Tensors in Computations I

Lek-Heng Lim

University of Chicago

thanks

- Simons Foundation Award no. 663281 granted to the Institute of Mathematics of the Polish Academy of Sciences for 2021-2023
- Arieh for the opportunity to write book chapter
- L.-H. Lim, "Tensors in computations," Acta Numer., 30 (2021), pp. 555-764
- Arieh and Karolina for the opportunity to give this series of lectures

introduction

tensors

notion of tensors captures three great ideas:

- equivariance
- multilinearity
- separability
important alike in physics, mathematics, and computations

three definitions

- roughly correspond to three common definitions of a tensor
- chronologically
(1) a multi-indexed object that satisfies tensor transformation rules
(2) a multilinear map
(3) an element of a tensor product of vector spaces
- all three definitions remain useful today
- our goals
- introduce tensors through the lens of linear algebra
- highlight their roles in computations

tensors in computations

- decompositional approach to matrix computations
- interior point methods
- equivariant neural networks
- multidimensional Fourier, Laplace, Z, cosine transforms
- cryptographic multilinear maps
- tensor product bases, frames, kernels, multiresolution analyses
- fast integer and fast matrix multiplication algorithms
- fast multipole method
- separable ODEs, integral equations, Hamiltonians
- separation of variables in PDEs, integral, finite difference equations
- Grover quantum search
- Hartree-Fock approximation
- tensor networks and DMRG
- nonlinear separable convex optimization
- Smolyak's quadrature
- and more

motivation: equivariance

equivariance

used to esoteric but not anymore

- CIFAR-10 computer vision dataset: best result obtained with equivariant neural network [Cohen-Welling, 2016]

more recently

- CASP14 protein folding competition: winning entry by Google DeepMind's AlphaFold 2 uses equivariant neural network [Jumper et al, 2020]

as old as tensors

- Woldemar Voigt, Die fundamentalen physikalischen Eigenschaften der Krystalle in elementarer Darstellung, Verlag Von Veit, Leipzig, 1898.

- "An abstract entity represented by an array of components that are functions of coordinates such that, under a transformation of cooordinates, the new components are related to the transformation and to the original components in a definite way."
- highlighted part = equivariance

tensors via transformation rules

what is a tensor?

- for every complex question there is an answer that is clear, simple, and wrong

> "a tensor is a multiway array"

- unfortunately also widely believed - simple answer to complex question has its appeal
- indication that answer cannot be so simple: Einstein's letter to Sommerfeld, dated October 29, 1912
- J. Earman, C. Glymour, "Lost in tensors: Einstein's struggles with covariance principles 1912-1916," Stud. Hist. Phil. Sci., 9 (1978), no. 4, pp. 251-278

earliest definition

- trickiest among the three definitions
- Voigt's definition again:
- "An abstract entity represented by an array of components that are functions of coordinates such that, under a transformation of cooordinates, the new components are related to the transformation and to the original components in a definite way"
- main issue: defines an entity by giving its change-of-bases formulas but without specifying the entity itself
- likely reason for notoriety of tensors as a difficult subject to master

definition in Dover books c. 1950s

- "a multi-indexed object that satisfies certain transformation rules"

fortunately for us

- linear algebra as we know it today was a subject in its infancy when Einstein was trying to learn tensors
- vector space, linear map, dual space, basis, change-of-basis, matrix, matrix multiplication, etc, were all obscure notions back then
- 1858: 3×3 matrix product (Cayley)
- 1888: vector space and $n \times n$ matrix product (Peano)
- 1898: tensor (Voigt)
- we enjoy the benefit of a hundred years of pedagogical progress
- next slides: look at tensor transformation rules in light of linear algebra and numerical linear algebra

eigen and singular values

- eigenvalue and vectors: $A \in \mathbb{C}^{n \times n}, A \mathbf{v}=\lambda \mathbf{v}$, for invertible $X \in \mathbb{C}^{n \times n}$,

$$
\left(X A X^{-1}\right) X \mathbf{v}=\lambda X \mathbf{v}
$$

- eigenvalue $\lambda^{\prime}=\lambda$, eigenvector $\mathbf{v}^{\prime}=X \mathbf{v}$, and $A^{\prime}=X A X^{-1}$
- singular values and vectors: $A \in \mathbb{R}^{m \times n}$,

$$
\left\{\begin{aligned}
A \mathbf{v} & =\sigma \mathbf{u} \\
A^{\top} \mathbf{u} & =\sigma \mathbf{v}
\end{aligned}\right.
$$

for orthogonal $X \in \mathbb{R}^{m \times m}, Y \in \mathbb{R}^{n \times n}$,

$$
\left\{\begin{aligned}
\left(X A Y^{\top}\right) Y \mathbf{v} & =\sigma X \mathbf{u}, \\
\left(X A Y^{\top}\right)^{\top} X \mathbf{u} & =\sigma Y \mathbf{v}
\end{aligned}\right.
$$

- singular value $\sigma^{\prime}=\sigma$, left singular vector $\mathbf{u}^{\prime}=X \mathbf{u}$, left singular vector $\mathbf{v}^{\prime}=Y \mathbf{v}$, and $A^{\prime}=X A Y^{\top}$

matrix product and linear systems

- matrix product: $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times p}, C \in \mathbb{C}^{m \times p}, A B=C$, for any invertible X, Y, Z,

$$
\left(X A Y^{-1}\right)\left(Y B Z^{-1}\right)=X C Z^{-1}
$$

- $A^{\prime}=X A Y^{-1}, B^{\prime}=Y B Z^{-1}, C^{\prime}=X C Z^{-1}$
- linear system: $A \in \mathbb{C}^{m \times n}, \mathbf{b} \in \mathbb{C}^{m}, A \mathbf{v}=\mathbf{b}$, for invertible X, Y,

$$
\left(X A Y^{-1}\right)(Y \mathbf{v})=X \mathbf{b}
$$

- $A^{\prime}=X A Y^{-1}, \mathbf{b}^{\prime}=X \mathbf{b}, \mathbf{v}^{\prime}=Y \mathbf{v}$

ordinary and total least squares

- ordinary least squares: $A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$,

$$
\min _{v \in \mathbb{R}^{n}}\|A \mathbf{v}-\mathbf{b}\|^{2}=\min _{v \in \mathbb{R}^{n}}\left\|\left(X A Y^{-1}\right) Y \mathbf{v}-X \mathbf{b}\right\|^{2}
$$

for orthogonal $X \in \mathbb{R}^{m \times m}$ and invertible $Y \in \mathbb{R}^{n \times n}$

- $A^{\prime}=X A Y^{-1}, \mathbf{b}^{\prime}=X \mathbf{b}, \mathbf{v}^{\prime}=Y_{\mathbf{v}}$, minimum value $\rho^{\prime}=\rho$
- total least squares: $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$, then

$$
\begin{aligned}
& \min \left\{\|E\|^{2}+\|\mathbf{r}\|^{2}:(A+E) \mathbf{v}=\mathbf{b}+\mathbf{r}\right\} \\
& \quad=\min \left\{\left\|X E Y^{\top}\right\|^{2}+\|X \mathbf{r}\|^{2}:\left(X A Y^{\top}+X E Y^{\top}\right) Y \mathbf{v}=X \mathbf{b}+X \mathbf{r}\right\}
\end{aligned}
$$

for orthogonal $X \in \mathbb{R}^{m \times m}$ and orthogonal $Y \in \mathbb{R}^{n \times n}$

- $A^{\prime}=X A Y^{\top}, E^{\prime}=X E Y^{\top}, \mathbf{b}^{\prime}=X \mathbf{b}, \mathbf{r}^{\prime}=X \mathbf{r}, \mathbf{v}^{\prime}=Y \mathbf{v}$

rank, norm, determinant, intertia

- rank, norm, determinant: $A \in \mathbb{R}^{m \times n}$
$\operatorname{rank}\left(X A Y^{-1}\right)=\operatorname{rank}(A), \quad \operatorname{det}\left(X A Y^{-1}\right)=\operatorname{det}(A), \quad\left\|X A Y^{-1}\right\|=\|A\|$
for X and Y invertible, special linear, or orthogonal, respectively
- determinant identically zero whenever $m \neq n$
- || $\cdot \|$ either spectral, nuclear, or Frobenius norm
- positive definiteness: $A \in \mathbb{R}^{n \times n}$ positive definite iff

$$
X A X^{\top} \quad \text { or } \quad X^{-\top} A X^{-1}
$$

positive definite for any invertible $X \in \mathbb{R}^{n \times n}$

observation

- almost everything we study in linear algebra and numerical linear algebra satisfies tensor transformation rules
- different names, same thing:
- equivalence of matrices: $A^{\prime}=X A Y^{-1}$
- similarity of matrices: $A^{\prime}=X A X^{-1}$
- congruence of matrices: $A^{\prime}=X A X^{\top}$
- almost everything we study in linear algebra and numerical linear algebra is about 0 -, 1-, 2-tensors

0-, 1-, 2-tensor transformation rules

contravariant 1-tensor:
covariant 1-tensor:
covariant 2-tensor:
contravariant 2-tensor:
mixed 2-tensor:
contravariant 2-tensor:
covariant 2-tensor:
mixed 2-tensor:

$$
\begin{array}{ll}
\mathbf{a}^{\prime}=X^{-1} \mathbf{a} & \begin{array}{l}
\mathbf{a}^{\prime}=X \mathbf{a} \\
\mathbf{a}^{\prime}=X^{\top} \mathbf{a}
\end{array} \\
A^{\prime}=X^{\prime}=X^{\top} A X & A^{\prime}=X^{-\top} A X^{-1} \\
A^{\prime}=X^{-1} A X^{-\top} & A^{\prime}=X A X^{\top} \\
A^{\prime}=X^{-1} A X & A^{\prime}=X A X^{-1} \\
A^{\prime}=X^{-1} A Y^{-\top} & A^{\prime}=X A Y^{\top} \\
A^{\prime}=X^{\top} A Y & A^{\prime}=X^{-\top} A Y^{-1} \\
A^{\prime}=X^{-1} A Y & A^{\prime}=X A Y^{-1}
\end{array}
$$

simplest case: contravariant 1-tensor

- choose x-, y - and z-axes, \mathbf{v} gets coordinates $\mathbf{a} \in \mathbb{R}^{3}$
- change axes to x^{\prime}-, y^{\prime} - and z^{\prime}-axes with $X \in \mathrm{GL}(3)$
- nothing physical has changed, v still where it was
- coordinates must change in opposite way $\mathbf{a}^{\prime}=X^{-1} \mathbf{a}$ to compensate

triply ambiguous

- transformation rules may mean different things

$$
A^{\prime}=X A Y^{-1}, \quad A^{\prime}=X A Y^{\top}, \quad A^{\prime}=X A X^{-1}, \quad A^{\prime}=X A X^{\top}
$$

and more

- matrices in transformation rules may have different properties

$$
\begin{gathered}
X \in \mathrm{GL}(n), \mathrm{SL}(n), \mathrm{O}(n), \\
(X, Y) \in \mathrm{GL}(m) \times \mathrm{GL}(n), \mathrm{SL}(m) \times \mathrm{SL}(n), \mathrm{O}(m) \times \mathrm{O}(n), \mathrm{O}(m) \times \mathrm{GL}(n)
\end{gathered}
$$

and more

- alternative (but equivalent) forms just as common

$$
A^{\prime}=X^{-1} A Y, \quad A^{\prime}=X^{-1} A Y^{-\top}, \quad A^{\prime}=X^{-1} A X, \quad A^{\prime}=X^{-1} A X^{-\top}
$$

math perspective

- multi-indexed object $\lambda \in \mathbb{R}, \mathbf{a} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}$, etc, represents the tensor
- transformation rule $A^{\prime}=X A Y^{-1}, A^{\prime}=X A Y^{-1}, A^{\prime}=X A X^{\top}$, etc, defines the tensor
- but the tensor has been left unspecified
- easily fixed with modern definitions (2) and (3)
- need a context in order to use definition (1)
- is $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]$ a tensor?
- it is a tensor if we are interested in, say, its eigenvalues and eigenvectors, in which case A transforms as a mixed 2-tensor

physics perspective

- remember definition (1) came from physics - they don't ask
- what is a tensor?
but
- is stress a tensor?
- is deformation a tensor?
- is electromagnetic field strength a tensor?
- unspecified quantity is placeholder for physical quantity like stress, deformation, etc
- it is a tensor if the multi-indexed object satisfies transformation rules under change-of-coordinates, i.e., definition (1)
- makes perfect sense in a physics context
- is $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]$ a tensor?
- it is a tensor if it represents, say, stress, in which case A transforms as a contravariant 2-tensor
higher order

multilinear matrix multiplication

- $A \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$
- $X \in \mathbb{R}^{m_{1} \times n_{1}}, Y \in \mathbb{R}^{m_{2} \times n_{2}}, \ldots, Z \in \mathbb{R}^{m_{d} \times n_{d}}$
- define

$$
(X, Y, \ldots, Z) \cdot A=B
$$

where $B \in \mathbb{R}^{m_{1} \times \cdots \times m_{d}}$ given by

$$
b_{i_{1} \cdots i_{d}}=\sum_{j_{1}=1}^{n_{1}} \sum_{j_{2}=1}^{n_{2}} \cdots \sum_{j_{d}=1}^{n_{d}} x_{i_{1} j_{1}} y_{i_{2} j_{2}} \cdots z_{i_{d} j_{d}} a_{j_{1} \cdots j_{d}}
$$

- $d=1$: reduces to $X \mathbf{a}=\mathbf{b}$ for $\mathbf{a} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$
- $d=2$: reduces to

$$
(X, Y) \cdot A=X A Y^{\top}
$$

higher-order transformation rules 1

- $X_{1} \in \mathrm{GL}\left(n_{1}\right), X_{2} \in \mathrm{GL}\left(n_{2}\right), \ldots, X_{d} \in \mathrm{GL}\left(n_{d}\right)$
- covariant d-tensor transformation rule:

$$
A^{\prime}=\left(X_{1}^{\top}, X_{2}^{\top}, \ldots, X_{d}^{\top}\right) \cdot A
$$

- contravariant d-tensor transformation rule:

$$
A^{\prime}=\left(X_{1}^{-1}, X_{2}^{-1}, \ldots, X_{d}^{-1}\right) \cdot A
$$

- mixed d-tensor transformation rule:

$$
A^{\prime}=\left(X_{1}^{-1}, \ldots, X_{p}^{-1}, X_{p+1}^{\top}, \ldots, X_{d}^{\top}\right) \cdot A
$$

- contravariant order p, covariant order $d-p$, or type $(p, d-p)$

higher-order transformation rules 2

- when $n_{1}=n_{2}=\cdots=n_{d}=n, X \in \operatorname{GL}(n)$
- covariant d-tensor transformation rule:

$$
A^{\prime}=\left(X^{\top}, X^{\top}, \ldots, X^{\top}\right) \cdot A
$$

- contravariant d-tensor transformation rule:

$$
A^{\prime}=\left(X^{-1}, X^{-1}, \ldots, X^{-1}\right) \cdot A
$$

- mixed d-tensor transformation rule:

$$
A^{\prime}=\left(X^{-1}, \ldots, X^{-1}, X^{\top}, \ldots, X^{\top}\right) \cdot A
$$

- getting ahead of ourselves, with definition (2), difference is between multilinear

$$
f: \mathbb{V}_{1} \times \cdots \times \mathbb{V}_{d} \rightarrow \mathbb{R} \quad \text { and } \quad f: \mathbb{V} \times \cdots \times \mathbb{V} \rightarrow \mathbb{R}
$$

change-of-cooordinates matrices

- X_{1}, \ldots, X_{d} or X may belong to:

$$
\begin{aligned}
\mathrm{GL}(n) & =\left\{X \in \mathbb{R}^{n \times n}: \operatorname{det}(X) \neq 0\right\} \\
\mathrm{SL}(n) & =\left\{X \in \mathbb{R}^{n \times n}: \operatorname{det}(X)=1\right\} \\
\mathrm{O}(n) & =\left\{X \in \mathbb{R}^{n \times n}: X^{\top} X=I\right\}, \\
\mathrm{SO}(n) & =\left\{X \in \mathbb{R}^{n \times n}: X^{\top} X=I, \operatorname{det}(X)=1\right\} \\
\mathrm{U}(n) & =\left\{X \in \mathbb{C}^{n \times n}: X^{*} X=I\right\} \\
\mathrm{SU}(n) & =\left\{X \in \mathbb{C}^{n \times n}: X^{*} X=I, \operatorname{det}(X)=1\right\} \\
\mathrm{O}(p, q) & =\left\{X \in \mathbb{R}^{n \times n}: X^{\top} I_{p, q} X=I_{p, q}\right\} \\
\mathrm{SO}(p, q) & =\left\{X \in \mathbb{R}^{n \times n}: X^{\top} I_{p, q} X=I_{p, q}, \operatorname{det}(X)=1\right\} \\
\mathrm{Sp}(2 n, \mathbb{R}) & =\left\{X \in \mathbb{R}^{2 n \times 2 n}: X^{\top} J X=J\right\} \\
\mathrm{Sp}(2 n) & =\left\{X \in \mathbb{C}^{2 n \times 2 n}: X^{\top} J X=J, X^{*} X=I\right\}
\end{aligned}
$$

- $I:=I_{n}$ is $n \times n$ identity, $I_{p, q}:=\left[\begin{array}{cc}I_{p} & 0 \\ 0 & -I_{q}\end{array}\right] \in \mathbb{R}^{n \times n}, J:=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \in \mathbb{R}^{2 n \times 2 n}$

change-of-cooordinates matrices

- again getting ahead of ourselves with definitions (2) or (3),
- if vector spaces involve have no extra structure, then $\mathrm{GL}(n)$
- if inner product spaces, then $\mathrm{O}(n)$
- if equipped with yet other structures, then whatever group that preserves those structures
- e.g., \mathbb{R}^{4} equipped with Euclidean inner product:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

want $X \in \mathrm{O}(4)$ or $\mathrm{SO}(4)$

- e.g., \mathbb{R}^{4} equipped with Lorentzian scalar product,

$$
\langle\mathbf{x}, \mathbf{y}\rangle=x_{0} y_{0}-x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3},
$$

want $X \in \mathrm{O}(1,3)$ or $\mathrm{SO}(1,3)$

- called Cartesian tensors or Lorentzian tensors respectively
transformation rule is key

why important (in machine learning)

- tensor transformation rules in modern parlance: equivariance
- we mentioned earlier equivariant neural networks

why important (in physics)

- special relativity is essentially the observation that the laws of physics are invariant under Lorentz transformations in $\mathrm{O}(1,3)$ [Einstein, 1920]
- transformation rules under $\mathrm{O}(1,3)$-analogue of Givens rotations:

$$
\left[\begin{array}{cccc}
\cosh \theta & -\sinh \theta & 0 & 0 \\
-\sinh \theta & \cosh \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
\cosh \theta & 0 & -\sinh \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sinh \theta & 0 & \cosh \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
\cosh \theta & 0 & 0 & -\sinh \theta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\sinh \theta & 0 & 0 & \cosh \theta
\end{array}\right]
$$

enough to derive most standard results of special relativity

- "Geometric Principle: The laws of physics must all be expressible as geometric (coordinate independent and reference frame independent) relationships between geometric objects (scalars, vectors, tensors, ...) that represent physical entitities." [Thorne, 1973]

why important (in mathematics)

- deriving higher-order tensorial analogues not a matter of just adding more indices to

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad \sum_{j=1}^{n} a_{i j} x_{j}=\lambda x_{i}, \quad \sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{i \sigma(i)}
$$

- need to satisfy tensor transformation rules
- e.g., $A \in \mathbb{R}^{2 \times 2 \times 2}$ has hyperdeterminant

$$
\begin{aligned}
& \operatorname{det}(A)=a_{000}^{2} a_{111}^{2}+a_{001}^{2} a_{110}^{2}+a_{010}^{2} a_{101}^{2}+a_{011}^{2} a_{100}^{2} \\
& \quad-2\left(a_{000} a_{001} a_{110} a_{111}+a_{000} a_{010} a_{101} a_{111}+a_{000} a_{011} a_{100} a_{111}\right. \\
& \left.\quad+a_{001} a_{010} a_{101} a_{110}+a_{001} a_{011} a_{110} a_{100}+a_{010} a_{011} a_{101} a_{100}\right) \\
& +4\left(a_{000} a_{011} a_{101} a_{110}+a_{001} a_{010} a_{100} a_{111}\right)
\end{aligned}
$$

- preserved by transformation $A^{\prime}=(X, Y, Z) \cdot A$ for $X, Y, Z \in \operatorname{SL}(2)$
- just as determinant preserved by $A^{\prime}=X A Y^{\top}$ for $X, Y \in \operatorname{SL}(n)$

tensor multiplication?

- Hadamard product:

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \circ\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} b_{11} & a_{12} b_{12} \\
a_{21} b_{21} & a_{22} b_{22}
\end{array}\right]
$$

- seems a lot more obvious than standard matrix product

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right]
$$

- matrix product satisfies transformation rule for mixed 2-tensors $\left(X A Y^{-1}\right)\left(Y B Z^{-1}\right)=X(A B) Z^{-1}$, i.e., defined on tensors
- Hadamard product undefined on tensors - depends on coordinates
- product on $\mathbb{R}^{m \times n \times p}$ or $\mathbb{R}^{n \times n \times n}$ that satisfies 3-tensor transformation rules does not exist

identity tensor?

- identity matrix $/ \in \mathbb{R}^{3 \times 3}$

$$
I=\sum_{i=1}^{3} \mathbf{e}_{i} \otimes \mathbf{e}_{i}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \in \mathbb{R}^{3 \times 3}
$$

with $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3} \in \mathbb{R}^{3}$ standard basis vectors

- $(Q, Q) \cdot I=Q I Q^{\top}=I$ for $Q \in O(3)$, unique up to scalar multiples
- I is a Cartesian 2-tensor
- analogue in $\mathbb{R}^{3 \times 3 \times 3}$ is not

$$
A=\sum_{i=1}^{3} \mathbf{e}_{i} \otimes \mathbf{e}_{i} \otimes \mathbf{e}_{i} \in \mathbb{R}^{3 \times 3 \times 3}
$$

because $(Q, Q, Q) \cdot A \neq A$

identity tensor?

- analogue is

$$
J=\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \in \mathbb{R}^{3 \times 3 \times 3}
$$

where $\varepsilon_{i j k}$ is the Levi-Civita symbol

$$
\varepsilon_{i j k}= \begin{cases}+1 & \text { if }(i, j, k)=(1,2,3),(2,3,1),(3,1,2) \\ -1 & \text { if }(i, j, k)=(1,3,2),(2,1,3),(3,2,1) \\ 0 & \text { if } i=j, j=k, k=i\end{cases}
$$

- $(Q, Q, Q) \cdot J=J$ for $Q \in O(3)$, unique up to scalar multiples
- J is a Cartesian 3-tensor

why important (in computations)

two simple properties:

- group: change-of-coordinates matrices may be multiplied/inverted:
- if X, Y orthogonal or invertible, so is $X Y$
- if X orthogonal or invertible, so is X^{-1}
- group action: transformation rules may be composed:
- if $\mathbf{a}^{\prime}=X^{-\top} \mathbf{a}$ and $\mathbf{a}^{\prime \prime}=Y^{-\top} \mathbf{a}^{\prime}$, then $\mathbf{a}^{\prime \prime}=(Y X)^{-\top} \mathbf{a}$
- if $A^{\prime}=X A X^{-1}$ and $A^{\prime \prime}=Y A^{\prime} Y^{-1}$, then $A^{\prime \prime}=(Y X) A(Y X)^{-1}$
plus one more fact about the change-of-coordinate matrices (next slides)

why important (in computations)

- recall Givens rotation, Householder reflector, Gauss transform:

$$
\begin{aligned}
& G=\left[\begin{array}{ccccccc}
1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & & \vdots & & \vdots \\
0 & \cdots & \cos \theta & \cdots & -\sin \theta & \cdots & 0 \\
\vdots & & \vdots & \ddots & \vdots & & \vdots \\
0 & \cdots & \sin \theta & \cdots & \cos \theta & \cdots & 0 \\
\vdots & & \vdots & & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 1
\end{array}\right] \in \mathrm{SO}(n), \\
& H=I-\frac{2 \mathbf{v}^{\top}}{\mathbf{v}^{\top} \mathbf{v}} \in \mathrm{O}(n), \quad M=I-\mathbf{v e}_{i}^{\top} \in \mathrm{GL}(n)
\end{aligned}
$$

- $\mathbf{a}^{\prime}=G \mathbf{a}$ rotation of \mathbf{a} in (i, j)-plane by an angle θ
- $\mathbf{a}^{\prime}=$ Ha reflection of \mathbf{a} in the hyperplane with normal $\mathbf{v} /\|\mathbf{v}\|$
- for judiciously chosen $\mathbf{v}, \mathbf{a}^{\prime}=M \mathbf{a} \in \operatorname{span}\left\{\mathbf{e}_{i+1}, \ldots, \mathbf{e}_{n}\right\}$, i.e., has $(i+1)$ th through nth coordinates zero

why important (in computations)

- facts about change-of-coordinate matrices in transformation rules
- any $X \in \mathrm{SO}(n)$ is a product of Givens rotations
- any $X \in O(n)$ is a product of Householder reflectors
- any $X \in \mathrm{GL}(n)$ is a product of elementary matrices
- any unit lower triangular $X \in \mathrm{GL}(n)$ is a product of Gauss transforms
- in group theoretic lingo:
- Givens roations generate $\mathrm{SO}(n)$
- Householder reflectors generate $\mathrm{O}(n)$
- elementary matrices generate $\mathrm{GL}(n)$
- Gauss transforms generate lower unitriangular subgroup of GL(n)

why important (in computations)

- algorithms in numerical linear algebra implicitly based on these:
- apply a sequence of tensor transformation rules

$$
\begin{aligned}
& A \rightarrow X_{1} A \rightarrow X_{2}\left(X_{1} A\right) \rightarrow \cdots \rightarrow B \\
& A \rightarrow X_{1}^{-\top} A \rightarrow X_{2}^{-\top}\left(X_{1}^{-\top} A\right) \rightarrow \cdots \rightarrow B \\
& A \rightarrow X_{1} A X_{1}^{\top} \rightarrow X_{2}\left(X_{1} A X_{1}^{\top}\right) X_{2}^{\top} \rightarrow \cdots \rightarrow B \\
& A \rightarrow X_{1} A X_{1}^{-1} \rightarrow X_{2}\left(X_{1} A X_{1}^{-1}\right) X_{2}^{-1} \rightarrow \cdots \rightarrow B \\
& A \rightarrow X_{1} A Y_{1}^{-1} \rightarrow X_{2}\left(X_{1} A Y_{1}^{-1}\right) Y_{2}^{-1} \rightarrow \cdots \rightarrow B
\end{aligned}
$$

- required X obtained as either $X_{m} X_{m-1} \ldots X_{1}$ or its limit as $m \rightarrow \infty$
- caveat: in numerical linear algebra, we tend to view these transformation rules as giving matrix decompositions

examples

example: full-rank least squares

- tensor transformation rules for ordinary least squares: mixed 2-tensor $A^{\prime}=X A Y^{-1}$ with change-of-coordinates $(X, Y) \in \mathrm{O}(m) \times \mathrm{GL}(n)$
- method of solution essentially obtains

$$
X=Q \in \mathrm{O}(m), \quad Y=R^{-1} \in \mathrm{GL}(n)
$$

by applying a sequence of tensor transformation rules

- suppose $\operatorname{rank}(A)=n$, with sequence of tensor transformation rules

$$
A \rightarrow Q_{1}^{\top} A \rightarrow Q_{2}^{\top}\left(Q_{1}^{\top} A\right) \rightarrow \cdots \rightarrow Q^{\top} A=\left[\begin{array}{c}
R \\
0
\end{array}\right]
$$

given by Householder QR algorithm, get

$$
A=Q\left[\begin{array}{l}
R \\
0
\end{array}\right]
$$

- practically Voigt's definition: transform problem into form where solution of transformed problem is related to original solution in a definite way

example: full-rank least squares

- minimum value is invariant Cartesian 0-tensor

$$
\begin{aligned}
\min \|A \mathbf{v}-\mathbf{b}\|^{2} & =\min \left\|Q^{\top}(A \mathbf{v}-\mathbf{b})\right\|^{2}=\min \left\|\left[\begin{array}{l}
R \\
0
\end{array}\right] \mathbf{v}-Q^{\top} \mathbf{b}\right\|^{2} \\
& =\min \left\|\left[\begin{array}{l}
R \\
0
\end{array}\right] \mathbf{v}-\left[\begin{array}{l}
\mathbf{c} \\
\mathbf{d}
\end{array}\right]\right\|^{2}=\min \|R \mathbf{v}-\mathbf{c}\|^{2}+\|\mathbf{d}\|^{2}=\|\mathbf{d}\|^{2}
\end{aligned}
$$

where

$$
Q^{\top} \mathbf{b}=\left[\begin{array}{l}
\mathbf{c} \\
\mathbf{d}
\end{array}\right]
$$

- solution of transformed problem $R \mathbf{v}=\mathbf{c}$ equals original solution, and may be obtained through back substitution, i.e., a sequence

$$
\mathbf{c} \rightarrow Y_{1}^{-1} \mathbf{c} \rightarrow Y_{2}^{-1}\left(Y_{1}^{-1} \mathbf{c}\right) \rightarrow \cdots \rightarrow R^{-1} \mathbf{c}=\mathbf{v}
$$

where Y_{i} 's are Gauss transforms

example: Krylov subspaces

- $A \in \mathbb{R}^{n \times n}$ with all eigenvalues distinct and nonzero, arbitrary $\mathbf{b} \in \mathbb{R}^{n}$
- change-of-coordinates matrix K whose columns are

$$
\mathbf{b}, A b, A^{2} \mathbf{b}, \ldots, A^{n-1} \mathbf{b}
$$

is invertible, i.e., $K \in \mathrm{GL}(n)$

- transformation rule gives

$$
A=K\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -c_{0} \\
1 & 0 & \cdots & 0 & -c_{1} \\
0 & 1 & \cdots & 0 & -c_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -c_{n-1}
\end{array}\right] K^{-1}
$$

- seemingly trivial but when combined with other techniques, give powerful iterative methods for linear systems, least squares, eigenvalue problems, or evaluating various matrix functions

example: Krylov subspaces

- why not use more obvious

$$
A=X\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
0 & 0 & \lambda_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{n}
\end{array}\right] X^{-1}
$$

with change-of-coordinates matrix $X \in \mathrm{GL}(n)$ given by eigenvectors?

- much more difficult to compute than K
- one way is in fact to implicitly exploit relation between K and X :

$$
\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
0 & 0 & \lambda_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & \lambda_{1} & \lambda_{1}^{2} & \ldots & \lambda_{1}^{n-1} \\
1 & \lambda_{2} & \lambda_{2}^{2} & \ldots & \lambda_{2}^{n-1} \\
1 & \lambda_{3} & \lambda_{3}^{2} & \cdots & \lambda_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \lambda_{m} & \lambda_{m}^{2} & \cdots & \lambda_{m}^{n-1}
\end{array}\right]\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -c_{0} \\
1 & 0 & \cdots & 0 & -c_{1} \\
0 & 1 & \cdots & 0 & -c_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -c_{n-1}
\end{array}\right]\left[\begin{array}{ccccc}
1 & \lambda_{1} & \lambda_{1}^{2} & \ldots & \lambda_{1}^{n-1} \\
1 & \lambda_{2} & \lambda_{2}^{2} & \ldots & \lambda_{2}^{n-1} \\
1 & \lambda_{3} & \lambda_{3}^{2} & \ldots & \lambda_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \lambda_{m} & \lambda_{m}^{2} & \cdots & \lambda_{m}^{n-1}
\end{array}\right]^{-1}
$$

example: Newton method

- equality-constrained optimization

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{v}) \\
\text { subject to } & A \mathbf{v}=\mathbf{b}
\end{array}
$$

- strongly convex $f \in C^{2}(\Omega)$

$$
\beta I \preceq \nabla^{2} f(\mathbf{v}) \preceq \gamma I
$$

- Newton step $\Delta \mathbf{v} \in \mathbb{R}^{n}$ defined by

$$
\left[\begin{array}{cc}
\nabla^{2} f(\mathbf{v}) & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{v} \\
\Delta \lambda
\end{array}\right]=\left[\begin{array}{c}
-\nabla f(\mathbf{v}) \\
0
\end{array}\right]
$$

- Newton decrement $\lambda(v) \in \mathbb{R}$ defined by

$$
\lambda(\mathbf{v})^{2}:=\nabla f(\mathbf{v})^{\top} \nabla^{2} f(\mathbf{v})^{-1} \nabla f(\mathbf{v})
$$

example: Newton method

- linear change of coordinates $X \mathbf{v}^{\prime}=\mathbf{v}$ with $X \in \mathrm{GL}(n)$
- write $g\left(\mathbf{v}^{\prime}\right)=f(X \mathbf{v})$, then

coordinates	contravariant 1-tensor	\mathbf{v}^{\prime}	$=X^{-1} \mathbf{v}$
gradient	covariant 1-tensor	$\nabla g\left(\mathbf{v}^{\prime}\right)$	$=X^{\top} \nabla f(X \mathbf{v})$
Hessian	covariant 2-tensor	$\nabla^{2} g\left(\mathbf{v}^{\prime}\right)$	$=X^{\top} \nabla^{2} f(X \mathbf{v}) X$
Newton step	contravariant 1-tensor	$\Delta \mathbf{v}^{\prime}$	$=X^{-1} \Delta \mathbf{v}$
Newton iterate	contravariant 1-tensor	\mathbf{v}_{k}^{\prime}	$=X^{-1} \mathbf{v}_{k}$
Newton decrement	invariant 0-tensor	$\lambda\left(\mathbf{v}_{k}^{\prime}\right)$	$=\lambda\left(\mathbf{v}_{k}\right)$

- Newton method is tensorial, steepest descent is not

example: Newton method

- condition number of $X^{\top} \nabla^{2} f(X \mathbf{v}) X$ can be scaled to any desired value in $[1, \infty)$ with appropriate $X \in \mathrm{GL}(n)$
- Newton step independent of the condition number of $\nabla^{2} f(\mathbf{v})$
- manifests as insensitivity to condition number in finite precision
- in practice Newton method gives solutions of high accuracy for $\kappa \approx 10^{10}$ when steepest descent already fails at $\kappa \approx 20$

