
Tensors in Computations I

Lek-Heng Lim

University of Chicago



thanks

• Simons Foundation Award no. 663281 granted to the Institute of

Mathematics of the Polish Academy of Sciences for 2021–2023

• Arieh for the opportunity to write book chapter

▶ L.-H. Lim, “Tensors in computations,” Acta Numer., 30 (2021),

pp. 555–764

• Arieh and Karolina for the opportunity to give this series of lectures

1



introduction



tensors

notion of tensors captures three great ideas:

• equivariance

• multilinearity

• separability

important alike in physics, mathematics, and computations

2



three definitions

• roughly correspond to three common definitions of a tensor

• chronologically

➀ a multi-indexed object that satisfies tensor transformation rules

➁ a multilinear map

➂ an element of a tensor product of vector spaces

• all three definitions remain useful today

• our goals

▶ introduce tensors through the lens of linear algebra
▶ highlight their roles in computations

3



tensors in computations

• decompositional approach to

matrix computations

• interior point methods

• equivariant neural networks

• multidimensional Fourier,

Laplace, Z, cosine transforms

• cryptographic multilinear maps

• tensor product bases, frames,

kernels, multiresolution analyses

• fast integer and fast matrix

multiplication algorithms

• fast multipole method

• separable ODEs, integral

equations, Hamiltonians

• separation of variables in

PDEs, integral, finite

difference equations

• Grover quantum search

• Hartree–Fock approximation

• tensor networks and DMRG

• nonlinear separable convex

optimization

• Smolyak’s quadrature

• and more

4



motivation: equivariance



equivariance

used to esoteric but not anymore

• CIFAR-10 computer vision dataset: best result obtained with

equivariant neural network [Cohen–Welling, 2016]

5



more recently

• CASP14 protein folding competition: winning entry by Google

DeepMind’s AlphaFold 2 uses equivariant neural network [Jumper et

al, 2020]

6



as old as tensors

• Woldemar Voigt, Die fundamentalen physikalischen Eigenschaften

der Krystalle in elementarer Darstellung, Verlag Von Veit, Leipzig,

1898.

• “An abstract entity represented by an array of components that are

functions of coordinates such that, under a transformation of

cooordinates, the new components are related to the transformation

and to the original components in a definite way.”

• highlighted part = equivariance

7



tensors via transformation rules



what is a tensor?

• for every complex question there is an answer that is clear, simple,

and wrong

“a tensor is a multiway array”

• unfortunately also widely believed — simple answer to complex

question has its appeal

• indication that answer cannot be so simple: Einstein’s letter to

Sommerfeld, dated October 29, 1912

▶ J. Earman, C. Glymour, “Lost in tensors: Einstein’s struggles with

covariance principles 1912–1916,” Stud. Hist. Phil. Sci., 9 (1978),

no. 4, pp. 251–278

8



earliest definition

• trickiest among the three definitions

• Voigt’s definition again:

▶ “An abstract entity represented by an array of components that are

functions of coordinates such that, under a transformation of

cooordinates, the new components are related to the transformation

and to the original components in a definite way”

• main issue: defines an entity by giving its change-of-bases formulas

but without specifying the entity itself

• likely reason for notoriety of tensors as a difficult subject to master

9



definition in Dover books c. 1950s

• “a multi-indexed object that satisfies certain transformation rules”
10



fortunately for us

• linear algebra as we know it today was a subject in its infancy when

Einstein was trying to learn tensors

• vector space, linear map, dual space, basis, change-of-basis, matrix,

matrix multiplication, etc, were all obscure notions back then

▶ 1858: 3× 3 matrix product (Cayley)
▶ 1888: vector space and n × n matrix product (Peano)
▶ 1898: tensor (Voigt)

• we enjoy the benefit of a hundred years of pedagogical progress

• next slides: look at tensor transformation rules in light of linear

algebra and numerical linear algebra

11



eigen and singular values

• eigenvalue and vectors: A ∈ Cn×n, Av = λv, for invertible

X ∈ Cn×n,

(XAX−1)Xv = λXv

▶ eigenvalue λ′ = λ, eigenvector v′ = Xv, and A′ = XAX−1

• singular values and vectors: A ∈ Rm×n,{
Av = σu,

ATu = σv

for orthogonal X ∈ Rm×m, Y ∈ Rn×n,{
(XAY T)Y v = σXu,

(XAY T)TXu = σY v

▶ singular value σ′ = σ, left singular vector u′ = Xu, left singular

vector v′ = Y v, and A′ = XAY T

12



matrix product and linear systems

• matrix product: A ∈ Cm×n, B ∈ Cn×p, C ∈ Cm×p, AB = C , for

any invertible X ,Y ,Z ,

(XAY−1)(YBZ−1) = XCZ−1

▶ A′ = XAY−1, B ′ = YBZ−1, C ′ = XCZ−1

• linear system: A ∈ Cm×n, b ∈ Cm, Av = b, for invertible X ,Y ,

(XAY−1)(Y v) = Xb

▶ A′ = XAY−1, b′ = Xb, v′ = Y v

13



ordinary and total least squares

• ordinary least squares: A ∈ Rm×n, b ∈ Rm,

min
v∈Rn

∥Av − b∥2 = min
v∈Rn

∥(XAY−1)Y v − Xb∥2

for orthogonal X ∈ Rm×m and invertible Y ∈ Rn×n

▶ A′ = XAY−1, b′ = Xb, v′ = Y v, minimum value ρ′ = ρ

• total least squares: A ∈ Rm×n and b ∈ Rm, then

min {∥E∥2 + ∥r∥2 : (A+ E )v = b+ r}
= min {∥XEY T∥2 + ∥X r∥2 : (XAY T + XEY T)Y v = Xb+ X r}

for orthogonal X ∈ Rm×m and orthogonal Y ∈ Rn×n

▶ A′ = XAY T, E ′ = XEY T, b′ = Xb, r′ = X r, v′ = Y v

14



rank, norm, determinant, intertia

• rank, norm, determinant: A ∈ Rm×n

rank(XAY−1) = rank(A), det(XAY−1) = det(A), ∥XAY−1∥ = ∥A∥

for X and Y invertible, special linear, or orthogonal, respectively

▶ determinant identically zero whenever m ̸= n
▶ ∥ · ∥ either spectral, nuclear, or Frobenius norm

• positive definiteness: A ∈ Rn×n positive definite iff

XAX T or X−TAX−1

positive definite for any invertible X ∈ Rn×n

15



observation

• almost everything we study in linear algebra and numerical linear

algebra satisfies tensor transformation rules

• different names, same thing:

▶ equivalence of matrices: A′ = XAY−1

▶ similarity of matrices: A′ = XAX−1

▶ congruence of matrices: A′ = XAX T

• almost everything we study in linear algebra and numerical linear

algebra is about 0-, 1-, 2-tensors

16



0-, 1-, 2-tensor transformation rules

contravariant 1-tensor: a′ = X−1a a′ = Xa

covariant 1-tensor: a′ = X Ta a′ = X−Ta

covariant 2-tensor: A′ = X TAX A′ = X−TAX−1

contravariant 2-tensor: A′ = X−1AX−T A′ = XAX T

mixed 2-tensor: A′ = X−1AX A′ = XAX−1

contravariant 2-tensor: A′ = X−1AY−T A′ = XAY T

covariant 2-tensor: A′ = X TAY A′ = X−TAY−1

mixed 2-tensor: A′ = X−1AY A′ = XAY−1

17



simplest case: contravariant 1-tensor

x ′

y ′

z ′

x

y

z

v

• choose x-, y - and z-axes, v gets coordinates a ∈ R3

• change axes to x ′-, y ′- and z ′-axes with X ∈ GL(3)

• nothing physical has changed, v still where it was

• coordinates must change in opposite way a′ = X−1a to compensate

18



triply ambiguous

• transformation rules may mean different things

A′ = XAY−1, A′ = XAY T, A′ = XAX−1, A′ = XAX T

and more

• matrices in transformation rules may have different properties

X ∈ GL(n), SL(n), O(n),

(X ,Y ) ∈ GL(m)× GL(n), SL(m)× SL(n), O(m)× O(n), O(m)× GL(n)

and more

• alternative (but equivalent) forms just as common

A′ = X−1AY , A′ = X−1AY−T, A′ = X−1AX , A′ = X−1AX−T

19



math perspective

• multi-indexed object λ ∈ R, a ∈ Rn, A ∈ Rm×n, etc, represents the

tensor

• transformation rule A′ = XAY−1, A′ = XAY−1, A′ = XAX T, etc,

defines the tensor

• but the tensor has been left unspecified

• easily fixed with modern definitions ➁ and ➂

• need a context in order to use definition ➀

• is A =
[
1 2 3
2 3 4
3 4 5

]
a tensor?

• it is a tensor if we are interested in, say, its eigenvalues and

eigenvectors, in which case A transforms as a mixed 2-tensor

20



physics perspective

• remember definition ➀ came from physics — they don’t ask

▶ what is a tensor?

but

▶ is stress a tensor?
▶ is deformation a tensor?
▶ is electromagnetic field strength a tensor?

• unspecified quantity is placeholder for physical quantity like stress,

deformation, etc

• it is a tensor if the multi-indexed object satisfies transformation rules

under change-of-coordinates, i.e., definition ➀

• makes perfect sense in a physics context

• is A =
[
1 2 3
2 3 4
3 4 5

]
a tensor?

• it is a tensor if it represents, say, stress, in which case A transforms

as a contravariant 2-tensor

21



higher order



multilinear matrix multiplication

• A ∈ Rn1×···×nd

• X ∈ Rm1×n1 ,Y ∈ Rm2×n2 , . . . ,Z ∈ Rmd×nd

• define

(X ,Y , . . . ,Z ) · A = B

where B ∈ Rm1×···×md given by

bi1···id =
n1∑

j1=1

n2∑
j2=1

· · ·
nd∑

jd=1

xi1j1yi2j2 · · · zid jd aj1···jd

• d = 1: reduces to Xa = b for a ∈ Rn, b ∈ Rm

• d = 2: reduces to

(X ,Y ) · A = XAY T

22



higher-order transformation rules 1

• X1 ∈ GL(n1),X2 ∈ GL(n2), . . . ,Xd ∈ GL(nd)

• covariant d-tensor transformation rule:

A′ = (X T

1 ,X
T

2 , . . . ,X
T

d ) · A

• contravariant d-tensor transformation rule:

A′ = (X−1
1 ,X−1

2 , . . . ,X−1
d ) · A

• mixed d-tensor transformation rule:

A′ = (X−1
1 , . . . ,X−1

p ,X T

p+1, . . . ,X
T

d ) · A

• contravariant order p, covariant order d − p, or type (p, d − p)

23



higher-order transformation rules 2

• when n1 = n2 = · · · = nd = n, X ∈ GL(n)

• covariant d-tensor transformation rule:

A′ = (X T,X T, . . . ,X T) · A

• contravariant d-tensor transformation rule:

A′ = (X−1,X−1, . . . ,X−1) · A

• mixed d-tensor transformation rule:

A′ = (X−1, . . . ,X−1,X T, . . . ,X T) · A

• getting ahead of ourselves, with definition ➁, difference is between

multilinear

f : V1 × · · · × Vd → R and f : V× · · · × V → R

24



change-of-cooordinates matrices

• X1, . . . ,Xd or X may belong to:

GL(n) = {X ∈ Rn×n : det(X ) ̸= 0}
SL(n) = {X ∈ Rn×n : det(X ) = 1}
O(n) = {X ∈ Rn×n : X TX = I},

SO(n) = {X ∈ Rn×n : X TX = I , det(X ) = 1}
U(n) = {X ∈ Cn×n : X ∗X = I}

SU(n) = {X ∈ Cn×n : X ∗X = I , det(X ) = 1}
O(p, q) = {X ∈ Rn×n : X TIp,qX = Ip,q}

SO(p, q) = {X ∈ Rn×n : X TIp,qX = Ip,q, det(X ) = 1}
Sp(2n,R) = {X ∈ R2n×2n : X TJX = J}

Sp(2n) = {X ∈ C2n×2n : X TJX = J, X ∗X = I}

• I := In is n× n identity, Ip,q :=
[
Ip 0
0 −Iq

]
∈ Rn×n, J :=

[
0 I
I 0

]
∈ R2n×2n

25



change-of-cooordinates matrices

• again getting ahead of ourselves with definitions ➁ or ➂,

▶ if vector spaces involve have no extra structure, then GL(n)
▶ if inner product spaces, then O(n)
▶ if equipped with yet other structures, then whatever group that

preserves those structures

• e.g., R4 equipped with Euclidean inner product:

⟨x, y⟩ = x0y0 + x1y1 + x2y2 + x3y3

want X ∈ O(4) or SO(4)

• e.g., R4 equipped with Lorentzian scalar product,

⟨x, y⟩ = x0y0 − x1y1 − x2y2 − x3y3,

want X ∈ O(1, 3) or SO(1, 3)

• called Cartesian tensors or Lorentzian tensors respectively

26



transformation rule is key



why important (in machine learning)

• tensor transformation rules in modern parlance: equivariance

• we mentioned earlier equivariant neural networks

27



why important (in physics)

• special relativity is essentially the observation that the laws of

physics are invariant under Lorentz transformations in O(1, 3)

[Einstein, 1920]

• transformation rules under O(1, 3)-analogue of Givens rotations:
cosh θ − sinh θ 0 0

− sinh θ cosh θ 0 0

0 0 1 0

0 0 0 1

 ,


cosh θ 0 − sinh θ 0

0 1 0 0

− sinh θ 0 cosh θ 0

0 0 0 1

 ,


cosh θ 0 0 − sinh θ

0 1 0 0

0 0 1 0

− sinh θ 0 0 cosh θ


enough to derive most standard results of special relativity

• “Geometric Principle: The laws of physics must all be expressible as

geometric (coordinate independent and reference frame independent)

relationships between geometric objects (scalars, vectors, tensors,

. . . ) that represent physical entitities.” [Thorne, 1973]

28



why important (in mathematics)

• deriving higher-order tensorial analogues not a matter of just adding

more indices to

n∑
j=1

aijxj = bi ,
n∑

j=1

aijxj = λxi ,
∑
σ∈Sn

sgn(σ)
n∏

i=1

aiσ(i)

• need to satisfy tensor transformation rules

• e.g., A ∈ R2×2×2 has hyperdeterminant

det(A) = a2000a
2
111 + a2001a

2
110 + a2010a

2
101 + a2011a

2
100

− 2(a000a001a110a111 + a000a010a101a111 + a000a011a100a111

+ a001a010a101a110 + a001a011a110a100 + a010a011a101a100)

+ 4(a000a011a101a110 + a001a010a100a111),

• preserved by transformation A′ = (X ,Y ,Z ) · A for X ,Y ,Z ∈ SL(2)

• just as determinant preserved by A′ = XAY T for X ,Y ∈ SL(n)

29



tensor multiplication?

• Hadamard product:[
a11 a12
a21 a22

]
◦

[
b11 b12
b21 b22

]
=

[
a11b11 a12b12
a21b21 a22b22

]

• seems a lot more obvious than standard matrix product[
a11 a12
a21 a22

][
b11 b12
b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]

• matrix product satisfies transformation rule for mixed 2-tensors

(XAY−1)(YBZ−1) = X (AB)Z−1, i.e., defined on tensors

• Hadamard product undefined on tensors — depends on coordinates

• product on Rm×n×p or Rn×n×n that satisfies 3-tensor transformation

rules does not exist

30



identity tensor?

• identity matrix I ∈ R3×3

I =
3∑

i=1

ei ⊗ ei =

[
1 0 0

0 1 0

0 0 1

]
∈ R3×3

with e1, e2, e3 ∈ R3 standard basis vectors

• (Q,Q) · I = QIQT = I for Q ∈ O(3), unique up to scalar multiples

• I is a Cartesian 2-tensor

• analogue in R3×3×3 is not

A =
3∑

i=1

ei ⊗ ei ⊗ ei ∈ R3×3×3

because (Q,Q,Q) · A ̸= A

31



identity tensor?

• analogue is

J =
3∑

i=1

3∑
j=1

3∑
k=1

εijkei ⊗ ej ⊗ ek ∈ R3×3×3

where εijk is the Levi-Civita symbol

εijk =


+1 if (i , j , k) = (1, 2, 3), (2, 3, 1), (3, 1, 2),

−1 if (i , j , k) = (1, 3, 2), (2, 1, 3), (3, 2, 1),

0 if i = j , j = k , k = i

• (Q,Q,Q) · J = J for Q ∈ O(3), unique up to scalar multiples

• J is a Cartesian 3-tensor

32



why important (in computations)

two simple properties:

• group: change-of-coordinates matrices may be multiplied/inverted:

▶ if X ,Y orthogonal or invertible, so is XY
▶ if X orthogonal or invertible, so is X−1

• group action: transformation rules may be composed:

▶ if a′ = X−Ta and a′′ = Y−Ta′, then a′′ = (YX )−Ta
▶ if A′ = XAX−1 and A′′ = YA′Y−1, then A′′ = (YX )A(YX )−1

plus one more fact about the change-of-coordinate matrices (next slides)

33



why important (in computations)

• recall Givens rotation, Householder reflector, Gauss transform:

G =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · − sin θ · · · 0
...

...
. . .

...
...

0 · · · sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


∈ SO(n),

H = I − 2vvT

vTv
∈ O(n), M = I − veT

i ∈ GL(n)

• a′ = Ga rotation of a in (i , j)-plane by an angle θ

• a′ = Ha reflection of a in the hyperplane with normal v/∥v∥
• for judiciously chosen v, a′ = Ma ∈ span{ei+1, . . . , en}, i.e., has
(i + 1)th through nth coordinates zero

34



why important (in computations)

• facts about change-of-coordinate matrices in transformation rules

▶ any X ∈ SO(n) is a product of Givens rotations
▶ any X ∈ O(n) is a product of Householder reflectors
▶ any X ∈ GL(n) is a product of elementary matrices
▶ any unit lower triangular X ∈ GL(n) is a product of Gauss transforms

• in group theoretic lingo:

▶ Givens roations generate SO(n)
▶ Householder reflectors generate O(n)
▶ elementary matrices generate GL(n)
▶ Gauss transforms generate lower unitriangular subgroup of GL(n)

35



why important (in computations)

• algorithms in numerical linear algebra implicitly based on these:

▶ apply a sequence of tensor transformation rules

A → X1A → X2(X1A) → · · · → B

A → X−T
1 A → X−T

2 (X−T
1 A) → · · · → B

A → X1AX
T
1 → X2(X1AX

T
1 )X

T
2 → · · · → B

A → X1AX
−1
1 → X2(X1AX

−1
1 )X−1

2 → · · · → B

A → X1AY
−1
1 → X2(X1AY

−1
1 )Y−1

2 → · · · → B

▶ required X obtained as either XmXm−1 . . .X1 or its limit as m → ∞

• caveat: in numerical linear algebra, we tend to view these

transformation rules as giving matrix decompositions

36



examples



example: full-rank least squares

• tensor transformation rules for ordinary least squares: mixed 2-tensor

A′ = XAY−1 with change-of-coordinates (X ,Y ) ∈ O(m)× GL(n)

• method of solution essentially obtains

X = Q ∈ O(m), Y = R−1 ∈ GL(n)

by applying a sequence of tensor transformation rules

• suppose rank(A) = n, with sequence of tensor transformation rules

A → QT

1A → QT

2(Q
T

1A) → · · · → QTA =

[
R

0

]
given by Householder QR algorithm, get

A = Q

[
R

0

]
• practically Voigt’s definition: transform problem into form where

solution of transformed problem is related to original solution in a

definite way
37



example: full-rank least squares

• minimum value is invariant Cartesian 0-tensor

min ∥Av − b∥2 = min ∥QT(Av − b)∥2 = min

∥∥∥∥∥
[
R

0

]
v − QTb

∥∥∥∥∥
2

= min

∥∥∥∥∥
[
R

0

]
v −

[
c

d

]∥∥∥∥∥
2

= min ∥Rv − c∥2 + ∥d∥2 = ∥d∥2

where

QTb =

[
c

d

]
• solution of transformed problem Rv = c equals original solution, and

may be obtained through back substitution, i.e., a sequence

c → Y−1
1 c → Y−1

2 (Y−1
1 c) → · · · → R−1c = v

where Yi ’s are Gauss transforms

38



example: Krylov subspaces

• A ∈ Rn×n with all eigenvalues distinct and nonzero, arbitrary b ∈ Rn

• change-of-coordinates matrix K whose columns are

b,Ab,A2b, . . . ,An−1b

is invertible, i.e., K ∈ GL(n)

• transformation rule gives

A = K


0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1

K−1

• seemingly trivial but when combined with other techniques, give

powerful iterative methods for linear systems, least squares,

eigenvalue problems, or evaluating various matrix functions

39



example: Krylov subspaces

• why not use more obvious

A = X


λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn

X−1

with change-of-coordinates matrix X ∈ GL(n) given by eigenvectors?

• much more difficult to compute than K

• one way is in fact to implicitly exploit relation between K and X :


λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn

 =


1 λ1 λ2

1 . . . λn−1
1

1 λ2 λ2
2 . . . λn−1

2

1 λ3 λ2
3 . . . λn−1

3
...

...
...

. . .
...

1 λm λ2
m . . . λn−1

m




0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1




1 λ1 λ2

1 . . . λn−1
1

1 λ2 λ2
2 . . . λn−1

2

1 λ3 λ2
3 . . . λn−1

3
...

...
...

. . .
...

1 λm λ2
m . . . λn−1

m



−1

40



example: Newton method

• equality-constrained optimization

minimize f (v)

subject to Av = b

• strongly convex f ∈ C 2(Ω)

βI ⪯ ∇2f (v) ⪯ γI

• Newton step ∆v ∈ Rn defined by[
∇2f (v) AT

A 0

][
∆v

∆λ

]
=

[
−∇f (v)

0

]

• Newton decrement λ(v) ∈ R defined by

λ(v)2 := ∇f (v)T∇2f (v)−1∇f (v)

41



example: Newton method

• linear change of coordinates Xv′ = v with X ∈ GL(n)

• write g(v′) = f (Xv), then

coordinates contravariant 1-tensor v′ = X−1v

gradient covariant 1-tensor ∇g(v′) = X T∇f (Xv)

Hessian covariant 2-tensor ∇2g(v′) = X T∇2f (Xv)X

Newton step contravariant 1-tensor ∆v′ = X−1∆v

Newton iterate contravariant 1-tensor v′k = X−1vk

Newton decrement invariant 0-tensor λ(v′k) = λ(vk)

• Newton method is tensorial, steepest descent is not

42



example: Newton method

• condition number of X T∇2f (Xv)X can be scaled to any desired

value in [1,∞) with appropriate X ∈ GL(n)

• Newton step independent of the condition number of ∇2f (v)

• manifests as insensitivity to condition number in finite precision

• in practice Newton method gives solutions of high accuracy for

κ ≈ 1010 when steepest descent already fails at κ ≈ 20

43


	introduction
	motivation: equivariance
	tensors via transformation rules
	higher order
	transformation rule is key
	examples

