Tensors in Computations I

Lek-Heng Lim

University of Chicago

- Simons Foundation Award no. 663281 granted to the Institute of Mathematics of the Polish Academy of Sciences for 2021–2023
- · Arieh for the opportunity to write book chapter
 - L.-H. Lim, "Tensors in computations," Acta Numer., 30 (2021), pp. 555–764
- Arieh and Karolina for the opportunity to give this series of lectures

introduction

notion of tensors captures three great ideas:

- equivariance
- multilinearity
- separability

important alike in physics, mathematics, and computations

- roughly correspond to three common definitions of a tensor
- chronologically
 - a multi-indexed object that satisfies tensor transformation rules
 - ② a multilinear map
 - $\ensuremath{\textcircled{3}}$ an element of a tensor product of vector spaces
- all three definitions remain useful today
- our goals
 - introduce tensors through the lens of linear algebra
 - highlight their roles in computations

tensors in computations

- decompositional approach to matrix computations
- interior point methods
- equivariant neural networks
- multidimensional Fourier, Laplace, Z, cosine transforms
- cryptographic multilinear maps
- tensor product bases, frames, kernels, multiresolution analyses
- fast integer and fast matrix multiplication algorithms
- fast multipole method

- separable ODEs, integral equations, Hamiltonians
- separation of variables in PDEs, integral, finite difference equations
- Grover quantum search
- Hartree–Fock approximation
- tensor networks and DMRG
- nonlinear separable convex optimization
- Smolyak's quadrature
- and more

motivation: equivariance

equivariance

used to esoteric but not anymore

• CIFAR-10 computer vision dataset: best result obtained with equivariant neural network [Cohen–Welling, 2016]

airplane	and the	-	X	*	+	2	-1		-
automobile				-	Tes				*
bird	s.	2			4	1	1	1	4
cat		4	5			Z.	Å.	to the	-
deer	1	\mathbf{X}	R		Y	Ŷ		-	
dog	17.	-		1	(A)		C?	A	The

more recently

• CASP14 protein folding competition: winning entry by Google DeepMind's AlphaFold 2 uses equivariant neural network [Jumper et al, 2020]

as old as tensors

• Woldemar Voigt, *Die fundamentalen physikalischen Eigenschaften der Krystalle in elementarer Darstellung*, Verlag Von Veit, Leipzig, 1898.

- "An abstract entity represented by an array of components that are functions of coordinates such that, under a transformation of cooordinates, the new components are related to the transformation and to the original components in a definite way."
- highlighted part = equivariance

tensors via transformation rules

• for every complex question there is an answer that is clear, simple, and wrong

"a tensor is a multiway array"

- unfortunately also widely believed simple answer to complex question has its appeal
- indication that answer cannot be so simple: Einstein's letter to Sommerfeld, dated October 29, 1912
 - J. Earman, C. Glymour, "Lost in tensors: Einstein's struggles with covariance principles 1912–1916," *Stud. Hist. Phil. Sci.*, 9 (1978), no. 4, pp. 251–278

- trickiest among the three definitions
- Voigt's definition again:
 - "An abstract entity represented by an array of components that are functions of coordinates such that, under a transformation of cooordinates, the new components are related to the transformation and to the original components in a definite way"
- main issue: defines an entity by giving its change-of-bases formulas but without specifying the entity itself
- likely reason for notoriety of tensors as a difficult subject to master

definition in Dover books c. 1950s

"a multi-indexed object that satisfies certain transformation rules"

- linear algebra as we know it today was a subject in its infancy when Einstein was trying to learn tensors
- vector space, linear map, dual space, basis, change-of-basis, matrix, matrix multiplication, etc, were all obscure notions back then
 - ► 1858: 3 × 3 matrix product (Cayley)
 - ▶ 1888: vector space and $n \times n$ matrix product (Peano)
 - 1898: tensor (Voigt)
- we enjoy the benefit of a hundred years of pedagogical progress
- next slides: look at tensor transformation rules in light of linear algebra and numerical linear algebra

eigen and singular values

• eigenvalue and vectors: $A \in \mathbb{C}^{n \times n}$, $A\mathbf{v} = \lambda \mathbf{v}$, for invertible $X \in \mathbb{C}^{n \times n}$,

$$(XAX^{-1})X\mathbf{v} = \lambda X\mathbf{v}$$

• eigenvalue $\lambda' = \lambda$, eigenvector $\mathbf{v}' = X\mathbf{v}$, and $A' = XAX^{-1}$

• singular values and vectors: $A \in \mathbb{R}^{m \times n}$,

$$\begin{cases} A\mathbf{v} = \sigma \mathbf{u}, \\ A^{\mathsf{T}}\mathbf{u} = \sigma \mathbf{v} \end{cases}$$

for orthogonal $X \in \mathbb{R}^{m \times m}$, $Y \in \mathbb{R}^{n \times n}$,

$$\begin{cases} (XAY^{\mathsf{T}})Y\mathbf{v} = \sigma X\mathbf{u}, \\ (XAY^{\mathsf{T}})^{\mathsf{T}}X\mathbf{u} = \sigma Y\mathbf{v} \end{cases}$$

singular value σ' = σ, left singular vector u' = Xu, left singular vector v' = Yv, and A' = XAY^T

matrix product and linear systems

 matrix product: A ∈ C^{m×n}, B ∈ C^{n×p}, C ∈ C^{m×p}, AB = C, for any invertible X, Y, Z,

$$(XAY^{-1})(YBZ^{-1}) = XCZ^{-1}$$

•
$$A' = XAY^{-1}, B' = YBZ^{-1}, C' = XCZ^{-1}$$

• linear system: $A \in \mathbb{C}^{m \times n}$, $\mathbf{b} \in \mathbb{C}^m$, $A\mathbf{v} = \mathbf{b}$, for invertible X, Y,

$$(XAY^{-1})(Y\mathbf{v}) = X\mathbf{b}$$

$$\blacktriangleright A' = XAY^{-1}, \mathbf{b}' = X\mathbf{b}, \mathbf{v}' = Y\mathbf{v}$$

• ordinary least squares: $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$,

$$\min_{\boldsymbol{\nu} \in \mathbb{R}^n} \|A\boldsymbol{\nu} - \boldsymbol{b}\|^2 = \min_{\boldsymbol{\nu} \in \mathbb{R}^n} \|(XAY^{-1})Y\boldsymbol{\nu} - X\boldsymbol{b}\|^2$$

for orthogonal $X \in \mathbb{R}^{m \times m}$ and invertible $Y \in \mathbb{R}^{n \times n}$

•
$$A' = XAY^{-1}$$
, $\mathbf{b}' = X\mathbf{b}$, $\mathbf{v}' = Y\mathbf{v}$, minimum value $\rho' = \rho$

• total least squares: $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, then

min {
$$||E||^2 + ||\mathbf{r}||^2 : (A + E)\mathbf{v} = \mathbf{b} + \mathbf{r}$$
}
= min { $||XEY^{\mathsf{T}}||^2 + ||X\mathbf{r}||^2 : (XAY^{\mathsf{T}} + XEY^{\mathsf{T}})Y\mathbf{v} = X\mathbf{b} + X\mathbf{r}$ }

for orthogonal $X \in \mathbb{R}^{m \times m}$ and orthogonal $Y \in \mathbb{R}^{n \times n}$

$$\blacktriangleright A' = XAY^{\mathsf{T}}, E' = XEY^{\mathsf{T}}, \mathbf{b}' = X\mathbf{b}, \mathbf{r}' = X\mathbf{r}, \mathbf{v}' = Y\mathbf{v}$$

• rank, norm, determinant: $A \in \mathbb{R}^{m \times n}$

 $rank(XAY^{-1}) = rank(A), \quad det(XAY^{-1}) = det(A), \quad ||XAY^{-1}|| = ||A||$

for X and Y invertible, special linear, or orthogonal, respectively

- determinant identically zero whenever $m \neq n$
- $\|\cdot\|$ either spectral, nuclear, or Frobenius norm
- **positive definiteness:** $A \in \mathbb{R}^{n \times n}$ positive definite iff

$$XAX^{\mathsf{T}}$$
 or $X^{-\mathsf{T}}AX^{-1}$

positive definite for any invertible $X \in \mathbb{R}^{n \times n}$

- almost everything we study in linear algebra and numerical linear algebra satisfies tensor transformation rules
- different names, same thing:
 - equivalence of matrices: $A' = XAY^{-1}$
 - ▶ similarity of matrices: A' = XAX⁻¹
 - congruence of matrices: $A' = XAX^{T}$
- almost everything we study in linear algebra and numerical linear algebra is about 0-, 1-, 2-tensors

contravariant 1-tensor: covariant 1-tensor: covariant 2-tensor: contravariant 2-tensor: mixed 2-tensor: contravariant 2-tensor: covariant 2-tensor: mixed 2-tensor:

$$a' = X^{-1}a$$
 $a' = Xa$ $a' = X^{T}a$ $a' = X^{-T}a$ $A' = X^{T}AX$ $A' = X^{-T}AX^{-1}$ $A' = X^{-1}AX^{-T}$ $A' = XAX^{T}$ $A' = X^{-1}AX$ $A' = XAX^{T}$ $A' = X^{-1}AY^{-T}$ $A' = XAY^{T}$ $A' = X^{-1}AY^{-T}$ $A' = XAY^{T}$ $A' = X^{-1}AY$ $A' = XAY^{T}$ $A' = X^{-1}AY$ $A' = XAY^{-1}$

simplest case: contravariant 1-tensor

- choose x-, y- and z-axes, **v** gets coordinates $\mathbf{a} \in \mathbb{R}^3$
- change axes to x'-, y'- and z'-axes with $X \in GL(3)$
- nothing physical has changed, \mathbf{v} still where it was
- coordinates must change in opposite way $\mathbf{a}' = X^{-1}\mathbf{a}$ to compensate

• transformation rules may mean different things

$$\mathcal{A}' = X\mathcal{A}Y^{-1}, \quad \mathcal{A}' = X\mathcal{A}Y^{\mathsf{T}}, \quad \mathcal{A}' = X\mathcal{A}X^{-1}, \quad \mathcal{A}' = X\mathcal{A}X^{\mathsf{T}}$$

and more

• matrices in transformation rules may have different properties

 $X \in GL(n), SL(n), O(n),$ $(X, Y) \in GL(m) \times GL(n), SL(m) \times SL(n), O(m) \times O(n), O(m) \times GL(n)$

and more

• alternative (but equivalent) forms just as common

$$A' = X^{-1}AY, \quad A' = X^{-1}AY^{-T}, \quad A' = X^{-1}AX, \quad A' = X^{-1}AX^{-T}$$

math perspective

- multi-indexed object $\lambda \in \mathbb{R}$, $\mathbf{a} \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, etc, represents the tensor
- transformation rule A' = XAY⁻¹, A' = XAY⁻¹, A' = XAX^T, etc, defines the tensor
- but the tensor has been left unspecified
- easily fixed with modern definitions 2 and 3
- $\bullet\,$ need a context in order to use definition
- is $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ a tensor?
- it is a tensor if we are interested in, say, its eigenvalues and eigenvectors, in which case A transforms as a mixed 2-tensor

physics perspective

- remember definition ① came from physics they don't ask
 - what is a tensor?

but

- ▶ is stress a tensor?
- is deformation a tensor?
- is electromagnetic field strength a tensor?
- unspecified quantity is placeholder for physical quantity like stress, deformation, etc
- it is a tensor if the multi-indexed object satisfies transformation rules under change-of-coordinates, i.e., definition ①
- makes perfect sense in a physics context
- is $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ a tensor?
- it is a tensor if it represents, say, stress, in which case A transforms as a contravariant 2-tensor

higher order

multilinear matrix multiplication

- $A \in \mathbb{R}^{n_1 \times \cdots \times n_d}$
- $X \in \mathbb{R}^{m_1 \times n_1}, Y \in \mathbb{R}^{m_2 \times n_2}, \dots, Z \in \mathbb{R}^{m_d \times n_d}$
- define

$$(X, Y, \ldots, Z) \cdot A = B$$

where $B \in \mathbb{R}^{m_1 \times \cdots \times m_d}$ given by

$$b_{i_1\cdots i_d} = \sum_{j_1=1}^{n_1}\sum_{j_2=1}^{n_2}\cdots\sum_{j_d=1}^{n_d}x_{i_1j_1}y_{i_2j_2}\cdots z_{i_dj_d}a_{j_1\cdots j_d}$$

- d = 1: reduces to $X\mathbf{a} = \mathbf{b}$ for $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$
- d = 2: reduces to

$$(X, Y) \cdot A = XAY^{\mathsf{T}}$$

higher-order transformation rules 1

- $X_1 \in \operatorname{GL}(n_1), X_2 \in \operatorname{GL}(n_2), \ldots, X_d \in \operatorname{GL}(n_d)$
- covariant *d*-tensor transformation rule:

$$A' = (X_1^{\mathsf{T}}, X_2^{\mathsf{T}}, \dots, X_d^{\mathsf{T}}) \cdot A$$

• contravariant *d*-tensor transformation rule:

$$A' = (X_1^{-1}, X_2^{-1}, \dots, X_d^{-1}) \cdot A$$

• mixed *d*-tensor transformation rule:

$$A' = (X_1^{-1}, \dots, X_p^{-1}, X_{p+1}^{\mathsf{T}}, \dots, X_d^{\mathsf{T}}) \cdot A$$

• contravariant order p, covariant order d - p, or type (p, d - p)

higher-order transformation rules 2

- when $n_1 = n_2 = \cdots = n_d = n, X \in GL(n)$
- covariant *d*-tensor transformation rule:

$$A' = (X^{\mathsf{T}}, X^{\mathsf{T}}, \dots, X^{\mathsf{T}}) \cdot A$$

• contravariant *d*-tensor transformation rule:

$$A' = (X^{-1}, X^{-1}, \dots, X^{-1}) \cdot A$$

• mixed *d*-tensor transformation rule:

$$A' = (X^{-1}, \dots, X^{-1}, X^{\mathsf{T}}, \dots, X^{\mathsf{T}}) \cdot A$$

• getting ahead of ourselves, with definition ⁽²⁾, difference is between multilinear

$$f: \mathbb{V}_1 \times \cdots \times \mathbb{V}_d \to \mathbb{R}$$
 and $f: \mathbb{V} \times \cdots \times \mathbb{V} \to \mathbb{R}$

change-of-cooordinates matrices

• X_1, \ldots, X_d or X may belong to:

$$GL(n) = \{X \in \mathbb{R}^{n \times n} : \det(X) \neq 0\}$$

$$SL(n) = \{X \in \mathbb{R}^{n \times n} : \det(X) = 1\}$$

$$O(n) = \{X \in \mathbb{R}^{n \times n} : X^{\mathsf{T}}X = I\},$$

$$SO(n) = \{X \in \mathbb{R}^{n \times n} : X^{\mathsf{T}}X = I, \det(X) = 1\}$$

$$U(n) = \{X \in \mathbb{C}^{n \times n} : X^{\mathsf{T}}X = I\}$$

$$SU(n) = \{X \in \mathbb{C}^{n \times n} : X^{\mathsf{T}}X = I, \det(X) = 1\}$$

$$O(p,q) = \{X \in \mathbb{R}^{n \times n} : X^{\mathsf{T}}I_{p,q}X = I_{p,q}\}$$

$$SO(p,q) = \{X \in \mathbb{R}^{n \times n} : X^{\mathsf{T}}I_{p,q}X = I_{p,q}, \det(X) = 1\}$$

$$Sp(2n, \mathbb{R}) = \{X \in \mathbb{R}^{2n \times 2n} : X^{\mathsf{T}}JX = J\}$$

$$Sp(2n) = \{X \in \mathbb{C}^{2n \times 2n} : X^{\mathsf{T}}JX = J, X^{*}X = I\}$$

• $I := I_n$ is $n \times n$ identity, $I_{p,q} := \begin{bmatrix} I_p & 0 \\ 0 & -I_q \end{bmatrix} \in \mathbb{R}^{n \times n}$, $J := \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$

change-of-cooordinates matrices

- again getting ahead of ourselves with definitions 2 or 3,
 - if vector spaces involve have no extra structure, then GL(n)
 - if inner product spaces, then O(n)
 - if equipped with yet other structures, then whatever group that preserves those structures
- e.g., \mathbb{R}^4 equipped with Euclidean inner product:

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_0 y_0 + x_1 y_1 + x_2 y_2 + x_3 y_3$$

want $X \in O(4)$ or SO(4)

• e.g., \mathbb{R}^4 equipped with Lorentzian scalar product,

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_0 y_0 - x_1 y_1 - x_2 y_2 - x_3 y_3,$$

want $X \in O(1,3)$ or SO(1,3)

• called Cartesian tensors or Lorentzian tensors respectively

transformation rule is key

why important (in machine learning)

- tensor transformation rules in modern parlance: equivariance
- we mentioned earlier equivariant neural networks

why important (in physics)

- special relativity is essentially the observation that the laws of physics are invariant under Lorentz transformations in O(1,3) [Einstein, 1920]
- transformation rules under O(1,3)-analogue of Givens rotations:

$$\begin{bmatrix} \cosh\theta & -\sinh\theta & 0 & 0 \\ -\sinh\theta & \cosh\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} \cosh\theta & 0 & -\sinh\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sinh\theta & 0 & \cosh\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} \cosh\theta & 0 & 0 & -\sinh\theta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\sinh\theta & 0 & 0 & \cosh\theta \end{bmatrix}$$

enough to derive most standard results of special relativity

 "Geometric Principle: The laws of physics must all be expressible as geometric (coordinate independent and reference frame independent) relationships between geometric objects (scalars, vectors, tensors, ...) that represent physical entitities." [Thorne, 1973]

why important (in mathematics)

 deriving higher-order tensorial analogues not a matter of just adding more indices to

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad \sum_{j=1}^{n} a_{ij} x_j = \lambda x_i, \quad \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{i\sigma(i)}$$

- need to satisfy tensor transformation rules
- e.g., $A \in \mathbb{R}^{2 \times 2 \times 2}$ has hyperdeterminant

$$det(A) = a_{000}^2 a_{111}^2 + a_{001}^2 a_{110}^2 + a_{010}^2 a_{101}^2 + a_{011}^2 a_{100}^2 - 2(a_{000}a_{001}a_{110}a_{111} + a_{000}a_{010}a_{101}a_{111} + a_{000}a_{011}a_{100}a_{111}$$

 $+ a_{001}a_{010}a_{101}a_{110} + a_{001}a_{011}a_{110}a_{100} + a_{010}a_{011}a_{101}a_{100})$

 $+4(a_{000}a_{011}a_{101}a_{110}+a_{001}a_{010}a_{100}a_{111}),$

- preserved by transformation $A' = (X, Y, Z) \cdot A$ for $X, Y, Z \in SL(2)$
- just as determinant preserved by $A' = XAY^{\mathsf{T}}$ for $X, Y \in \mathsf{SL}(n)$

• Hadamard product:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \circ \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{12}b_{12} \\ a_{21}b_{21} & a_{22}b_{22} \end{bmatrix}$$

• seems a lot more obvious than standard matrix product

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

- matrix product satisfies transformation rule for mixed 2-tensors $(XAY^{-1})(YBZ^{-1}) = X(AB)Z^{-1}$, i.e., defined on tensors
- Hadamard product undefined on tensors depends on coordinates
- product on $\mathbb{R}^{m \times n \times p}$ or $\mathbb{R}^{n \times n \times n}$ that satisfies 3-tensor transformation rules does not exist

• identity matrix $I \in \mathbb{R}^{3 \times 3}$

$$I = \sum_{i=1}^{3} \mathbf{e}_i \otimes \mathbf{e}_i = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

with $\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3 \in \mathbb{R}^3$ standard basis vectors

- $(Q, Q) \cdot I = QIQ^{\mathsf{T}} = I$ for $Q \in O(3)$, unique up to scalar multiples
- I is a Cartesian 2-tensor
- analogue in $\mathbb{R}^{3 \times 3 \times 3}$ is not

$$A = \sum_{i=1}^{3} \mathbf{e}_i \otimes \mathbf{e}_i \otimes \mathbf{e}_i \in \mathbb{R}^{3 \times 3 \times 3}$$

because $(Q, Q, Q) \cdot A \neq A$

• analogue is

$$J = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{ijk} \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k \in \mathbb{R}^{3 \times 3 \times 3}$$

where ε_{ijk} is the Levi-Civita symbol

$$\varepsilon_{ijk} = \begin{cases} +1 & \text{if } (i,j,k) = (1,2,3), (2,3,1), (3,1,2), \\ -1 & \text{if } (i,j,k) = (1,3,2), (2,1,3), (3,2,1), \\ 0 & \text{if } i = j, j = k, k = i \end{cases}$$

- $(Q, Q, Q) \cdot J = J$ for $Q \in O(3)$, unique up to scalar multiples
- J is a Cartesian 3-tensor

two simple properties:

- group: change-of-coordinates matrices may be multiplied/inverted:
 - ▶ if X, Y orthogonal or invertible, so is XY
 - if X orthogonal or invertible, so is X^{-1}
- group action: transformation rules may be composed:

• if
$$\mathbf{a}' = X^{-\mathsf{T}}\mathbf{a}$$
 and $\mathbf{a}'' = Y^{-\mathsf{T}}\mathbf{a}'$, then $\mathbf{a}'' = (YX)^{-\mathsf{T}}\mathbf{a}$

• if $A' = XAX^{-1}$ and $A'' = YA'Y^{-1}$, then $A'' = (YX)A(YX)^{-1}$

plus one more fact about the change-of-coordinate matrices (next slides)

why important (in computations)

• recall Givens rotation, Householder reflector, Gauss transform:

$$G = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & \cos\theta & \cdots & -\sin\theta & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & \sin\theta & \cdots & \cos\theta & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix} \in SO(n),$$
$$H = I - \frac{2\mathbf{v}\mathbf{v}^{\mathsf{T}}}{\mathbf{v}^{\mathsf{T}}\mathbf{v}} \in O(n), \qquad M = I - \mathbf{v}\mathbf{e}_{i}^{\mathsf{T}} \in GL(n)$$

- $\mathbf{a}' = G\mathbf{a}$ rotation of \mathbf{a} in (i, j)-plane by an angle θ
- a'=Ha reflection of a in the hyperplane with normal $v/\|v\|$
- for judiciously chosen v, a' = Ma ∈ span{e_{i+1},..., e_n}, i.e., has (i + 1)th through nth coordinates zero

- facts about change-of-coordinate matrices in transformation rules
 - any $X \in SO(n)$ is a product of Givens rotations
 - any $X \in O(n)$ is a product of Householder reflectors
 - any $X \in GL(n)$ is a product of elementary matrices
 - any unit lower triangular $X \in GL(n)$ is a product of Gauss transforms
- in group theoretic lingo:
 - Givens roations generate SO(n)
 - Householder reflectors generate O(n)
 - elementary matrices generate GL(n)
 - ► Gauss transforms generate lower unitriangular subgroup of GL(n)

- algorithms in numerical linear algebra implicitly based on these:
 - apply a sequence of tensor transformation rules

$$A \to X_1 A \to X_2(X_1 A) \to \dots \to B$$

$$A \to X_1^{-T} A \to X_2^{-T}(X_1^{-T} A) \to \dots \to B$$

$$A \to X_1 A X_1^{T} \to X_2(X_1 A X_1^{T}) X_2^{T} \to \dots \to B$$

$$A \to X_1 A X_1^{-1} \to X_2(X_1 A X_1^{-1}) X_2^{-1} \to \dots \to B$$

$$A \to X_1 A Y_1^{-1} \to X_2(X_1 A Y_1^{-1}) Y_2^{-1} \to \dots \to B$$

▶ required X obtained as either $X_m X_{m-1} \dots X_1$ or its limit as $m \to \infty$

 caveat: in numerical linear algebra, we tend to view these transformation rules as giving matrix decompositions

examples

example: full-rank least squares

- tensor transformation rules for ordinary least squares: mixed 2-tensor $A' = XAY^{-1}$ with change-of-coordinates $(X, Y) \in O(m) \times GL(n)$
- method of solution essentially obtains

$$X = Q \in O(m), \qquad Y = R^{-1} \in GL(n)$$

by applying a sequence of tensor transformation rules

• suppose rank(A) = n, with sequence of tensor transformation rules

$$A o Q_1^{\mathsf{T}} A o Q_2^{\mathsf{T}}(Q_1^{\mathsf{T}} A) o \dots o Q^{\mathsf{T}} A = egin{bmatrix} R \ 0 \end{bmatrix}$$

given by Householder QR algorithm, get

$$A = Q \begin{bmatrix} R \\ 0 \end{bmatrix}$$

• practically Voigt's definition: transform problem into form where solution of transformed problem is related to original solution in a definite way

example: full-rank least squares

• minimum value is invariant Cartesian 0-tensor

$$\min \|A\mathbf{v} - \mathbf{b}\|^2 = \min \|Q^{\mathsf{T}}(A\mathbf{v} - \mathbf{b})\|^2 = \min \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} \mathbf{v} - Q^{\mathsf{T}} \mathbf{b} \right\|^2$$
$$= \min \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} \mathbf{v} - \begin{bmatrix} \mathbf{c} \\ \mathbf{d} \end{bmatrix} \right\|^2 = \min \|R\mathbf{v} - \mathbf{c}\|^2 + \|\mathbf{d}\|^2 = \|\mathbf{d}\|^2$$

where

Ì

$$Q^{\mathsf{T}}\mathbf{b} = \begin{bmatrix} \mathbf{c} \\ \mathbf{d} \end{bmatrix}$$

 solution of transformed problem Rv = c equals original solution, and may be obtained through back substitution, i.e., a sequence

$$\mathbf{c}
ightarrow Y_1^{-1} \mathbf{c}
ightarrow Y_2^{-1}(Y_1^{-1} \mathbf{c})
ightarrow \cdots
ightarrow R^{-1} \mathbf{c} = \mathbf{v}$$

where Y_i 's are Gauss transforms

example: Krylov subspaces

- $A \in \mathbb{R}^{n \times n}$ with all eigenvalues distinct and nonzero, arbitrary $\mathbf{b} \in \mathbb{R}^n$
- change-of-coordinates matrix K whose columns are

b,
$$Ab$$
, A^{2} **b**, ..., A^{n-1} **b**

is invertible, i.e., $K \in GL(n)$

• transformation rule gives

$$A = K \begin{bmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & \cdots & 0 & -c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -c_{n-1} \end{bmatrix} K^{-1}$$

• seemingly trivial but when combined with other techniques, give powerful iterative methods for linear systems, least squares, eigenvalue problems, or evaluating various matrix functions

example: Krylov subspaces

why not use more obvious

$$A = X \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix} X^{-1}$$

with change-of-coordinates matrix $X \in GL(n)$ given by eigenvectors?

- much more difficult to compute than K
- one way is in fact to implicitly exploit relation between K and X:

$$\begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix} = \begin{bmatrix} 1 & \lambda_1 & \lambda_1^2 & \dots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \lambda_2^2 & \dots & \lambda_2^{n-1} \\ 1 & \lambda_3 & \lambda_3^2 & \dots & \lambda_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_m & \lambda_m^2 & \dots & \lambda_m^{n-1} \end{bmatrix} \begin{bmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & \cdots & 0 & -c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -c_{n-1} \end{bmatrix} \begin{bmatrix} 1 & \lambda_1 & \lambda_1^2 & \dots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \lambda_2^2 & \dots & \lambda_n^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_m & \lambda_m^2 & \dots & \lambda_m^{n-1} \end{bmatrix}^{-1}$$

example: Newton method

• equality-constrained optimization

 $\begin{array}{ll} \text{minimize} & f(\mathbf{v}) \\ \text{subject to} & A\mathbf{v} = \mathbf{b} \end{array}$

• strongly convex $f \in C^2(\Omega)$

$$\beta I \preceq \nabla^2 f(\mathbf{v}) \preceq \gamma I$$

• Newton step $\Delta \mathbf{v} \in \mathbb{R}^n$ defined by

$$\begin{bmatrix} \nabla^2 f(\mathbf{v}) & A^{\mathsf{T}} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta \mathbf{v} \\ \Delta \lambda \end{bmatrix} = \begin{bmatrix} -\nabla f(\mathbf{v}) \\ 0 \end{bmatrix}$$

• Newton decrement $\lambda(v) \in \mathbb{R}$ defined by

$$\lambda(\mathbf{v})^2 \coloneqq \nabla f(\mathbf{v})^{\mathsf{T}} \nabla^2 f(\mathbf{v})^{-1} \nabla f(\mathbf{v})$$

example: Newton method

- linear change of coordinates $X\mathbf{v}' = \mathbf{v}$ with $X \in GL(n)$
- write $g(\mathbf{v}') = f(X\mathbf{v})$, then

coordinates	contravariant 1-tensor	$\mathbf{v}' = X^{-1}\mathbf{v}$
gradient	covariant 1-tensor	$ abla g(\mathbf{v}') = X^{ op} abla f(X\mathbf{v})$
Hessian	covariant 2-tensor	$\nabla^2 g(\mathbf{v}') = X^{T} \nabla^2 f(X\mathbf{v}) X$
Newton step	contravariant 1-tensor	$\Delta \mathbf{v}' = X^{-1} \Delta \mathbf{v}$
Newton iterate	contravariant 1-tensor	$\mathbf{v}_k' = X^{-1} \mathbf{v}_k$
Newton decrement	invariant 0-tensor	$\lambda(\mathbf{v}_k')=\lambda(\mathbf{v}_k)$

• Newton method is tensorial, steepest descent is not

- condition number of X^T∇²f(Xv)X can be scaled to any desired value in [1,∞) with appropriate X ∈ GL(n)
- Newton step independent of the condition number of $abla^2 f(\mathbf{v})$
- manifests as insensitivity to condition number in finite precision
- in practice Newton method gives solutions of high accuracy for $\kappa \approx 10^{10}$ when steepest descent already fails at $\kappa \approx 20$