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introduction



tensors

notion of tensors captures three great ideas:

e equivariance
e multilinearity

e separability

important alike in physics, mathematics, and computations



three definitions

roughly correspond to three common definitions of a tensor

chronologically
@ a multi-indexed object that satisfies tensor transformation rules

@ a multilinear map

® an element of a tensor product of vector spaces

all three definitions remain useful today

e our goals

P introduce tensors through the lens of linear algebra
» highlight their roles in computations



decompositional approach to
matrix computations

interior point methods
equivariant neural networks

multidimensional Fourier,
Laplace, Z, cosine transforms

cryptographic multilinear maps

tensor product bases, frames,
kernels, multiresolution analyses

fast integer and fast matrix
multiplication algorithms

fast multipole method

tensors in computations

separable ODEs, integral
equations, Hamiltonians

separation of variables in
PDEs, integral, finite
difference equations

Grover quantum search
Hartree—Fock approximation
tensor networks and DMRG
nonlinear separable convex
optimization

Smolyak's quadrature

and more



motivation: equivariance



equivariance

used to esoteric but not anymore

e CIFAR-10 computer vision dataset: best result obtained with
equivariant neural network [Cohen—Welling, 2016]
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more recently

e CASP14 protein folding competition: winning entry by Google

DeepMind's uses [Jumper et
al, 2020]




as old as tensors

e Woldemar Voigt, Die fundamentalen physikalischen Eigenschaften
der Krystalle in elementarer Darstellung, Verlag Von Veit, Leipzig,

1898.

e "“An abstract entity represented by an array of components that are
functions of coordinates such that, under a transformation of
cooordinates, the new components are related to the transformation

and to the original components in a definite way."”

e highlighted part = equivariance



tensors via transformation rules



what is a tensor?

e for every complex question there is an answer that is clear, simple,
and wrong

“a tensor is a multiway array”
e unfortunately also widely believed — simple answer to complex
question has its appeal

e indication that answer cannot be so simple: Einstein's letter to
Sommerfeld, dated October 29, 1912

» J. Earman, C. Glymour, “Lost in tensors: Einstein's struggles with
covariance principles 1912-1916," Stud. Hist. Phil. Sci., 9 (1978),
no. 4, pp. 251-278



earliest definition

trickiest among the three definitions

Voigt's definition again:
> “An abstract entity represented by an array of components that are
functions of coordinates such that, under a transformation of
cooordinates, the new components are related to the transformation
and to the original components in a definite way”

e main issue: defines an entity by giving its change-of-bases formulas
but without specifying the entity itself

likely reason for notoriety of tensors as a difficult subject to master



definition in Dover books c. 1950s
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e “a multi-indexed object that satisfies certain transformation rules”
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fortunately for us

e linear algebra as we know it today was a subject in its infancy when
Einstein was trying to learn tensors

e vector space, linear map, dual space, basis, change-of-basis, matrix,
matrix multiplication, etc, were all obscure notions back then

> 1858: 3 x 3 matrix product (Cayley)
» 1888: vector space and n x n matrix product (Peano)
> 1898: tensor (Voigt)

e we enjoy the benefit of a hundred years of pedagogical progress

e next slides: look at tensor transformation rules in light of linear
algebra and numerical linear algebra
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eigen and singular values

e eigenvalue and vectors: A € C"™", Av = \v, for invertible
X c Cnxn,
(XAX HXv = AXv

> cigenvalue A’ = ), eigenvector v/ = Xv, and A’ = XAX ™!
e singular values and vectors: A € R™*",

{ Av = ou,
A'u=ov
for orthogonal X € R™*™ Y ¢ R"™",
{ (XAYT)Yv = o Xu,
(XAY") ' Xu=0cYv
» singular value ¢’ = o, left singular vector u’ = Xu, left singular
vector vV = Yv, and A’ = XAY"
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matrix product and linear systems

e matrix product: Ac C™*" B e C"™P, C e C"™P AB = C, for
any invertible X, Y, Z,

(XAY)(YBZz7') = xcz!

> A =XAY !, B'=YBzZ7! C' =XCz!
e linear system: A€ C™*" b e C™, Av = b, for invertible X, Y,

(XAY 1)(Yv) = Xb

> A =XAY ! b = Xb, v = Yv
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ordinary and total least squares

e ordinary least squares: A € R™*" b e R™,
min ||Av — b||> = min ||(XAY 1) Yv — Xb|?
vER? vER?

for orthogonal X € R™*™ and invertible Y € R"*"
> A= XAY ! b = Xb, v/ = Yv, minimum value p' = p
e total least squares: A € R™*" and b € R™, then

min {||E||> + |Ir||> : (A+ E)v=b +r}
= min {||XEYT||2 + || Xr||? : (XAYT + XEY")Yv = Xb + Xr}

for orthogonal X € R™*™ and orthogonal Y € R"*"
> A =XAYT, E' = XEY",b' = Xb, ¥ = Xr, v = Yv
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rank, norm, determinant, intertia

e rank, norm, determinant: A ¢ R™*"
rank(XAY 1) = rank(A), det(XAY ') =det(A), [XAY || = |A]

for X and Y invertible, special linear, or orthogonal, respectively

» determinant identically zero whenever m # n
» || - || either spectral, nuclear, or Frobenius norm

e positive definiteness: A € R"*" positive definite iff
XAXT or X TAX!

positive definite for any invertible X € R"*"
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observation

e almost everything we study in linear algebra and numerical linear
algebra satisfies tensor transformation rules
e different names, same thing:
» equivalence of matrices: A’ = XAY ™1
» similarity of matrices: A’ = XAX ™!
» congruence of matrices: A = XAX"
e almost everything we study in linear algebra and numerical linear
algebra is about 0-, 1-, 2-tensors

16



0-, 1-, 2-tensor transformation rules

contravariant 1-tensor:

covariant 1-tensor:

covariant 2-tensor:

contravariant 2-tensor:

mixed 2-tensor:

contravariant 2-tensor:

covariant 2-tensor:

mixed 2-tensor:

a’=X'a
a’=X"a

A = XTAX

A =XTAXT
A = XTAX
A =XTTAY T
A = XTAY

A = X"1AY

a’ = Xa
a’=X""a

A = XTAX !
A = XAXT

A = XAX!
A = XAY"

A =XTAy !
A = XAy !
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simplest case: contravariant 1-tensor

Z/

X/

X

e choose x-, y- and z-axes, v gets coordinates a € R3
e change axes to x'-, y’- and z’-axes with X € GL(3)
e nothing physical has changed, v still where it was
e coordinates must change in opposite way a’ = X ~'a to compensate
18



triply ambiguous

e transformation rules may mean different things
A = XAY L, A = XAY", A =XAX"l, A = XAXT

and more

e matrices in transformation rules may have different properties

X € GL(n), SL(n), O(n),
(X,Y) € GL(m) x GL(n), SL(m) x SL(n), O(m) x O(n), O(m) x GL(n)

and more

e alternative (but equivalent) forms just as common

A =XTTAY, A =XTTAY T, A =XT1AX, A =XT1AXT
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math perspective

e multi-indexed object A € R, a € R", A € R™*" etc, represents the
tensor

e transformation rule A’ = XAY 1, A = XAY 1, A’ = XAXT, etc,
defines the tensor

e but the tensor has been left unspecified
e casily fixed with modern definitions @ and ®
e need a context in order to use definition @
. 123
o is A= [2 3 4} a tensor?
345
e it is a tensor if we are interested in, say, its eigenvalues and
eigenvectors, in which case A transforms as a mixed 2-tensor
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physics perspective

e remember definition @ came from physics — they don’t ask
» what is a tensor?
but

P is stress a tensor?
» is deformation a tensor?
P is electromagnetic field strength a tensor?

e unspecified quantity is placeholder for physical quantity like stress,
deformation, etc

e it is a tensor if the multi-indexed object satisfies transformation rules
under change-of-coordinates, i.e., definition @

e makes perfect sense in a physics context
. 123
o is A= [2 3 4} a tensor?
3145
e it is a tensor if it represents, say, stress, in which case A transforms

as a contravariant 2-tensor
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higher order




multilinear matrix multiplication

o Ac RMXXxng
o X e RMXm Y ¢ RmXm 7 c RMaXna

define

(X,Y,...,2)-A=B
where B € R™M**md gijven by

n.

biy.. g E E E Xivj Yiojp = Zigjg s+

=1 =1 Ja=1

e d =1: reducesto Xa=b foracR", beR™

e d = 2: reduces to
(X,Y)-A=XAY"
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higher-order transformation rules 1

o Xy € GL(n1), X2 € GL(mp), ..., X4 € GL(ng)

e covariant d-tensor transformation rule:
A= (X[, X3,...,X3)- A

e contravariant d-tensor transformation rule:

e mixed d-tensor transformation rule:
/ —1 -1
A = (X] ,...,XP , ;+1,...7XJ)~A

e contravariant order p, covariant order d — p, or type (p,d — p)
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higher-order transformation rules 2

e whenny=n=---=nyg=n, X € GL(n)

e covariant d-tensor transformation rule:
A =(X",XT,....X")- A
e contravariant d-tensor transformation rule:
A =(XLX1 . X)) A
e mixed d-tensor transformation rule:
A= (X1 X LXT, L XT)-A

e getting ahead of ourselves, with definition @, difference is between
multilinear

f:Vix---xVg—R and f:Vx---xV—->R
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change-of-cooordinates matrices

e Xi,...,Xq or X may belong to:

GL(n) = {X € R™" : det(X) # 0}
SL(n) = {X € R™" : det(X) = 1}
O(n) = {X e R™": XX = [},
SO(n) = {X € R™": X" X = I, det(X) = 1}
U(n) = {X e C™": X*X = [}
SU(n) ={X eC™": X*X =1, det(X) =1}
O(p,q) = {X ER™": XTI, o X = Ip 4}
SO(p,q) = {X € R™": XTI, o X = I, 4, det(X) = 1}
Sp(2n,R) = {X € R?™2" . X" JX = J}
Sp(2n) = {X € C*™2" . XTJX = J, X*X =1}

e | :=1l,is nx nidentity, I, , = [IO -, } e R™n, J = [9]] e R2x2n
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change-of-cooordinates matrices

e again getting ahead of ourselves with definitions @ or ®,

> if vector spaces involve have no extra structure, then GL(n)

» if inner product spaces, then O(n)

» if equipped with yet other structures, then whatever group that
preserves those structures

e e.g., R* equipped with Euclidean inner product:

(x,¥) = x0y0 + x1y1 + X2y2 + X33
want X € O(4) or SO(4)
e e.g., R* equipped with Lorentzian scalar product,
(X, ¥) = xo¥0 — x1y1 — Xoy2 — X3y3,

want X € O(1,3) or SO(1,3)

e called Cartesian tensors or Lorentzian tensors respectively
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transformation rule is key




why important (in machine learning)

e tensor transformation rules in modern parlance: equivariance

e we mentioned earlier equivariant neural networks
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why important (in physics)

e special relativity is essentially the observation that the laws of
physics are invariant under Lorentz transformations in O(1, 3)
[Einstein, 1920]

e transformation rules under O(1, 3)-analogue of Givens rotations:

coshf —sinhf® 0 0 cosh® 0 —sinhf 0 coshf 0 0 —sinh@
—sinhd coshd 0 0 0 1 0 0 0 10 0

0 0 10 —sinh@ 0 coshd 0]’ 0 01 0

0 0 0 1 0 0 0 1 —sinhd 0 0 coshé

enough to derive most standard results of special relativity

e “Geometric Principle: The laws of physics must all be expressible as
geometric (coordinate independent and reference frame independent)
relationships between geometric objects (scalars, vectors, tensors,
...) that represent physical entitities.” [Thorne, 1973]
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why important (in mat

e deriving higher-order tensorial analogues not a matter of just adding
more indices to

n n n
E 25 — [y, E ajixj = AXj, E sgn(o) H 3ic (i)
j=1 j=1 ceS, i=1

e need to satisfy tensor transformation rules

o eg., Ac R?%2X2 has hyperdeterminant

det(A) = a500ai11 + 3013310 + 103301 + 0113500
- 2(5700030015'11057111 + 200020104101 2111 + 30004011 21002111
+ a001201081012110 + 2001301131108100 + 3010301131013100)
+ 4(3000301131013110 + 3001801031003111),

e preserved by transformation A’ = (X, Y, Z) - Afor X,Y,Z € SL(2)
e just as determinant preserved by A’ = XAYT for X, Y € SL(n)
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tensor multiplication?

e Hadamard product:

|

ail
ari

aiz
()
an

seems a lot more obvious

|

a1
az

a2
a

I

by b

b1 b2 _ aybir  anbin
_b21 b a2 b1 axnbo

than standard matrix product

by b22_

_ |aubu +awba aubiz + a12b2
ao1bir + axby1  axibiz + axnbx

matrix product satisfies transformation rule for mixed 2-tensors
(XAY 1) (YBZ71) = X(AB)Z™1, i.e., defined on tensors

Hadamard product undefined on tensors — depends on coordinates

product on R™*"XP or R"*"*" that satisfies 3-tensor transformation

rules does not exist
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identity tensor?

e identity matrix / € R3*3

3
/ZZE,’@Q‘Z [
i=1

o O =
o = O
= O O

with eq, es, e3 € R3 standard basis vectors
e (Q,Q) 1=QIQ" =1 for Q@ € O(3), unique up to scalar multiples
e [ is a Cartesian 2-tensor

e analogue in R3*3%3 js not

3
AZZG,‘@E,’@G,’ e R3%3x3
i=1

because (Q, Q,Q)-A# A
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identity tensor?

e analogue is

3

3
J= ZZZEUke;(@ej@ek c R3x3%3

i=1 j=1 k=1
where ¢ is the Levi-Civita symbol
+1 if (i,4,k)=(1,2,3),(2,3,1),(3,1,2),

€ijk = =l If (i7j7 k) - (17372)7(2a 173)7(3a27 1)7
0 ifi=j,j=kk=i

e (Q,Q,Q) J=Jfor Q € O(3), unique up to scalar multiples

e J is a Cartesian 3-tensor
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why important (in computations)

two simple properties:

e group: change-of-coordinates matrices may be multiplied /inverted:
» if X, Y orthogonal or invertible, so is XY
» if X orthogonal or invertible, so is X !
e group action: transformation rules may be composed:
» ifa’=X Taand a” = Y 'a’, thena” = (YX) "a
> if A = XAX ' and A" = YA'Y™! then A” = (YX)A(YX)™!

plus one more fact about the change-of-coordinate matrices (next slides)
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why important (in computations)

e recall Givens rotation, Householder reflector, Gauss transform:

... 0 0 ... 0]
0 --- cosf --- —sinf --- 0
G=|: S : -| €50(n),
0 --- sinf - cos@ --- 0
0 - 0 0 soo ]
2wy’

H=1-

v < O(n), M =1 —ve] € GL(n)

e a’ = Ga rotation of a in (/,j)-plane by an angle ¢
e a’ = Ha reflection of a in the hyperplane with normal v/||v||
e for judiciously chosen v, @’ = Ma € span{e;;1,...,e,}, i.e., has

(7 + 1)th through nth coordinates zero
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why important (in computations)

e facts about change-of-coordinate matrices in transformation rules

» any X € SO(n) is a product of Givens rotations

» any X € O(n) is a product of Householder reflectors

» any X € GL(n) is a product of elementary matrices

» any unit lower triangular X € GL(n) is a product of Gauss transforms
e in group theoretic lingo:

» Givens roations generate SO(n)

» Householder reflectors generate O(n)

> elementary matrices generate GL(n)
> Gauss transforms generate lower unitriangular subgroup of GL(n)
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why important (in computations)

e algorithms in numerical linear algebra implicitly based on these:

» apply a sequence of tensor transformation rules

A= XiA = Xo(XA) —» - = B
A=XTA= X, "(X;TA)— - = B

A= XiAX{ = X (XAX))XS — -+ = B
A= XAXT = X (XAXT D)X == B
A= XAY 5 X (XAY )Y, P - = B

» required X obtained as either X, Xim—1... X1 or its limit as m — oo

e caveat: in numerical linear algebra, we tend to view these
transformation rules as giving matrix decompositions
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examples




example: full-rank least squares

e tensor transformation rules for ordinary least squares: mixed 2-tensor
A" = XAY ! with change-of-coordinates (X, Y) € O(m) x GL(n)
e method of solution essentially obtains

X =Q € 0(m), Y =R € GL(n)

by applying a sequence of tensor transformation rules
e suppose rank(A) = n, with sequence of tensor transformation rules

R

A= QA= Q(QIA) —» - > QTA= 0

given by Householder QR algorithm, get
R

A =
o5

e practically Voigt's definition: transform problem into form where

solution of transformed problem is related to original solution in a

definite way
37



example: full-rank least squares

e minimum value is invariant Cartesian O-tensor

2
min ||Av — b||? = min || Q"(Av — b)||?> = min [g’ v— Qb
2
— min [’; v H = min |Rv — c|? + ||d||? = [|d]||?
where -~
C
ow- g

e solution of transformed problem Rv = c equals original solution, and
may be obtained through back substitution, i.e., a sequence

c—Yile= Y, (Y )= - = Rle=v

where Y;'s are Gauss transforms
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example: Krylov subspaces

e A c R"™" with all eigenvalues distinct and nonzero, arbitrary b € R”

e change-of-coordinates matrix K whose columns are
b, Ab,A%b,...,A" ‘b

is invertible, i.e., K € GL(n)

e transformation rule gives

00 -+ 0 —o

1 0 0 —C
A=K |0 1 0 —-o | k!

o0 --- 1 —Cnp—1

e seemingly trivial but when combined with other techniques, give
powerful iterative methods for linear systems, least squares,
eigenvalue problems, or evaluating various matrix functions
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example: Krylov subspaces

e why not use more obvious

A 0 0 .- 0
0 X 0 - 0
A—x|0 0 X - 0] x1
0 0 0 -+ A

with change-of-coordinates matrix X € GL(n) given by eigenvectors?
e much more difficult to compute than K

e one way is in fact to implicitly exploit relation between K and X:

M 0 0 0 1T M0 A o Moo - 00— ]t oA A} AT
0 X 0 -+ 0 1 X A .. A1 0 —a PYED VIR Vi
0 0 A 0 =11 X A ... Mol 0 - PYREDY D W
0 0 0 - A, 1 Am A2 ... A |0 0 1 —coa |1 Am X2, ..o AT
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example: Newton method

e equality-constrained optimization

minimize  f(v)
subjectto Av=b

e strongly convex f € C?(Q)
Bl < V2f(v) < vl
e Newton step Av € R" defined by

V2f(v) AT
A 0

Av
AN

—Vif(v)
0

o Newton decrement A(v) € R defined by
AMNv)? := VF(v)"V2f(v) 1V F(v)
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example: Newton method

e linear change of coordinates Xv' = v with X € GL(n)

o write g(v') = f(Xv), then

coordinates contravariant 1-tensor vV =Xy
gradient covariant 1-tensor Vg(v') = XTVf(Xv)
Hessian covariant 2-tensor Vig(v') = XTV2f(Xv)X
Newton step contravariant 1-tensor AV = X tAv
Newton iterate contravariant 1-tensor vl = X"ty
Newton decrement invariant O-tensor A(Vy) = A(vk)

e Newton method is tensorial, steepest descent is not
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example: Newton method

e condition number of XTV2f(Xv)X can be scaled to any desired
value in [1, 00) with appropriate X € GL(n)

e Newton step independent of the condition number of V2f(v)
e manifests as insensitivity to condition number in finite precision

e in practice Newton method gives solutions of high accuracy for
k =2 1019 when steepest descent already fails at x ~ 20
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