operatorname{rank}}(B)
$$

- why useful?
- complex matrix multiplication:

$$
(A+i B)(C+i D)=(A C-B D)+i[(A+B)(C+D)-A C-B D]
$$

for $A+i B, C+i D \in \mathbb{C}^{n \times n}$ with $A, B, C, D \in \mathbb{R}^{n \times n}$

- which is why we should allow for modules
- \mathbb{C} two-dimensional vector space over \mathbb{R}
- $\mathbb{C}^{n \times n}$ two-dimensional free module over $\mathbb{R}^{n \times n}$

other simple example?

- Gauss essentially the only one in two dimensions
- parallel evaluation of standard inner product and standard symplectic form on \mathbb{R}^{2}

$$
g(x, y)=x_{1} y_{1}+x_{2} y_{2}, \quad \omega(x, y)=x_{1} y_{2}-x_{2} y_{1}
$$

- algorithm similar to Gauss's gives result with $\operatorname{rank}(B)=3=\overline{\operatorname{rank}}(B)$
- three dimensions: skew-symmetric matrix-vector product

$$
\left[\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
a y+b z \\
-a x+c z \\
-b x-c y
\end{array}\right]
$$

- in this $\operatorname{case}^{1} \operatorname{rank}(B)=5=\overline{\operatorname{rank}}(B)$

[^0]
example: Strassen's algorithm

- 2×2 matrix multiplication with seven multiplications

$$
\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right]=\left[\begin{array}{cc}
a_{1} b_{1}+a_{2} b_{2} & \beta+\gamma+\left(a_{1}+a_{2}-a_{3}-a_{4}\right) b_{4} \\
\alpha+\gamma+a_{4}\left(b_{2}+b_{3}-b_{1}-b_{4}\right) & \alpha+\beta+\gamma
\end{array}\right]
$$

with

$$
\alpha=\left(a_{3}-a_{1}\right)\left(b_{3}-b_{4}\right), \beta=\left(a_{3}+a_{4}\right)\left(b_{3}-b_{1}\right), \gamma=a_{1} b_{1}+\left(a_{3}+a_{4}-a_{1}\right)\left(b_{1}+b_{4}-b_{3}\right)
$$

- consequence: inverting $n \times n$ matrix in $5.64 n^{\log _{2} 7}$ arithmetic operations (both additions and multiplications) [Strassen, 1969]
- huge surprise as there were results showing $n^{3} / 3$ required by Gaussian elimination cannot be improved
- such results assume row and column operations, Strassen used block operations
- $\operatorname{rank}(B)=7=\overline{\operatorname{rank}}(B)$ [Landsberg, 2006]

example: exponent of matrix multiplication

- bilinear operator

$$
\mu_{m, n, p}: \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times p} \rightarrow \mathbb{R}^{n \times p}, \quad(A, B) \mapsto A B
$$

called matrix multiplication tensor

- exponent of matrix multiplication is

$$
\omega:=\inf \left\{p \in \mathbb{R}: \operatorname{rank}\left(\mu_{n, n, n}\right)=O\left(n^{p}\right)\right\}
$$

- current bound $\omega<2.3728596$ [Alman-Vassilevska Williams, 2021]
- ω underlies nearly every problem in numerical linear algebra

example: exponent of matrix multiplication

- inversion: given $A \in \mathrm{GL}(n)$, find $A^{-1} \in \mathrm{GL}(n)$
- determinant: given $A \in \mathrm{GL}(n)$, find $\operatorname{det}(A) \in \mathbb{R}$
- null basis: given $A \in \mathbb{R}^{n \times n}$, find a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$ of $\operatorname{ker}(A)$
- linear system: given $A \in G L(n)$ and $\mathbf{b} \in \mathbb{R}^{n}$, find $\mathbf{v} \in \mathbb{R}^{n}$ so that $A \mathbf{v}=\mathbf{b}$
- LU decomposition: given $A \in \mathbb{R}^{m \times n}$ of full rank, find permutation P, unit lower triangular $L \in \mathbb{R}^{m \times m}$, upper triangular $U \in \mathbb{R}^{m \times n}$ so that $P A=L U$
- $Q R$ decomposition: given $A \in \mathbb{R}^{n \times n}$, find orthogonal $Q \in O(n)$, upper triangular $U \in \mathbb{R}^{n \times n}$ so that $A=Q R$

example: exponent of matrix multiplication

- eigenvalue decomposition: given $A \in \mathbb{S}^{n}$, find $Q \in O(n)$ and diagonal $\Lambda \in \mathbb{R}^{n \times n}$ so that $A=Q \wedge Q^{\top}$
- Hessenberg decomposition: given $A \in \mathbb{R}^{n \times n}$, find $Q \in O(n)$ and upper Hessenberg $H \in \mathbb{R}^{n \times n}$ so that $A=Q H Q^{\top}$
- characteristic polynomial: given $A \in \mathbb{R}^{n \times n}$, find $\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{R}^{n}$ so that $\operatorname{det}(x I-A)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$
- sparsification: given $A \in \mathbb{R}^{n \times n}$ and $c \in[1, \infty)$, find $X, Y \in \mathrm{GL}(n)$ so that $n n z\left(X A Y^{-1}\right) \leq c n$

exponent of nearly all matrix computations

any $\varepsilon>0$, there is an algorithm for each of these problems in $O\left(n^{\omega+\varepsilon}\right)$ arithmetic operations (including additions and scalar multiplications)

example: integer multiplication

example: integer multiplication

- need to consider tensors over modules, i.e., replace field of scalars like \mathbb{R} or \mathbb{C} by a ring like \mathbb{Z}
- integer multiplication

$$
\mathrm{B}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}, \quad(a, b) \mapsto a b
$$

bilinear map over the \mathbb{Z}-module \mathbb{Z}

- but this is not the relevant module structure in fast integer multiplication algorithms

example: integer multiplication

- unsigned integers represented as polynomials

$$
a=\sum_{i=0}^{p-1} a_{i} \theta^{i}=: a(\theta), \quad b=\sum_{j=0}^{p-1} b_{j} \theta^{j}=: b(\theta)
$$

for some number base θ

- product has coefficients given by convolutions

$$
a b=\sum_{k=0}^{2 p-2} c_{k} \theta^{k}=: c(\theta), \quad c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i}
$$

- set $n=2 p-1$ and pad vectors of coefficients with enough zeros

$$
\left(a_{0}, \ldots, a_{n-1}\right), \quad\left(b_{0}, \ldots, b_{n-1}\right), \quad\left(c_{0}, \ldots, c_{n-1}\right)
$$

example: integer multiplication

- use DFT for some root of unity ω to perform convolution

$$
\begin{aligned}
& {\left[\begin{array}{c}
a_{0}^{\prime} \\
a_{1}^{\prime} \\
a_{2}^{\prime} \\
\vdots \\
a_{n-1}^{\prime}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n-1}
\end{array}\right]} \\
& {\left[\begin{array}{c}
b_{0}^{\prime} \\
b_{1}^{\prime} \\
b_{2}^{\prime} \\
\vdots \\
b_{n-1}^{\prime}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2} \\
\vdots \\
b_{n-1}
\end{array}\right]} \\
& {\left[\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{n-1}
\end{array}\right]=\frac{1}{n}\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\
1 & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \cdots & \omega^{-(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{c}
a_{0}^{\prime} b_{0}^{\prime} \\
a_{1}^{\prime} b_{1}^{\prime} \\
a_{2}^{\prime} b_{2}^{\prime} \\
\vdots \\
a_{n-1}^{\prime} b_{n-1}^{\prime}
\end{array}\right]}
\end{aligned}
$$

example: integer multiplication

- Fourier transform turns convolution $*$ into pointwise product .

$$
\mathbf{a} * \mathbf{b}=\mathcal{F}^{-1}(\mathcal{F}(\mathbf{a}) \cdot \mathcal{F}(\mathbf{b}))
$$

- key idea 1: convert integer multiplication to a bilinear operator

$$
\begin{aligned}
\mathrm{B}_{1}:\left(\mathbb{Z} / 2^{s} \mathbb{Z}\right)[\theta] \times\left(\mathbb{Z} / 2^{s} \mathbb{Z}\right)[\theta] & \rightarrow\left(\mathbb{Z} / 2^{s} \mathbb{Z}\right)[\theta] \\
(a(\theta), b(\theta)) & \mapsto a(\theta) b(\theta)
\end{aligned}
$$

- key idea 2: a Fourier conversion into another bilinear operator

$$
\begin{aligned}
\mathrm{B}_{2}:(\mathbb{Z} / m \mathbb{Z})^{n} \times(\mathbb{Z} / m \mathbb{Z})^{n} & \rightarrow(\mathbb{Z} / m \mathbb{Z})^{n} \\
\left(\left(a_{0}, \ldots, a_{n-1}\right),\left(b_{0}, \ldots, b_{n-1}\right)\right) & \mapsto\left(a_{0} b_{0}, \ldots, a_{n-1} b_{n-1}\right)
\end{aligned}
$$

- $\left(\mathbb{Z} / 2^{s} \mathbb{Z}\right)[\theta]$ is a $\mathbb{Z} / 2^{s} \mathbb{Z}$-module
- $(\mathbb{Z} / m \mathbb{Z})^{n}$ is a $\mathbb{Z} / m \mathbb{Z}$-module

example: integer multiplication

- all fast integer multiplication algorithms based on variation of these ideas: [Karatsuba-Ofman, 1962], [Cook-Aanderaa, 1969], [Toom, 1963], [Schönhage-Strassen, 1971], [Fürer, 2009]
- sensational breakthrough by [Harvey-van der Hoeven, 2021]:
$O(n \log n)$-algorithm for n-bit integer multiplication
- clever idea: use multidimensional DFT

$$
a^{\prime}\left(\phi_{1}, \phi_{2}, \ldots, \phi_{d}\right)=\sum_{\theta_{1}=0}^{n_{1}} \cdots \sum_{\theta_{d}=0}^{n_{d}} \omega_{1}^{\phi_{1} \theta_{1}} \omega_{2}^{\phi_{2} \theta_{2}} \cdots \omega_{d}^{\phi_{d} \theta_{d}} a\left(\theta_{1}, \theta_{2}, \ldots, \theta_{d}\right)
$$

- replace bilinear operator with d-linear operator

example: cryptography

example: Diffie-Hellman key exchange

- Alice and Bob want to generate (secure) common password over (insecure) internet
- pick large prime p and primitive root of unity $g \in(\mathbb{Z} / p \mathbb{Z})^{\times}$
- any non-zero $x \in \mathbb{Z} / p \mathbb{Z}$ may be expressed as

$$
x \equiv g^{a} \quad(\bmod p)
$$

henceforth write $x=g^{a}$

- Alice picks secret $a \in \mathbb{Z}$ and sends g^{a} publicly to Bob
- Bob picks secret $b \in \mathbb{Z}$ and sends g^{b} publicly to Alice
- Alice computes $g^{a b}=\left(g^{b}\right)^{a}$ from the g^{b} she received from Bob
- Bob computes $g^{a b}=\left(g^{a}\right)^{b}$ from the g^{a} he received from Alice
- they now share the secure password $g^{a b}$

example: multilinear cryptography

- security based on intractability of computing $a=\log _{g}\left(g^{a}\right)$
- observation 1: $(\mathbb{Z} / p \mathbb{Z})^{\times}$is \mathbb{Z}-module
- observation 2: Diffie-Hellman is \mathbb{Z}-bilinear map

$$
\text { B: }(\mathbb{Z} / p \mathbb{Z})^{\times} \times(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{\times}, \quad\left(g^{a}, g^{b}\right) \mapsto g^{a b}
$$

- for any $\lambda, \lambda^{\prime} \in \mathbb{Z}$ and $g^{a}, g^{b} \in(\mathbb{Z} / p \mathbb{Z})^{\times}$

$$
\mathrm{B}\left(g^{\lambda a+\lambda^{\prime} a^{\prime}}, g^{b}\right)=\mathrm{B}\left(g^{a}, g^{b}\right)^{\lambda} \mathrm{B}\left(g^{a^{\prime}}, g^{b}\right)^{\lambda^{\prime}}
$$

- what if not two parties but 1000 parties, e.g., on Zoom or Teams?
- $d+1$ parties require each party doing $d+1$ exponentiations
- solution: cryptographic multilinear map [Boneh-Silverberg, 2003]

example: multilinear cryptography

- cryptographic d-linear map $\Phi: G \times \cdots \times G \rightarrow G$
- assumptions: discrete log in G hard, evaluating Φ easy
- ith party pick password a_{i}, perform one exponentiation to get $g^{a_{i}}$
- broadcast $g^{a_{i}}$ to other parties, who will each do likewise
- every party now has $g^{a_{1}}, \ldots, g^{a_{d+1}}$
- ith party will now compute

$$
\Phi\left(g^{a_{1}}, \ldots, g^{a_{i-1}}, g^{a_{i+1}}, \ldots, g^{a_{d+1}}\right)^{a_{i}}=\Phi(g, \ldots, g)^{a_{1} \cdots a_{d+1}}
$$

- result is common password for the $d+1$ parties

no time for these

- tensor nuclear norm and numerical stability
- bilinear Hilbert transform and Calderon conjecture
- tensor fields: multilinear operators over $C^{\infty}(M)$-modules
- metric, Ricci, and Riemann curvature tensors
- Grothendieck inequality

classifying multilinear maps

problem with definition (2)

- many more multilinear maps than there are types of tensors
- $d=2$:
- linear operators

$$
\Phi: \mathbb{U}^{*} \rightarrow \mathbb{V}, \quad \Phi: \mathbb{U} \rightarrow \mathbb{V}^{*}, \quad \Phi: \mathbb{U}^{*} \rightarrow \mathbb{V}^{*}
$$

- bilinear functionals

$$
\beta: \mathbb{U}^{*} \times \mathbb{V} \rightarrow \mathbb{R}, \quad \beta: \mathbb{U} \times \mathbb{V}^{*} \rightarrow \mathbb{R}, \quad \beta: \mathbb{U}^{*} \times \mathbb{V}^{*} \rightarrow \mathbb{R}
$$

- $d=3$:
- bilinear operators

$$
\mathrm{B}: \mathbb{U}^{*} \times \mathbb{V} \rightarrow \mathbb{W}, \mathrm{B}: \mathbb{U} \times \mathbb{V}^{*} \rightarrow \mathbb{W}, \ldots, \mathrm{~B}: \mathbb{U}^{*} \times \mathbb{V}^{*} \rightarrow \mathbb{W}^{*}
$$

- trilinear functionals

$$
\tau: \mathbb{U}^{*} \times \mathbb{V} \times \mathbb{W} \rightarrow \mathbb{R}, \tau: \mathbb{U} \times \mathbb{V}^{*} \times \mathbb{W} \rightarrow \mathbb{R}, \ldots, \tau: \mathbb{U}^{*} \times \mathbb{V}^{*} \times \mathbb{W}^{*} \rightarrow \mathbb{R}
$$

- more complicated maps

$$
\begin{aligned}
\Phi_{1}: \mathbb{U} \rightarrow \mathrm{L}(\mathbb{V} ; \mathbb{W}), & \Phi_{2}: \mathrm{L}(\mathbb{U} ; \mathbb{V}) \rightarrow \mathbb{W} \\
\beta_{1}: \mathbb{U} \times \mathrm{L}(\mathbb{V} ; \mathbb{W}) \rightarrow \mathbb{R}, & \beta_{2}: \mathrm{L}(\mathbb{U} ; \mathbb{V}) \times \mathbb{W} \rightarrow \mathbb{R}
\end{aligned}
$$

problem with definition (2)

- possibilities increase exponentially with order d
- ought to be only as many as types of transformation rules

covariant 2-tensor:	$\Phi: \mathbb{U} \rightarrow \mathbb{V}^{*}$,	$\beta: \mathbb{U} \times \mathbb{V} \rightarrow \mathbb{R}$
contravariant 2-tensor:	$\Phi: \mathbb{U}^{*} \rightarrow \mathbb{V}$,	$\beta: \mathbb{U}^{*} \times \mathbb{V}^{*} \rightarrow \mathbb{R}$
mixed 2-tensor:	$\Phi: \mathbb{U} \rightarrow \mathbb{V}$,	$\beta: \mathbb{U} \times \mathbb{V}^{*} \rightarrow \mathbb{R}$,
	$\Phi: \mathbb{U}^{*} \rightarrow \mathbb{V}^{*}$,	$\beta: \mathbb{U}^{*} \times \mathbb{V} \rightarrow \mathbb{R}$

- definition (3) accomplishes this without reference to the transformation rules

imperfect fix

- only allow $\mathbb{W}=\mathbb{R}$
- d-tensor of contravariant order p and covariant order $d-p$ is multilinear functional

$$
\varphi: \mathbb{V}_{1}^{*} \times \cdots \times \mathbb{V}_{p}^{*} \times \mathbb{V}_{p+1} \times \cdots \times \mathbb{V}_{d} \rightarrow \mathbb{R}
$$

- excludes vectors, by far the most common 1-tensor
- excludes linear operators, by far the most common 2-tensor
- excludes bilinear operators, by far the most common 3-tensor
- e.g., instead of talking about $\mathbf{v} \in \mathbb{V}$, need to talk about linear functionals $f: \mathbb{V}^{*} \rightarrow \mathbb{R}$
- ultimately need definition (3)

acknowledgment

- Simons Foundation Award no. 663281 granted to the Institute of Mathematics of the Polish Academy of Sciences for 2021-2023
- L.-H. Lim, "Tensors in computations," Acta Numer., 30 (2021), pp. 555-764

[^0]: ${ }^{1}$ thanks to J. M. Landsberg (for \mathbb{C}) and Visu Makam (for \mathbb{R})

