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Abstract. We show that modeling a Grassmannian as symmetric orthogonal matrices Gr(k,Rn) ∼=
{Q ∈ Rn×n : QTQ = I, QT = Q, tr(Q) = 2k − n} yields exceedingly simple matrix formulas for
various curvatures and curvature-related quantities, both intrinsic and extrinsic. These include
Riemann, Ricci, Jacobi, sectional, scalar, mean, principal, and Gaussian curvatures; Schouten,
Weyl, Cotton, Bach, Plebański, cocurvature, nonmetricity, and torsion tensors; first, second, and
third fundamental forms; Gauss and Weingarten maps; and upper and lower delta invariants. We
will derive explicit, simple expressions for the aforementioned quantities in terms of standard matrix
operations that are stably computable with numerical linear algebra. Many of these aforementioned
quantities have never before been presented for the Grassmannian.

1. Introduction

While pure mathematicians typically abhor picking coordinates for manifolds, this is all but
inevitable in applied mathematics. A good choice of extrinsic coordinates facilitates computations
for the applied mathematician and, as we will see in this article, provides transparent, easy-to-
calculate expressions that are useful even for investigations in pure mathematics.

For the Grassmannian of k-planes in Rn, we showed in [27] that points on the manifold may be
represented by matrices Q ∈ Rn×n that are (i) symmetric QT = Q, (ii) orthogonal QTQ = I, (iii)
involutive Q2 = I. Clearly any two of these conditions imply the third and thus

(1) Gr(k,Rn) ∼= {Q ∈ Sn : Q2 = I, tr(Q) = 2k − n} =: Gr(k, n)

where Sn denotes the Euclidean space of n × n symmetric matrices. Our motivation in [27] was
largely computational — such a coordinate representation of points in Gr(k,Rn) by orthogonal
matrices gives immeasurably stabler numerical algorithms compared to other models of the Grass-
mannian as projection matrices or equivalence classes of matrices.

The goal of this article is to show that, even for calculations by hand, the involution model (1)
provides a significant advantage over, say, expressions in [43], which are supposedly simple and
already given in terms of linear algebra. Henceforth we define Gr(k, n) to be the set of matrices
on the right of (1) to distinguish it from Gr(k,Rn), the Grassmannian as an abstract manifold. In
our earlier work [27], we derived expressions for basic quantities related to optimization: tangent
vector, normal vector, metric, exponential map, geodesic, parallel transport, gradient, Hessian,
etc, and showed that they all have simple, easily computable expressions in the involution model.
Here we will do the same for various types of curvatures, some of which are notoriously difficult
to calculate, but it is nevertheless rewarding as curvatures are likely the most important geometric
objects of a Riemannian manifold. One might even argue that Riemannian geometry was created
to provide a rigorous platform for studying curvatures.

A secondary goal is to illustrate the ease of using the involution model (1). We believe that
many of the expressions derived in this article would be more difficult, some nearing impossible, to
derive in other common models of the Grassmannian — as submanifolds of projective spaces, as
various homogeneous spaces, or as a manifold of orthogonal projectors, all discussed in Section 7.
Moreover, the expressions that we obtained are also more user-friendly, as we will elaborate below
after presenting them in Table 1.
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Table 1. The point Q ∈ Gr(k, n), tangent vectors X,Y, Z,W ∈ TQGr(k, n), and
normal vector H ∈ NQGr(k, n) are parameterized as in (11).

curvature expression result

first fundamental form I(X,Y ) = 2 tr(XT
0Y0) Proposition 4.1

second fundamental form II(X,Y ) =
1

2
V

[
X0Y

T
0 + Y0X

T
0 0

0 −(XT
0Y0 + Y T

0 X0)

]
V T Theorem 4.3

third fundamental form III(X,Y ) = −1

2

(
n

2k(n− k)
+

n− 2

4

)
tr(XY ) Corollary 4.8

Gauss map Γ(Q) =

{
V

[
H1 0
0 H2

]
V T : H1 ∈ Sk, H2 ∈ Sn−k

}
Proposition 4.2

Weingarten map S(H)(X) =
1

2
V

[
0 H1X0 −X0H2

(H1X0 −X0H2)
T 0

]
V T Corollary 4.5

mean curvature vector H =
1

2k(n− k)
V

[
−(n− k)Ik 0

0 kIn−k

]
V T Corollary 4.6

mean curvature H(H) =
(k − n) trH1 + k trH2

2k(n− k)
Corollary 4.6

Gaussian curvature G(H) =
1

2k(n−k)

∏k
i=1

∏n−k
j=1 (λk+j − λi) Corollary 4.7

principal curvature κij(H) =
1

2
(λk+j − λi), i = 1, . . . , k, j = 1, . . . , n− k Corollary 4.7

Riemann curvature Rie(X,Y, Z,W ) =
1

2
tr
(
(XY − Y X)ZW

)
Proposition 5.1

Jacobi curvature J(X,Y, Z,W ) = tr(XY ZW )− tr
(
Y
(XZ + ZX

2

)
W

)
Corollary 5.2

sectional curvature κ(X,Y ) =
1

4

∥XY − Y X∥2

∥X∥2∥Y ∥2 − tr(XY )2
Corollary 5.3

Ricci curvature Ric(X,Y ) =
n− 2

8
tr(XY ) Corollary 5.4

scalar curvature Sca =
k(n− k)(n− 2)

8
Corollary 5.4

traceless Ricci curvature Z(X,Y ) = 0 Corollary 5.4

upper delta invariant δ2,r =
k(n− k)(n− 2)

8
Theorem 5.5

lower delta invariant δ2,r =
k(n− k)(n− 2)

8
− r

4
Theorem 5.5

Schouten curvature P(X,Y ) =
n− 2

16(k(n− k)− 1)
tr(XY ) Corollary 5.6

Cotton curvature C(X,Y, Z) = 0 Corollary 5.7

Bach curvature B(X,Y ) =
(n− 2)2

32(k(n− k)− 2)
tr(XY ) Corollary 5.9

Weyl curvature W(X,Y, Z,W ) =
1

2
tr
(
(XY − Y X)ZW

)
Corollary 5.8

− (n− 2)

8(k(n− k)− 1)

(
tr(XZ) tr(YW )− tr(XW ) tr(Y Z)

)

A few of the curvatures in Table 1 are extrinsic, i.e., they depend specifically on our model (1).
These include the second and third fundamental forms; the Gauss and Weingarten maps; mean,
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Gaussian, and principal curvatures. They help us better understand the embedded geometry of
Grassmannian given by (1) but they also expedite our calculations of the intrinsic curvatures. These
include the Riemann, Ricci, sectional, and scalar curvatures; the Schouten, Cotton, Weyl, and Bach
tensors; and the upper and lower delta invariants.

While the value of an intrinsic curvature is independent of our choice of models, the expression
or formula that gives this value is not. As is evident from Table 1, the involution model yields
simple, stably computable formulas for extrinsic and intrinsic curvatures alike, essentially reducing
curvatures of the Grassmannian to matrix analysis and their computations to numerical linear
algebra. For example, computing the value of the Riemann curvature, a daunting order-4 tensor,
is a trivial one-line calculation using our formula (and the proof of this formula is notably also
a one-liner). For contrast, we will show in Section 7.2 what the corresponding calculation would
entail if we use the most common Grassmannian model O(n)

/(
O(k)×O(n− k)

)
.

What’s new. For the intrinsic curvatures, the Schouten, Cotton, Weyl, Bach curvature tensors,
the upper and lower delta invariants have never been explicitly calculated for a Grassmannian
to the best of our knowledge. The formulas for Riemann, Ricci, sectional, and scalar curvatures
of the Grassmannian modeled as various quotient spaces (see Section 7.2) are well-known and
classical [9, 16, 40, 49] and they have also been calculated in [3, 32] for the projection model (see
Section 7.3). The novelty of our calculations for these is that we derived intrinsic curvatures from
extrinsic curvatures. This is why we will calculate extrinsic curvatures first.

The formulas for the extrinsic curvatures — second and third fundamental forms; Gauss and
Weingarten maps; mean, Gaussian, and principal curvatures — are all new. Of course this is just
a consequence of the relative obscurity of the involution model (1). Unlike intrinsic invariants,
extrinsic ones are model-dependent, and it is expected that these have never been calculated for a
new model. Also, extrinsic curvatures do not apply to the quotient models in Section 7.2 as they
are only defined for embedded manifolds.

We emphasize that by ‘formula’ we mean an explicit expression like those in Table 1, involving
actual matrices, and has no undetermined quantities. These curvatures may of course be expressed
in terms of local coordinates or equivalence classes or horizontal spaces, but these invariably require
additional computational overhead, which we will discuss in Section 7. Our formulas do not contain
ambiguities that require further choices and effort to resolve.

In addition to the curvatures in Table 1, we will also discuss the cocurvature, nonmetricity, tor-
sion, and Plebański tensors. We will see in Proposition 3.1 and Corollary 6.1 that they are trivially
zero. We also proved in Corollary 4.4 that the index of relative nullity vanishes; in Corollary 6.2 that
the third fundamental form, the Ricci curvature, the Schouten and Bach tensors are all Codazzi
tensors; and in Corollary 6.4 that the Riemann and Weyl curvatures are divergence-free.

2. Notations and conventions

In this article, we use blackboard bold fonts for vector spaces (e.g., tangent and normal spaces,
space of n×n symmetric matrices, etc.) and san serif fonts for all curvatures and curvature-related
quantities (e.g., Table 1). The Riemann, Ricci, and scalar curvatures, arguably the three most
important quantities, are given three-letter notations Rie,Ric,Sca for emphasis.

We write Em for a Euclidean space of dimension m equipped with its Euclidean inner product
⟨ ·, · ⟩. For concreteness, one may assume that this Euclidean space is Rn with ⟨x, y⟩ = xTy, or
Sn with ⟨X,Y ⟩ = tr(XY ), or Rm×n with ⟨X,Y ⟩ = tr(XTY ). We write projW : Em → Em for the
orthogonal projection onto a subspace W ⊆ Em. The space of all linear maps between vector spaces
V and W will be denoted Hom(V,W) with Hom(V,V) denoted specially as End(V). We write id
for the identity map on any set.
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For X,Y ∈ Rn×n, we write [X,Y ] = XY − Y X for the commutator. We write so(n) = {X ∈
Rn×n : XT = −X} for the special orthogonal Lie algebra, i.e., the set of skew-symmetric matrices
with [ ·, · ] as its Lie bracket.

We write M for a smooth manifold, C∞(M) for its ring of smooth real-valued functions, TxM and
NxM for its tangent and normal spaces at x ∈ M respectively, and X(M) for its C∞(M)-module
of smooth vector fields. We denote vector fields with an arrow like v⃗. The word tensor in this
article will always mean a tensor over a C∞(M)-module, i.e., a smooth tensor field on M, and will
be cast in the form of multilinear maps between tangent and normal spaces. With few exceptions,
all multilinear maps in this article are defined at a specific point x ∈ M. So as not to be overly
verbose, we write “on/of M” when we mean “on/of M at x” and we sometimes drop the subscript
x like in Table 1 when there is no cause for confusion.

We write Gr(k,V) for the Grassmannian of k-dimensional subspaces in the vector space V. We
emphasize that in this article,

(2) Gr(k, n) := {Q ∈ Sn : Q2 = I, tr(Q) = 2k − n},
i.e., Gr(k, n) ⊆ Sn is the image of the embedding

(3) ε : Gr(k,Rn) → Sn, W 7→ PW − PW⊥ =: QW,

where PW ∈ Sn is the orthogonal projection matrix with image W. So ε sends a k-dimensional
subspace W ⊆ Rn to a matrix QW ∈ Sn. It is easy to verify [27] that QW has the properties in (2),
ε gives an embedding of Riemannian manifolds, and

Gr(k, n) = ε
(
Gr(k,Rn)

)
.

3. Curvature zoo

We will review the definitions of various curvatures and curvature-related quantities. This section
is not intended to be pedagogical, and only contains minimal commentaries. The goal is just to
collect definitions scattered across standard references [5, 16, 24, 25, 26, 30, 38] and some slightly
less standard ones [10, 11, 15, 22, 37] and present them in a unified set of notations (see Section 2)
for the reader’s easy reference.

All discussions below assume that M is a Riemannian manifold with Riemannian metric g, i.e.,
gx : TxM × TxM → R defines an inner product at x ∈ M. Section 3.2 applies to M intrinsically.
Section 3.1 applies when M embedded in an Euclidean space Em. More precisely by embedding we
always mean an isometric embedding ε : M → Em preserving Riemannian metric, i.e., gx(v, w) =
⟨dxε(v), dxε(w)⟩ for all x ∈ M, v, w ∈ TxM. Henceforth, we will identify M with its image under
the embedding ε so that we have M ⊆ Em and gx(v, w) = ⟨v, w⟩.

As usual, we will use the Levi-Civita connection throughout. We will say a few words about this
choice in Section 3.3

3.1. Extrinsic curvatures. In this section, M ⊆ Em is an n-dimensional submanifold of an m-
dimensional Euclidean space. For any x ∈ M, we have the canonical identification

Em ∼= TxEm = TxM⊕ NxM

and the corresponding orthogonal projections projTxM and projNxM.
The first fundamental form is

Ix : TxM× TxM → R, Ix(v, w) := ⟨v, w⟩.
This is nothing more than the Riemannian metric g on M expressed in terms of the inner product
⟨ ·, · ⟩ on Em.

The Gauss map is defined by

Γ : M → Gr(m− n,Em), Γ(x) := NxM.
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Take any V ∈ Gr(m−n,Em), note that this is an (m−n)-dimensional subspace of Em and we have

TVGr(m− n,Em) ∼= Hom(V,V⊥).

In particular, TNxMGr(m− n,Em) ∼= Hom(TxM,NxM) and we may also regard the Gauss map as

(4) Γ : M → Hom(TxM,NxM).

The second fundamental form IIx of M is given by the derivative of the Gauss map in the form
of (4), i.e.,

IIx : TxM× TxM → NxM, IIx(v, w) := dxΓ(v)(w).

This is likely the most important extrinsic differential geometric invariant of an embedded manifold.
Indeed many of our curvatures, including intrinsic ones, will be derived from the second fundamental
form. We define the index of relative nullity [15] of M as

νx := dim{v ∈ TxM : IIx(v, w) = 0 for all w ∈ TxM},

noting that IIx(v, w) = IIx(w, v). For each η ∈ NxM, we may regard ⟨IIx, η⟩ as an endomorphism
on TxM and this is called the Weingarten map or shape operator,

Sx(η) : TxM → TxM, ⟨Sx(η)(v), w⟩ := ⟨IIx(v, w), η⟩.

This operator is self-adjoint as the second fundamental form is symmetric. The eigenvalues (nec-
essarily real)

λ1(η), . . . , λn(η) ∈ R,
are called the principal curvatures of M along η. Their product is called the Gaussian curvature of
M along η

Gx(η) := detSx(η) ∈ R,
and their sum is called the mean curvature of M along η

Hx(η) := trSx(η) ∈ R.

For any orthonormal basis η1, . . . , ηm−n ∈ NxM, the mean curvature vector of M is

Hx :=
m−n∑
i=1

Hx(ηi)ηi ∈ NxM

and its value is independent of the choice of orthonormal basis. Clearly, Hx(η) = ⟨Hx, η⟩.
The Gauss–Obata map [37] of M is

Qx : TxM → TxM, Qx(v) :=
m−n∑
j=1

Sx(ηj)
2(v).

and the third fundamental form is

IIIx : TxM× TxM → R, IIIx(v, w) := ⟨Qx(v), w⟩.

The version defined here differs from an alternative version defined in classical differential [14,
Equation 21] and algebraic [20, Equations 1.45 and 1.46] geometry. The latter allows for kth
fundamental forms for all k ≥ 4. Nevertheless the important thing is that both versions agree with
the classical third fundamental form for a surface M ⊆ R3.

Getting slightly ahead of ourselves, the second fundamental form may also be expressed using
the Levi-Civita connection ∇ in (6):

(5) IIx(v, w) = ∂vw⃗ −∇vw⃗ = projNxM(∂vw⃗)

for any v, w ∈ TxM and where w⃗ ∈ X(M) is any vector field with w⃗(x) = w [30, Theorem 8.2]. The
value of IIx(v, w) is independent of the choice of w⃗ [30, Proposition 8.1].
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3.2. Intrinsic curvatures. In this section M is a Riemannian manifold with metric tensor g. One
feature of our approach is that we will calculate intrinsic curvatures in extrinsic coordinates given
by our involution model, vastly simplifying the work involved. As such it suffices to define the
Levi-Civita connection ∇ of M as an embedded manifold:

(6) ∇ : X(M)× X(M) → X(M), (∇(v⃗, w⃗))(x) := projTxM(∂vw⃗),

where v := v⃗(x) ∈ TxM and ∂vw⃗ is the standard directional derivative of the vector field, i.e.,
derivative of the vector-valued function w⃗ : M → Em along the direction v ∈ TxM ⊆ Em. Note
that this simple definition is possible only because both M and TxM are regarded as subsets of Em.
It is also common to write, for a fixed v ∈ TxM,

∇vw⃗ : X(M) → X(M), (∇vw⃗)(x) := (∇(v⃗, w⃗))(x),

as it behaves like a directional derivative. A slight variation of this notation makes v ∈ TxM the
variable and fixes x ∈ M, giving

x∇w⃗ : TxM → TxM, (x∇w⃗)(v) := (∇vw⃗)(x).
Since x∇w⃗ is a linear operator, it has a trace, which defines the divergence for a vector field w⃗,

div : X(M) → C∞(M), div(w⃗)(x) := tr(x∇w⃗).
For higher-order tensor fields, the convention is to apply divergence to the last argument: If
w⃗1, . . . , w⃗k ∈ X(M), then

div(w⃗1 ⊗ · · · ⊗ w⃗k−1 ⊗ w⃗k) := div(w⃗k)w⃗1 ⊗ · · · ⊗ w⃗k−1,

and extended linearly to all k-tensor fields [38].
We will need two common notions [5] defined for any symmetric bilinear forms on TxM. Let

α, β : TxM × TxM → R be symmetric and bilinear, their Kulkarni–Nomizu product α 7 β is the
symmetric quadrilinear form

(7)
α7 β : TxM× TxM× TxM× TxM → R,

α7 β(u, v, w, z) := α(u,w)β(v, z)− α(u, z)β(v, w)− α(v, w)β(u, z) + α(v, z)β(u,w).

If a symmetric bilinear form β : TxM× TxM → R satisfies

(∇uβ)(v, w) = (∇vβ)(u,w)
for all u, v, w ∈ TxM, then it is called a Codazzi tensor.

The Riemann curvature or curvature tensor of M is

Riex : TxM× TxM× TxM× TxM → R, Riex(u, v, w, z) := ⟨∇u∇vw −∇v∇uw −∇[u,v]w, z⟩.
There is a common variant known by the same name:

Rx : TxM× TxM → End(TxM), Rx(u, v)w := ∇u∇vw −∇v∇uw −∇[u,v]w.

Note that Riex(u, v, w, z) = ⟨Rx(u, v)w, z⟩ with the slight difference being that Rx is a bilinear map
and Riex is a quadrilinear form. There is also a symmetric variant called the Jacobi tensor of M,

Jx : TxM× TxM× TxM× TxM → R, Jx(u, v, w, z) :=
1

2
(Riex(u, v, w, z) + Riex(w, v, u, z)) .

If v, w ∈ TxM are linearly independent, then the sectional curvature of M is

κx : TxM× TxM → R, κx(v, w) :=
Riex(v, w,w, v)

∥v ∧ w∥2
=

Riex(v, w,w, v)

∥v∥2∥w∥2 − ⟨v, w⟩2
.

Let v1, . . . , vn ∈ TxM be an orthonormal basis. The Ricci curvature of M is

Ricx : TxM× TxM → R, Ricx(v, w) :=
n∑
j=1

Riex(v, vj , vj , w).
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The scalar curvature of M is

Scax := tr(Ricx) =
∑

1≤j<k≤n
κx(vj , vk) =

∑
1≤j<k≤n

Riex(vj , vk, vk, vj).

The last two curvatures gives us the traceless Ricci curvature,

Zx : TxM× TxM → R, Zx(v, w) := Ricx(v, w)−
Scax
n

gx(v, w),

important as it gives a g-orthogonal decomposition of Ricci curvature. A manifold with Z = 0 is
called an Einstein manifold [5].

The scalar curvature allows a generalization to any d-dimensional subspace V ⊆ TxM,

Scax(V) :=
∑

1≤j<k≤d
κx(vj , vk),

where v1, . . . , vd ∈ V is any orthonormal basis. Clearly Scax(TxM) = Scax. From these one may
construct the upper and lower delta invariants [10, 11], given respectively by

δx(d1, . . . , dr) := Scax− inf
dimVj=dj
Vj⊥Vk, j<k

[ r∑
j=1

Scax(Vj)
]
,

δx(d1, . . . , dr) := Scax− sup
dimVj=dj
Vj⊥Vk, j<k

[ r∑
j=1

Scax(Vj)
]
,

where d1, . . . , dr ∈ Z are such that 2 ≤ d1 ≤ · · · ≤ dr and d1 + · · ·+ dr ≤ dimM.
We will next define a well-known quartet of closely related curvature tensors [5]. The Schouten

tensor of M is

Px : TxM× TxM → R, Px(v, w) :=
1

n− 2

(
Ricx(v, w)−

Scax
2(n− 1)

gx(v, w)
)
.

The Cotton tensor of M is

Cx : TxM× TxM× TxM → R, Cx(u, v, w) := (∇uPx)(v, w)− (∇vPx)(u,w).
The Weyl tensor of M is

Wx : TxM× TxM× TxM× TxM → R, Wx := Riex−
1

n− 2
Zx 7 gx −

Scax
2n(n− 1)

gx 7 gx.

The Bach tensor of M is

Bx : TxM× TxM → R,

Bx(u,w) :=
1

n− 3

n∑
i,j=1

∇2
vi,vjWx(u, vi, vj , w) +

1

n− 2

n∑
i,j=1

Ricx(vi, vj)Wx(u, vi, vj , w),

We will also describe some intrinsic curvatures that are more typically studied in non-Riemannian
geometry, i.e., for a connection ∇ other than the Levi-Civita connection (see Section 3.3).

The torsion tensor [24, Chapter III, Section 5] of M is

Tx : TxM× TxM → R, Tx(v, w) := ∇vw −∇wv − [v, w].

The nonmetricity tensor [22] of M is

Qx : TxM× TxM× TxM → R, Qx(u, v, w) := −∇ugx(v, w) + gx(∇uv, w) + gx(v,∇uw).
For any vector subbundle VM of TM with projection π : TM → VM, its cocurvature [35, 26] is

R∗
π : X(M)× X(M) → X(M), R∗

π(v⃗, w⃗) := (id−π)
(
[π(v⃗), π(w⃗)]

)
.
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In general R∗
π measures the failure of integrability of VM. To put the cocurvature in perspective,

the curvature in this context is

Rπ : X(M)× X(M) → X(M), Rπ(v⃗, w⃗) := π
(
[(id−π)(v⃗), (id−π)(w⃗)]

)
.

Evidently, this is a more general notion than the Riemann curvature R but we will see how they
are related in Proposition 3.1.

3.3. Connections. Our choice of Levi-Civita connection is all but preordained by the Fundamental
Theorem of Riemannian Geometry [16, Chapter 2, Theorem 3.6], namely, it is the unique affine
connection that is torsion-free and metric-compatible. To reassure the readers, we will add a few
more words to justify this choice.

In manifold optimization, one needs a metric to identify tangent space with cotangent space,
and the Levi-Civita connection is the most natural one (i.e., torsion free) compatible with our
Riemannian metric g. While the goal of our article is not optimization per se, there are not many
options among other common connections either: (i) The Weyl connection is a generalization of
Levi-Civita connection to conformal metrics and for our choice of g the two are identical. (ii)
The affine, Cartan, Ehresmann, and Koszul connections are unnatural in our context. (iii) The
Gauss–Manin and Grothendieck connections are intended for schemes and incompatible with our
consideration of the Grassmannian as a manifold. (iv) Other connections like those of Connes and
Weitzenböck are even further removed from our treatment in this article.

Unsurprisingly the non-Riemannian curvatures all turn out to be trivial for a Riemannian man-
ifold. The statement (a) below is just stated for ease of referencing.

Proposition 3.1. Let ∇ be the Levi-Civita connection on M.

(a) The torsion tensor and the nonmetricity tensor vanishes identically, i.e.,

Tx(v, w) = 0, Qx(u, v, w) = 0

for all x ∈ M and all u, v, w ∈ TxM.
(b) Let π : O(M) → M be the orthonormal frame bundle on M, VM := ker(dπ), and π̂ : TO(M) →

VM the projection induced by ∇. Then the cocurvature vanishes and the curvature equals the
Riemann curvature up to sign, i.e.,

R∗
π̂(v⃗, w⃗) = 0, Rπ̂(v⃗, w⃗) = −R(v⃗, w⃗)

where the first equality holds for all v⃗, w⃗ ∈ X(O(M)), the second for all v⃗, w⃗ ∈ X(M) ⊆ X(O(M)).

Proof. Since the Levi-Civita connection on M is, by definition, the unique connection that is torsion
free and compatible with the metric g, both T and Q vanish.

The horizontal bundle ker π̂ is TM, whose integral manifold is M. So the cocurvature R∗
π̂ must

vanish identically. Since O(M) consists of orthonormal frames on M, the typical fiber of V(M) =
ker(dπ) is so(n), where n = dimM. As π̂ is induced by ∇, it can be regarded as an so(n)-valued
differential 1-form ω on O(M). The projection map π̂ gives a decomposition

TO(M) ≃ VM⊕ TM.

Thus for any v⃗, w⃗ ∈ X(O(M)), we may identify (id−π̂)(v⃗) and (id−π̂)(w⃗) with elements in X(M)
and

−Rπ̂(v⃗, w⃗) = −ω([(id−π̂)(v⃗), (id−π̂)(w⃗)]) = dω
(
(id−π̂)(v⃗), (id−π̂)(w⃗)

)
.

In other words, −Rπ̂ turns out to be the curvature 2-form of ω, which by [24, Section III.5] is equal
to the Riemann curvature R. □
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4. Extrinsic curvatures of the Grassmannian

We are now in a position to calculate various curvatures of the Grassmannian modeled as Gr(k, n)
and express them as simple matrix formulas. Our strategy is first calculate the extrinsic curvatures
in this section, notably the second fundamental form, and then use it as the basis for our calculation
of intrinsic curvatures in Section 5.

Our ambient Euclidean space of choice is Sn equipped with the standard (also called trace or
Frobenius) inner product on Rm×n given by

⟨X,Y ⟩ := tr(XTY ) =

n∑
i=1

n∑
j=1

xijyij .

When restricted to Gr(k, n), it gives us our Riemannian metric

(8) gQ : TQGr(k, n)× TQGr(k, n) → R, gQ(X,Y ) = tr(XTY )

for all Q ∈ Gr(k, n). Of course, we have XT = X as X ∈ Sn but we choose to keep the transpose
in our notation to remind ourselves that this is the trace inner product.

Given Q ∈ Gr(k, n) ⊆ Sn, we have an eigenvalue decomposition Q = V Ik,n−kV
T for some

V ∈ O(n) and Ik,n−k := diag(Ik,−In−k) = diag(1, . . . , 1,−1, . . . ,−1). The tangent and normal
spaces of Gr(k, n) at Q are

TQGr(k, n) =

{
V

[
0 X0

XT
0 0

]
V T ∈ Sn : X0 ∈ Rk×(n−k)

}
,(9)

NQGr(k, n) =

{
V

[
H1 0
0 H2

]
V T ∈ Sn : H1 ∈ Sk, H2 ∈ Sn−k

}
.(10)

Henceforth we will consistently write any point Q ∈ Gr(k, n), tangent vector X ∈ TQGr(k, n) and
normal vector H ∈ NQGr(k, n) as

(11) Q = V

[
Ik 0
0 −In−k

]
V T, X = V

[
0 X0

XT
0 0

]
V T, H = V

[
H1 0
0 H2

]
V T.

The simple parameterization of these three basic objects in the involution model is a key to the
simplicity of our calculations. A convenient orthonormal basis of TIk,n−k

Gr(k, n) is given by

(12)

{√
2

2

[
0 Eij
ET
ij 0

]
∈ Sn : i = 1, . . . , k, j = 1, . . . , n− k

}
where Eij is the k × (n − k) matrix with one in the (i, j)th entry and zero everywhere else. We
refer readers to [27, Section 3] for the proofs of statements in this and the last paragraph.

The next two results require no calculation and are just stated for completeness.

Proposition 4.1 (First fundamental form). The first fundamental form IQ : TQGr(k, n)×TQGr(k, n) →
R is given by

IQ(X,Y ) = 2 tr(XT
0Y0)

with Q, X, Y parameterized as in (11).

Proposition 4.2 (Gauss map). The Gauss map of Gr(k, n) in Sn is given by

Γ : Gr(k, n) → Gr
((
n+1
2

)
− k(n− k),Sn

)
,

Γ(Q) = NQ(Gr(k, n)) = V

{[
H1 0
0 H2

]
: H1 ∈ Sk, H2 ∈ Sn−k

}
V T,

with Q parameterized as in (11).

The next calculation is our key to unlocking other calculations in this article.
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Theorem 4.3 (Second fundamental form). The second fundamental form IIQ : TQGr(k, n) ×
TQGr(k, n) → NQGr(k, n) is given by

IIQ(X,Y ) =
1

2
V

[
X0Y

T
0 + Y0X

T
0 0

0 −XT
0Y0 − Y T

0 X0

]
V T,

with Q, X, Y parameterized as in (11).

Proof. Since O(n) acts on Gr(k, n) transitively and isometrically, it suffices to calculate II at Ik,n−k ∈
Gr(k, n). In this case X,Y ∈ TIk,n−k

Gr(k, n) may be written as

X =

[
0 X0

XT
0 0

]
, Y =

[
0 Y0
Y T
0 0

]
for some X0, Y0 ∈ Rk×(n−k). Points near Ik,n−k can be parametrized as

φ(B,H1, H2) = exp

([
0 −B
BT 0

])(
Ik,n−k +

[
H1 0
0 H2

])
exp

([
0 −B
BT 0

]T)
,

where B ∈ Rk×(n−k), H1 ∈ Sk, and H2 ∈ Sn−k have sufficiently small norms. Clearly, we have
φ(B,H1, H2) ∈ Gr(k, n) if and only if H1 = 0 and H2 = 0. Thus we may extend X by

X̃
(
φ(B,H1, H2)

)
= exp

([
0 −B
BT 0

])[
H1 X0

XT
0 H2

]
exp

([
0 −B
BT 0

])T

.

Such an X̃ is an extension of a local vector field around Ik,n−k on Gr(k, n). By (5),

IIIk,n−k
(X,Y ) = projNIk,n−k

Gr(k,n)

(
⟨∇̃X̃(Ik,n−k), Y ⟩

)
where ∇̃ denotes the covariant derivative in the Euclidean space Sn, i.e.,

∇̃X̃ =
(
∂BX̃, ∂H1X̃, ∂H2X̃

)
Since Y is a tangent vector, we obtain

〈
∇̃X̃(Ik,n−k), Y

〉
=

k∑
i=1

n−k∑
j=1

∂X̃

∂bij
(Ik,n−k)y0ij ,

where we have written B = (bij) and Y0 = (y0ij). Observe that

∂X̃

∂bij
(Ik,n−k) = −1

2

[
0 Eij

−ET
ij 0

] [
0 X0

XT
0 0

]
+

1

2

[
0 X0

XT
0 0

] [
0 Eij

−ET
ij 0

]
=

1

2

[
−EijXT

0 −X0E
T
ij 0

0 ET
ijX0 +XT

0Eij

]
where the factor 1

2 is a result of our choice of Riemannian metric on Sn. Therefore we have

k∑
i=1

n−k∑
j=1

∂X̃

∂bij
(Ik,n−k)y0ij =

1

2

k∑
i=1

n−k∑
j=1

[
−(EijX

T
0 +X0E

T
ij)y0ij 0

0 (ET
ijX0 +XT

0Eij)y0ij

]

=
1

2

[
−X0Y

T
0 − Y0X

T
0 0

0 XT
0Y0 + Y T

0 X0

]
,

where the last expression is our required IIIk,n−k
(X,Y ). □

We record an observation that follows from an additional step of singular value decomposition.

Corollary 4.4 (Index of relative nullity). The index of relative nullity νQ of Gr(k, n) is zero.



SIMPLE MATRIX EXPRESSIONS FOR THE CURVATURES OF GRASSMANNIAN 11

Proof. Let X ∈ TQGr(k, n) be such that IIQ(X,Y ) = 0 for all Y ∈ TQGr(k, n), with Q,X, Y
parametrized as in (11). We claim that X = 0. By Theorem 4.3, we must have

(13) X0Y
T
0 + Y0X

T
0 = 0, XT

0Y0 + Y T
0 X0 = 0

for any Y0 ∈ Rk×(n−k). Let X0 = UΣV T be a singular value decomposition with U ∈ O(k) and
V ∈ O(n− k). Then (13) becomes

Σ(UTY0V )T + (UTY0V )Σ = 0, Σ(UTY0V ) + (UTY0V )TΣ = 0.

Since Y0 is arbitrary, we may set X0 = Σ in (13). Now by taking Y0 to be an arbitrary diagonal
k × (n− k) matrix, we see that Σ = 0. Hence X0 = 0 and X = 0. □

The Weingarten map is an alternative way to express the second fundamental form and thus
follows easily from Theorem 4.3.

Corollary 4.5 (Weingarten map). The Weingarten map SQ(H) : TQGr(k, n) → TQGr(k, n) along
the normal direction H ∈ NQGr(k, n) is given by

(14) SQ(H)(X) =
1

2
V

[
0 H1X0 −X0H2

(H1X0 −X0H2)
T 0

]
V T

with Q, X, H parameterized as in (11).

Proof. We plug in the expressions from (11) into ⟨SQ(H)(X), Y ⟩ = ⟨IIQ(X,Y ), H⟩ and use standard
properties of trace to get

⟨SQ(H)(X), Y ⟩ = 1

2

[
tr
(
(X0Y

T
0 + Y0X

T
0 )H1

)
− tr

(
(XT

0Y0 + Y T
0 X0)H2

)]
=

1

2

[
tr
(
(H1X0 −X0H2)

)
Y T
0 ) + tr

(
(XT

0H1 −H2X
T
0 )Y0

)]
= tr

(
1

2

[
0 H1X0 −X0H2

XT
0H1 −H2X

T
0 0

]T [
0 Y0
Y T
0 0

])
,

and thereby deducing (14). □

The calculation of mean curvature is also straightforward.

Corollary 4.6 (Mean curvature). The mean curvature vector of Gr(k, n) is given by

HQ =
1

k(n− k)
tr(IIQ) =

1

2k(n− k)
V

[
−(n− k)Ik 0

0 kIn−k

]
V T

and the mean curvature of Gr(k, n) along H ∈ NQGr(k, n) is given by

HQ(H) =
(k − n) trH1 + k trH2

2k(n− k)

with Q, X, H parameterized as in (11).

Proof. We use the orthonormal basis of TIk,n−k
Gr(k, n) in (12). A straightforward but slightly

messy calculation gives

(EijE
T
i′j′)pq =

{
1 if j = j′ and (p, q) = (i, i′),

0 otherwise,

for any p, q ∈ {1, . . . , k}; and

(ET
ijEi′j′)pq =

{
1 if i = i′ and (p, q) = (j, j′)

0 otherwise
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for any p, q ∈ {1, . . . , n− k}. Using these, we may evaluate

IIIk,n−k

([
0 Eij
ET
ij 0

]
,

[
0 Ei′j′

ET
i′j′ 0

])
=

1

2

[
−δjj′(Eii′ + Ei′i) 0

0 δii′(Ejj′ + Ej′j)

]
and obtain the required expression by summing over the basis. The mean curvature along H is
then calculated from HQ(H) = ⟨HQ, H⟩. □

Corollary 4.7 (Principal and Gaussian curvatures). Let Q ∈ Gr(k, n) and H ∈ NQGr(k, n) be
parameterized as in (11). Then the Weingarten map SQ(H) has eigenpairs given by(

1

2
(λk+j − λi), V

[
0 Q1EijQ

T
2

Q2E
T
ijQ

T
1 0

]
V T

)
, i = 1, . . . , k, j = 1, . . . , n− k,

where H1 = Q1Λ1Q
T
1 and H2 = Q2Λ2Q

T
2 are eigenvalue decompositions with Λ1 = diag(λ1, . . . , λk)

and Λ2 = diag(λk+1, . . . , λn).

(a) The principal curvatures of Gr(k, n) along H are

κij =
1

2
(λk+j − λi), i = 1, . . . , k, j = 1, . . . , n− k.

(b) The Gaussian curvature of Gr(k, n) along H is

GQ(H) =
1

2k(n−k)

k∏
i=1

n−k∏
j=1

(λk+j − λi).

Proof. By (14), we have

SQ(H)

(
V

[
0 X0

XT
0 0

]
V T

)
= V SIk,n−k

(H0)

([
0 X0

XT
0 0

])
V T, H0 :=

[
H1 0
0 H2

]
.

Write Λ := diag(Λ1,Λ2) = diag(λ1, . . . , λn). Then

SIk,n−k
(H0)

([
0 X0

XT
0 0

])
=

1

2

[
0 H1X0 −X0H2

(H1X0 −X0H2)
T 0

]
=

1

2

[
0 Q1Λ1Q

T
1X0 −X0Q2Λ2Q

T
2

(Q1Λ1Q
T
1X0 −X0Q2Λ2Q

T
2)

T 0

]
=

1

2

[
Q1 0
0 Q2

] [
0 Y0
Y T
0 0

] [
Q1 0
0 Q2

]T

=

[
Q1 0
0 Q2

]
SIk,n−k

(Λ)

[
Q1 0
0 Q2

]T

,

where Y0 := Λ1(Q
T
1X0Q2)−(QT

1X0Q2)Λ2. So it suffices to diagonalize the linear operator SIk,n−k
(Λ) :

TIk,n−k
Gr(k, n) → TIk,n−k

Gr(k, n). Now observe that

SIk,n−k
(Λ)

(√
2

2

[
0 Eij
ET
ij 0

])
= δipδjq

λk+j − λi
2

(√
2

2

[
0 Epq
ET
pq 0

])
for i = 1, . . . , k and j = 1, . . . , n− k, gives us the required diagonalization, which is an eigenvalue
decomposition as (12) is an orthonormal basis. The values of the principal and Gaussian curvatures
follow. □

The easiest way to calculate the third fundamental form is to get slightly ahead of our discussion
and use the expression for Ricci curvature in Corollary 5.4 together with a result of Obata [37,
Theorem 1]. Otherwise we would have to start from the definition in Section 3.1.
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Corollary 4.8 (Third fundamental form). The third fundamental form IIIQ : TQGr(k, n) ×
TQGr(k, n) → R is given by

IIIQ(X,Y ) = −1

2

( n

2k(n− k)
+
n− 2

4

)
tr(XY ) = −

( n

2k(n− k)
+
n− 2

4

)
tr(XT

0Y0),

with Q, X, Y parameterized as in (11).

Proof. By [37, Theorem 1], we have

IIIQ(X,Y ) = ⟨IIQ(X,Y ),HQ⟩ − Ric(X,Y ).

By Theorem 4.3, Corollaries 4.6 and 5.4, we have

IIIQ(X,Y ) =
1

4k(n− k)

(
−(n− k) tr(X0Y

T
0 + Y0X

T
0 )− k tr(XT

0Y0 + Y T
0 X0)

)
− n− 2

4
tr(XT

0Y0)

= −
( n

2k(n− k)
+
n− 2

4

)
tr(XT

0Y0). □

5. Intrinsic curvatures of the Grassmannian

As we will see in Section 7.2, calculating intrinsic curvatures of Grassmannian with intrinsic
geometry can get fairly involved. This is particularly striking for the Riemann curvature tensor —
our calculation below is essentially one-line using the embedded geometry of the involution model.

Proposition 5.1 (Riemmanian curvature). The Riemann tensor RieQ : TQGr(k, n)×TQGr(k, n)×
TQGr(k, n)× TQGr(k, n) → R is given by

RieQ(X,Y, Z,W ) =
1

2
tr
(
(XY − Y X)ZW

)
=

1

2
tr
(
(XT

0Y0Z
T
0 + ZT

0Y0X
T
0 − Y T

0 X0Z
T
0 − ZT

0X0Y
T
0 )W0

)
with Q, X,Y, Z,W parameterized as in (11).

Proof. Using the expression for IIQ,

RieQ(X,Y, Z,W ) = ⟨IIQ(Y, Z), IIQ(X,W )⟩ − ⟨IIQ(X,Z), IIQ(Y,W )⟩

=
1

4
⟨Y0ZT

0 + Z0Y
T
0 , X0W

T
0 +W0X

T
0 ⟩+

1

4
⟨Y T

0 Z0 + ZT
0Y0, X

T
0W0 +W T

0X0⟩

− 1

4
⟨X0Z

T
0 + Z0X

T
0 , Y0W

T
0 +W0Y

T
0 ⟩ −

1

4
⟨XT

0Z0 + ZT
0X0, Y

T
0 W0 +W T

0 Y0⟩

=
1

4
⟨[[X,Y ], Z],W ⟩

=
1

2
tr
(
(XY − Y X)ZW

)
,

where the last equality is obtained by observing that X,Y, Z,W are symmetric matrices. □

Corollary 5.2 (Jacobi curvature). The Jacobi tensor JQ : TQGr(k, n)×TQGr(k, n)×TQGr(k, n)×
TQGr(k, n) → R is

JQ(X,Y, Z,W ) = tr(XY ZW )− tr
(
Y
(XZ + ZX

2

)
W

)
= tr

(
(XT

0Y0Z
T
0 + ZT

0Y0X
T
0 )W0

)
− tr

(
Y T
0

(X0Z
T
0 + Z0X

T
0

2

)
W0

)
− tr

((ZT
0X0 +XT

0Z0

2

)
Y T
0 W0

)
,

with Q, X,Y, Z,W parameterized as in (11).
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Proof. The expression in Proposition 5.1 and the fact that X,Y, Z,W are symmetric matrices yield

JQ(X,Y, Z,W ) =
1

2
tr
(
(2XY Z − Y (XZ + ZX)W

)
and thus the first expression. Plugging in the parameterizations in (11) for X,Y, Z,W gives the
second expression. □

Corollary 5.3 (Sectional curvature). The sectional curvature κQ : TQGr(k, n)×TQGr(k, n) → R
is given by

κQ(X,Y ) =
∥[X,Y ]∥2

4(∥X∥2∥Y ∥2 − ⟨X,Y ⟩2)
=

∥[X0, Y
T
0 ]∥2 + ∥[XT

0 , Y0]∥2

16(∥X0∥2∥Y0∥2 − ⟨X0, Y0⟩2)
≤ 1

4
,

with Q, X, Y parameterized as in (11). If X,Y are orthonormal, i.e., ∥X0∥ = ∥Y0∥ =
√
2/2 and

⟨X0, Y0⟩ = 0, then

κQ(X,Y ) =
∥[X,Y ]∥2

4
=

1

4
(∥[X0, Y

T
0 ]∥2 + ∥[XT

0 , Y0]∥2).

Proof. This is a straightforward calculation by

κQ(X,Y ) =
RieQ(X,Y, Y,X)

∥X∥2∥Y ∥2 − ⟨X,Y ⟩2
=

1

4

⟨[[X,Y ], Y ], X⟩
∥X∥2∥Y ∥2 − ⟨X,Y ⟩2

=
∥[X,Y ]∥2

4(∥X∥2∥Y ∥2 − ⟨X,Y ⟩2)

and the observations that

[X,Y ] = V

([
X0Y

T
0 − Y0X

T
0 0

0 XT
0Y0 − Y T

0 X0

])
V T,

∥X∥2 = 2∥X0∥2, ∥Y ∥2 = 2∥Y0∥2, ∥⟨X,Y ⟩∥2 = 2⟨X0, Y0⟩.

Since κQ(X,Y ) only depends on the two-dimensional subspace of TQGr(k, n) spanned by X and
Y , it suffices to assume that X,Y are orthonormal. The upper bound κQ(X,Y ) ≤ 1/4 then follows
from the inequality ∥[A,B]∥2 ≤ 2∥A∥2∥B∥2 for any A,B ∈ Rn×n. □

It is known that the Grassmannian manifolds are Einstein [5, Paragraphs 0.25 and 0.26]. Our
calculations below confirm the fact.

Corollary 5.4 (Ricci and scalar curvatures). Let Q, X, Y be parameterized as in (11). The Ricci
tensor RicQ : TQGr(k, n)× TQGr(k, n) → R is given by

RicQ(X,Y ) =
(n− 2)

8
tr(XY ) =

(n− 2)

4
tr(XT

0Y0).

The scalar curvature ScaQ ∈ R is given by

ScaQ =
k(n− k)(n− 2)

8
.

The traceless Ricci curvature ZQ : TQGr(k, n)× TQGr(k, n) → R is given by

ZQ(X,Y ) = 0,

which shows that the Grassmannian is an Einstein manifold.

Proof. We write

Xij :=

√
2

2
V

[
0 Eij
ET
ij 0

]
V T
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for the elements of the orthonormal basis in (12). Then

RicQ(X,Y ) =

k∑
i=1

n−k∑
j=1

RieQ(Xij , X, Y,Xij) =

k∑
i=1

n−k∑
j=1

1

4
⟨[[Xij , X], Y ], Xij⟩⟩

=
1

2

k∑
i=1

n−k∑
j=1

tr(X2
ijXY −XXijY Xij)

=
n− 2

8
tr(XY ) =

ScaQ
k(n− k)

gQ

where the last equality shows that ZQ vanishes identically. □

For a homogeneous space like Gr(k, n), the upper and lower delta invariants δQ(d1, . . . , dr) and
δQ(d1, . . . , dr) are independent of the choice of Q ∈ Gr(k, n). We also restrict our attention to
d1 = · · · = dr = 2. So for notational simplicity, we just write

δ2,r := δQ(2, . . . , 2︸ ︷︷ ︸
r times

), δ2,r := δQ(2, . . . , 2︸ ︷︷ ︸
r times

).

Theorem 5.5 (Delta invariants). Let r ≤ 2⌊k/2⌋⌊(n − k)/2⌋. Then the upper and lower delta
invariants of Gr(k, n) are given by

δ2,r =
k(n− k)(n− 2)

8
, δ2,r =

k(n− k)(n− 2)

8
− r

4
.

Proof. We will write κ = κQ below and take Q = Ik,n−k. By Corollary 5.4, we have

δ2,r =
k(n− k)(n− 2)

8
− inf

dimVj=2,
Vj⊥Vk,j<k

[ r∑
j=1

κ(Xj , Yj)

]
,

δ2,r =
k(n− k)(n− 2)

8
− sup

dimVj=2,
Vj⊥Vk,j<k

[ r∑
j=1

κ(Xj , Yj)

]
,

where {Xj , Yj} is an orthonormal basis of the two-dimensional subspace Vj ⊆ TIk,n−k
Gr(k, n),

j = 1, . . . , r. By Corollary 5.3, we have

(15) 0 ≤
r∑
j=1

κ(Xj , Yj) ≤
r

4
.

It remains to show that upper and lower bounds in (15) are attained by some V1, . . . ,Vr.
Set k1 := ⌊k/2⌋ and k2 := ⌊(n− k)/2⌋. We may partition any X ∈ TIk,n−k

Gr(k, n) into a block

matrix with 2× 2 blocks Bpq ∈ R2×2:

X =



0 · · · 0 B1,1 · · · B1,k2+1
...

. . .
...

...
. . .

...
0 · · · 0 Bk1+1,1 · · · Bk1+1,k2+1

BT
1,1 · · · BT

k1+1,1 0 · · · 0
...

. . .
...

...
. . .

...
BT

1,k2+1 · · · BT
k1+1,k2+1 0 · · · 0


except in the last row and column where we are required to have

Bp,k2+1 ∈ R2×(n−k−2k2), Bk1+1,q ∈ R(k−2k1)×2, Bk1+1,k2+1 ∈ R(k−2k1)×(n−k−2k2)

for p = 1, . . . , k1 and q = 1, . . . , k2.
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Let X̂ij ∈ TIk,n−k
Gr(k, n) be the tangent vector obtained from X by setting Bpq = 0 whenever

(p, q) ̸= (i, j). Then clearly we have tr
(
X̂T
ijX̂i′j′

)
= 0 whenever (i, j) ̸= (i′, j′). Since r ≤ 2k1k2,

the problem further reduces to attaining the upper and lower bounds in (15) for r = 2 on Gr(2, 4).
This is a vast simplification as X ∈ TI2,2 Gr(2, 4) is just X =

[
0 B
BT 0

]
with B ∈ R2×2. It remains to

exhibit an orthonormal basis X1, Y1, X2, Y2 ∈ TI2,2 Gr(2, 4) that gives the upper and lower bounds
in (15). Using the formula for sectional curvature in Corollary 5.3, we check that

X1 =

√
2

2

[
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

]
, Y1 =

1

2

[
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]
, X2 =

√
2

2

[
0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

]
, Y2 =

1

2

[
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

]
give the required upper bound κ(X1, Y1) + κ(X2, Y2) =

1
2 , whereas

X1 =
1

2

[
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
, Y1 =

1

2

[
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

]
, X2 =

1

2

[
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]
, Y2 =

1

2

[
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

]
give the required lower bound κ(X1, Y1) + κ(X2, Y2) = 0. □

We next compute the quartet of tensors named after Schouten, Cotton, Weyl, and Bach.

Corollary 5.6 (Schouten curvature). The Schouten tensor PQ : TQGr(k, n)×TQGr(k, n) → R is
given by

PQ(X,Y ) =
(n− 2)

16(k(n− k)− 1)
tr(XY ) =

2(n− 2)

16(k(n− k)− 1)
tr(XT

0Y0)

with Q, X, Y parameterized as in (11).

Proof. This is a straightforward calculation from definition:

PQ(X,Y ) =
1

k(n− k)− 2

[
RicQ(X,Y )−

ScaQ
2(k(n− k)− 1)

gQ(X,Y )

]
=

n− 2

16(k(n− k)− 1)
tr(XY ). □

Corollary 5.7 (Cotton curvature). The Cotton tensor of Gr(k, n) is zero.

Proof. By Corollary 5.6, P is a constant multiple of g. So ∇P = 0, and so C is identically zero. □

Corollary 5.8 (Weyl curvature). The Weyl tensor WQ : TQGr(k, n)×TQGr(k, n)×TQGr(k, n)×
TQGr(k, n) → R is given by

WQ(X,Y, Z,W ) =
1

2
tr
(
(XY − Y X)ZW

)
− (n− 2)

8(k(n− k)− 1)

(
tr(XZ) tr(YW )− tr(XW ) tr(Y Z)

)
=

1

2
tr
(
(XT

0Y0Z
T
0 + ZT

0Y0X
T
0 − Y T

0 X0Z
T
0 − ZT

0X0Y
T
0 )W0

)
− n− 2

2(k(n− k)− 1)

(
tr(XT

0Z0) tr(Y
T
0 W0)− tr(XT

0W0) tr(Y
T
0 Z0)

)
with Q, X, Y , Z, W parameterized as in (11).

Proof. Let m := k(n − k). It follows from the vanishing of ZQ and the expression for ScaQ in
Corollary 5.4 that

WQ = RieQ− 1

m− 2
ZQ 7 gQ −

ScaQ
2m(m− 1)

gQ 7 gQ = RieQ− n− 2

16(m− 1)
gQ 7 gQ.
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Next use the two expressions of RieQ in Proposition 5.1 and expand the Kulkarni–Nomizu product

gQ 7 gQ(X,Y, Z,W ) = gQ(X,Z)gQ(Y,W )− gQ(X,W )gQ(Y,Z)

− gQ(Y,Z)gQ(X,W ) + gQ(Y,W )gQ(X,Z)

= 2
(
gQ(X,Z)gQ(Y,W )− gQ(X,W )gQ(Y, Z)

)
= 8

(
tr(XT

0Z0) tr(Y
T
0 W0)− tr(XT

0W0) tr(Y
T
0 Z0)

)
,

to get the two required expressions for WQ(X,Y, Z,W ). □

Corollary 5.9 (Bach curvature). The Bach tensor BQ : TQGr(k, n) × TQGr(k, n) → R is given
by

BQ(X,Y ) =
(n− 2)2

32(k(n− k)− 2)
tr(XY ) =

(n− 2)2

16(k(n− k)− 2)
tr(XT

0Y0)

with Q, X, Y parameterized as in (11).

Proof. Let m := k(n− k). Using [12, Equation (2-4)], we relate B to the Cotton tensor C as

BQ(X,Y ) =
1

m− 2

[ m∑
i=1

(∇XiCQ)(Xi, X, Y ) +
m∑
i=1

m∑
j=1

RicQ(Xi, Xj)WQ(X,Xi, Xj , Y )

]
,

where X1, . . . , Xm ∈ TQGr(k, n) is any orthonormal basis. It follows from the vanishing of C in
Corollary 5.7 that

BQ(X,Y ) =
n− 2

8(m− 2)

m∑
i=1

WQ(X,Xi, Xi, Y )

=
n− 2

8(m− 2)

[ m∑
i=1

RieQ(X,Xi, Xi, Y )−
m∑
i=1

n− 2

16(m− 1)
gQ 7 gQ(X,Xi, Xi, Y )

]

=
n− 2

8(m− 2)

[
RicQ(X,Y )− 2(n− 2)

16(m− 1)

m∑
i=1

(gQ(X,Xi)gQ(Y,Xi)− gQ(X,Y )gQ(Xi, Xi))

]
=

n− 2

8(m− 2)
RicQ(X,Y )− (n− 2)2

64(m− 1)(m− 2)
(1−m)gQ(X,Y )

=
(n− 2)2

32(m− 2)
gQ(X,Y ).

Here the first and the second equalities follow from Corollaries 5.4 and 5.8 respectively. The third
uses the definition of Ricci curvature and the value gQ7gQ calculated in the proof of Corollary 5.8.
The penultimate equality is a result of X1, . . . , Xm being an orthonormal basis. □

6. Geometric insights from these expressions

The intrinsic curvatures in Section 5 are, by definition, independent of the model we choose and
apply to Gr(k,Rn) as an abstract manifold. Indeed, the results in this section will all be stated
for the Grassmannian Gr(k,Rn), as opposed to its involution model Gr(k, n). The expressions
we found in Section 5 by way of the involution model Gr(k, n) permit us to concretely study the
geometry of the abstract manifold Gr(k,Rn), and thereby obtaining new geometric insights. Even
without going out of our way to search for such insights, we can already see a few that, as far as
we know, have never been observed before for the Grassmannian.

For example, we may deduce the following, which is mildly surprising because we do not even
know how to define a Plebański tensor [39].

Corollary 6.1 (Plebański curvature). The Plebański tensor of the Grassmannian is zero.
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An observant reader might have noticed that this is the only tensor mentioned in Section 1
whose definition did not appear in Section 3. The reason is that we do not know how to define the
Plebański tensor in the coordinate-free manner adopted in modern mathematics. Every definition
in the literature only gives its coordinates in terms of the coordinates of Z, the traceless Ricci
curvature. But as we do know from Corollary 5.4 that Z = 0 for the Grassmannian, its Plebański
tensor must be zero as well.

An observant reader might also have noticed that several of the expressions in Table 1 are
constant multiples of tr(XY ). Therein lies two small results:

Corollary 6.2 (Codazzi tensors I). The Ricci, Schouten, and Bach curvatures of the Grassmannian
are Codazzi.

Proof. Corollaries 5.4, 5.6, and 5.9 show that the tensors in question are all constant multiples of
g and therefore Codazzi since ∇g = 0. □

Corollary 6.3 (Codazzi tensors II). A symmetric bilinear form β on the Grassmannian with
constant trace is Codazzi if and only if ∇β = 0

Proof. If ∇β = 0, then it is Codazzi by definition. For the converse, we invoke the result [4] that
any Codazzi tensor with constant trace on a compact Riemannian manifold must have ∇β = 0 if
the sectional curvature κ ≥ 0 everywhere. By Corollary 5.3, the Grassmannian has κ ≥ 0. □

The proof of Corollary 6.2 throws up another observation.

Corollary 6.4 (Divergence-free tensors). The Riemann and Weyl curvatures of the Grassmannian
are divergence-free.

Proof. By Corollary 5.4, Ric is a constant multiple of g and so ∇Ric = 0. Since the Riemann
curvature is divergence-free if and only if the Ricci tensor is divergence-free and Codazzi [38,
Corollary 9.4.5], it follows from Corollary 6.2 that divR = 0 for the Grassmannian. The relation
[12, Equation 2-3] between Weyl and Cotton tensors

divW =
dimM− 2

dimM− 3
C

for any manifold M of dimension at least four, taken together with Corollary 5.7 that C = 0, yields
divW = 0. For dimM < 4, W is identically zero [12, Remark 2.3]. □

The delta invariants obtained in Theorem 5.5 have never before been calculated for a manifold
as complex as the Grassmannian. These values may look quotidian to the uninitiated, but they
are not. We give an example to show how the value of δ2,r found in Theorem 5.5 vastly improves
a classical result.

A geodesic 2-sphere is a 2-sphere S2 embedded in a Riemannian manifold M as a totally geodesic
submanifold. One fascinating fact about the geometry of the Grassmannian is that it contains a
geodesic 2-sphere [29, 45, 46, 49]. This is a very unique property. For instance, R3 contains no
geodesic 2-sphere, even though S2 is, ironically, the unit sphere of R3. The reason is that S2 is only
a Riemannian submanifold but not a totally geodesic submanifold of R3.

A key result in [47] is that Gr(k,Rn) contains one geodesic 2-sphere. We will show below that it
in fact contains a product of many geodesic 2-spheres. To the best of our knowledge, this insight is
new. It is also unusual. For instance, while the 3-sphere S3 is known to contain a geodesic 2-sphere,
it does not contain a product of more than one copy.

Theorem 6.5 (Embedding products of geodesic 2-spheres). (a) For any r ≤ min{⌊k/2⌋, ⌊n/4⌋},
the product of r copies of S2 can be embedded as a totally geodesic submanifold of Gr(k, n).

(b) For any r ≤ 2⌊k/2⌋⌊(n−k)/2⌋, an open subset of the product of r copies of S2 can be embedded
as a totally geodesic submanifold of Gr(k, n).
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Proof. Let r ≤ min{⌊k/2⌋, ⌊n/4⌋} and V1, . . . ,Vr ⊆ Rn be any r four-dimensional subspaces that

are orthogonal to each other, i.e., Vj ⊆
(⊕

i ̸=j Vi
)⊥

for all j = 1, . . . , r. Let W0 ⊆
(⊕r

i=1Vi
)⊥

be

a (k − 2r)-dimensional subspace. We define the embedding

ε : Gr(2,V1)× · · · ×Gr(2,Vr) → Gr(k,Rn), (W1, . . . ,Wr) 7→ W0 ⊕W1 ⊕ · · · ⊕Wr.

Clearly, the image of ε is totally geodesic. By [49, Section 4], since Vi is four-dimensional, Gr(2,Vi)
contains a geodesic 2-sphere1 Σ2

i for each i = 1, . . . , r. The restriction of ε to Σ2
1 × · · · × Σ2

r
∼=

S2 × · · · × S2 (r copies) gives the desired embedding in (a).
For (b), we will need to use the involution model. By Corollary 5.3, κQ(X,Y ) ≤ 1

4 for any

Q ∈ Gr(k, n) and orthonormal X,Y ∈ TQGr(k, n). By [49, Theorem 5], κQ(X,Y ) = 1
4 if and only

if X and Y are tangent vectors of a geodesic 2-sphere in Gr(k, n) passing through Q. Note that X
and Y must span the tangent space of this geodesic 2-sphere. We set k1 := ⌊k/2⌋, k2 := ⌊(n−k)/2⌋
as in the proof of Theorem 5.5, and also r := 2k1k2. Consider the commutative diagram

φ−1(U)

r/2 copies︷ ︸︸ ︷
R2×2 ⊕ · · · ⊕ R2×2 TIk,n−k

Gr(k, n)

U (S2 × S2)× · · · × (S2 × S2)︸ ︷︷ ︸
r/2 copies

Gr(k, n)

ρ

φ ψφ−1

ψ◦ρ◦φ−1

where φ,ψ are the exponential maps on the respective tangent spaces, U is an open subset of
S2 × · · · × S2 (r copies) on which φ−1 is well-defined, and ρ is the linear map defined by

(Bij)
k1,k2
i,j=1 7→



0 · · · 0 B1,1 · · · B1,k2+1
...

. . .
...

...
. . .

...
0 · · · 0 Bk1+1,1 · · · Bk1+1,k2+1

BT
1,1 · · · BT

k1+1,1 0 · · · 0
...

. . .
...

...
. . .

...
BT

1,k2+1 · · · BT
k1+1,k2+1 0 · · · 0


where we have used the same notation as in the proof of Theorem 5.5 and set Bpq to be the zero
matrix if either p = k1+1 or q = k2+1. As in the proof of Theorem 5.5, we may choose an orthonor-
mal basis X1, Y1, X2, Y2 for each copy of R2×2 such that κQ(ρ(X1), ρ(Y1)) = κQ(ρ(X2), ρ(Y2)) =

1
4 .

By shrinking U if necessary, we may assume that ψ is injective on ρ(φ−1(U)). Hence ψ ◦ ρ ◦φ−1(U)
is the required open subset in (b). □

Suppose k and n are both even. Then the upper bound in Theorem 6.5(b) is r = k(n − k)/2.
This is sharp as the dimension of the product of r + 1 copies of S2 is k(n − k) + 2 and it exceeds
the dimension of Gr(k, n); so a product of r + 1 copies of S2 cannot be embedded in Gr(k, n).

7. Why we favor the involution model

As we alluded to in Section 1, a secondary goal of this article is to demonstrate the advantages
of using the involution model (2). Here we will make some comparisons with other common models
of the Grassmannian in algebraic geometry (Section 7.1), differential geometry (Section 7.2), and
integral geometry (Section 7.3).

1When V is four-dimensional, any maximal subset of mutually isoclinic 2-planes in Gr(2,V) is a geodesic 2-sphere.
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To elaborate, as an abstract manifold, the Grassmannian Gr(k,Rn) is just the set of k-planes in
Rn. While any manifold, by definition, can be given local coordinates, experience tells us that they
are rarely useful beyond basic proofs — nobody really works with charts and atlases outside a first
course in differential geometry. Especially in applied mathematics, but also in pure mathematics,
the preferred approach is to give Gr(k,Rn) a system of global, extrinsic coordinates that are easier
to work with — this is what we mean by a model for Gr(k,Rn).

7.1. Plücker model. The standard model of the Grassmannian in algebraic geometry (see [21,
Lecture 6] and [41, Chapter 1, Section 4.1]) is as the set of rank-one alternating tensors in projective
space, i.e., the image of the Plücker embedding:

Gr(k,Rn) ∼=
{
[v1 ∧ · · · ∧ vk] ∈ P(Λk(Rn)) : v1, . . . , vk ∈ Rn linearly independent

}
.

While this has some desirable mathematical properties [31, Section 1], its main issue is that the

ambient space P(Λk(Rn)) is a manifold of exceedingly high dimension
(
n
k

)
− 1. This not only

presents a computational conundrum but also results in complex expressions for even relatively
basic quantities. For example, the second fundamental form has been derived in [1, Lemma 2.1 and
Proposition 2.3] for the Plücker model and both its calculation and the expression are significantly
more involved than those appearing in this article. In fact for even moderate values of k the
expressions in [1] are next-to-impossible to use or even compute since they involve lengthy sums of
high order tensors.

One observation from the extrinsic curvatures calculated in Section 4 is that the involution model
is extremely unlike the Plücker model. For example, the mean curvature of the image of the Plücker
embedding is well-known to be zero but it is far from zero in the involution model, as we saw in
Corollary 4.6. Given that the mean curvature is determined by the second fundamental form, this
shows that the second fundamental forms of both models must be different and therefore so are
their Gaussian and principal curvatures.

7.2. Quotient models. The most common models of the Grassmannian in differential geometry
(see [25, Chapter VII] and [8, Chapter 9]) are as one of several quotient spaces:

(16)

Gr(k,Rn) ∼= O(n)
/(
O(k)×O(n− k)

)
∼= V(k, n)/O(k)

∼= GL(n)
/(
GL(k)×GL(n− k)

)
∼= St(k, n)/GL(k),

where V(k, n) := {V ∈ Rn×k : V TV = I} and St(k, n) := {X ∈ Rn×k : rank(X) = k} are
two common models for the Stiefel manifold of k-frames in Rn. As usual O(n) = V(n, n) and
GL(n) = St(n, n) denote the orthogonal and general linear groups respectively.

By exploiting their homogeneous space structures, the more basic intrinsic curvatures such as
Riemann, Ricci, and sectional curvatures of Gr(k,Rn) are standard calculations that are classical
in differential geometry [9, 16, 40]. However, the use of quotient spaces inevitably gives rise to
formulas involving horizontal lifts of tangent vectors and arbitrary representatives of equivalence
classes. This introduces layer upon layer of ambiguities requiring multiple arbitrary choices.

We will walk the reader through the calculation of Riemann curvature in O(n)
/(
O(k)×O(n−k)

)
to illustrate the case in point. We will delimit equivalence classes in J · K below. In this model,

(i) a point JQK ∈ O(n)
/(
O(k)×O(n− k)

)
is a coset

JQK =
{
Q

[
Q1 0
0 Q2

]
∈ O(n) : (Q1, Q2) ∈ O(k)×O(n− k)

}
,

for some Q ∈ O(n) but Q is not canonically given;
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(ii) a tangent vector JXKJQK ∈ TJQK O(n)
/(
O(k)×O(n− k)

)
is an equivalence class of pairs

JXKJQK =
{(
Q,X + so(k)⊕ so(n− k)

)
∈ O(n)× so(n)

/(
so(k)⊕ so(n− k)

)}/
∼

where the equivalence relation is defined by(
Q,X + so(k)⊕ so(n− k)

)
∼

(
Q′, X ′ + so(k)⊕ so(n− k)

)
if and only if there is some (Q1, Q2) ∈ O(k)×O(n− k) with

(17)

Q′ = Q

[
Q1 0
0 Q2

]
,

X ′ + so(k)⊕ so(n− k) =

[
Q1 0
0 Q2

]T (
X + so(k)⊕ so(n− k)

) [Q1 0
0 Q2

]
.

Evidently, in this model even an object as basic as a tangent vector is an equivalence class (defined
by ∼) of equivalence classes (the coset X + so(k)⊕ so(n− k)). Every layer of equivalence relations
introduces a layer of ambiguity but more importantly it often takes additional effort in the form
extra calculations or computations.

Writing down a tangent vector JXKJQK as a pair of actual matrices (Q0, X0) requires making three
arbitrary choices: first a representative Q0 of JQK, followed by a representative (Q′, X ′ + so(k) ⊕
so(n − k)) of JXKJQK, and finally a representative X0 of X ′ + so(k) ⊕ so(n − k). Note that these
cannot be chosen arbitrarily nor a priori but need to satisfy (17). We will give the details below.

We begin by picking a representative Q0 ∈ π−1(JQK) ⊆ O(n) where π : O(n) → O(n)
/(

O(k) ×
O(n − k)

)
is the quotient map, a Riemannian submersion. To construct the horizontal lift X0 ∈

TQO(n) of a tangent vector JXKJQK ∈ TJQK O(n)
/(

O(k) × O(n − k)
)
, the recommendation in the

classic article of Edelman–Arias–Smith [17] is to use the isomorphism

dQπ :

{
Y ∈ Rn×n : QTY =

[
0 B

−BT 0

]
, B ∈ Rk×(n−k)

}
→ TJQK O(n)

/(
O(k)×O(n− k)

)
,

defined for any Q ∈ O(n) and JXKJQK ∈ TJQK O(n)
/(

O(k) × O(n − k)
)
, and then compute the

horizontal lift as X0 := (dQ0π)
−1(JXKQ0).

To get X0 explicitly as a matrix, we will need to pick a representative (Q′, X ′+so(k)⊕so(n−k))
for JXKJQ0K followed by a representative X̂ of X ′ + so(k) ⊕ so(n − k)). Observe that we cannot

simply set Q′ to be Q0 since (Q0, X̂) will not satisfy (17) in general. Indeed, as we require(
Q′, X̂

)
∼ (Q0,

(
Q′TQ0)

TX̂(Q′TQ0)
)
,

we will need to compute X0 as

X0 = Q0(Q
′TQ0)

T

[
0 B̂

−B̂T 0

]
(Q′TQ0) = Q′

[
0 B̂

−B̂T 0

]
Q′TQ0,

with B̂ the upper right k × (n− k) submatrix of X̂.
It might appear that to compute the Riemann curvature2 at JQK ∈ O(n)

/ (
O(k) × O(n −

k)
)
, we simply follow the procedure above to compute horizontal lifts X,Y, Z,W ∈ TQO(n) of

JXKJQK, JY KJQK, JZKJQK, JW KJQK ∈ TJQK O(n)
/(
O(k)×O(n− k)

)
and evaluate the expression on the

right hand-side:

(18) Rie(JXK, JY K, JZK, JW K) = −1

4
⟨[[X,Y ], Z],W ⟩.

2The expression comes from applying the standard method for calculating Riemann curvature on a quotient model
of any symmetric space [23, Theorem 4.2].



22 Z. LAI, L.-H. LIM, AND K. YE

But this is a notational illusion. Even if we start from the same representative Q0 ∈ π−1(JQK) ⊆
O(n), the procedure above will yield horizontal lifts of tangents vectors at different representatives
Q′
X , Q

′
Y , Q

′
Z , Q

′
W ∈ π−1(JQK). There is no guarantee that Q′

X = Q′
Y = Q′

Z = Q′
W = Q0 and

extra steps are necessary to align these different representatives. To align Q′
X with Q0, we need to

compute the horizontal lift of JXKJQK at Q0 as

(dQ0π)
−1(JXKJQK) = Q0P

T
XQ

′
X

T
(dQ′

X
π)−1(JXKJQK)PX = (dQ′

X
π)−1(JXKJQK)PX ,

where PX := (Q′
X)

TQ0. This process has to be repeated four times to get

(dQ0π)
−1(JXKJQK), (dQ0π)

−1(JY KJQK), (dQ0π)
−1(JZKJQK), (dQ0π)

−1(JW KJQK)

before we may evaluate (18).
Contrast this with Proposition 5.1, where the calculation of Riemann curvature in the involution

model avoids all these issues and the derivation of its expression is essentially a one-liner. It is
important to point out that although the expression in (18) superficially resembles our expression
in Proposition 5.1, this is also a notational illusion — they are completely different. The easiest
way to see this is by observing that the matrices in (18) are all skew-symmetric whereas those in
Proposition 5.1 are all symmetric.

The goal of Edelman, Arias, and Smith in [17] is to extend line search optimization methods
to a function f : O(n)

/(
O(k) × O(n − k)

)
→ R. By and large this permits them to work with

one search direction, i.e., a single tangent vector JXKJQK, at every point JQK. As a result, one
could get around the problem by optimizing f ◦ π : O(n) → R along horizontal directions. In
the calculation of curvatures, we are required to work with four tangent vectors simultaneously
and thus the alignment of different representatives of a given pair of equivalence classes cannot be
avoided.

Although we have elected to make our point with O(n)
/(
O(k)×O(n− k)

)
, the issues identified

above apply to every quotient model in (16). The root of these issues is that there is no global way
to describe tangent vectors of Gr(k,Rn) in any of these quotient models. Indeed, the absence of
such a global description is the reason why expressions for various curvatures in [48, 49, 9, 40, 16]
can only be given locally. The same reason accounts for the expediency of the involution model —
not only does it describe all points on the Grassmannian (2), it describes all tangent vectors at all
point in a single unified way (9).

7.3. Projection model. The standard model of the Grassmannian in integral geometry (see [36,
Chapter 9] and [34, Chapter 3]) is as the set of projection matrices:

(19) Gr(k,Rn) ∼= {P ∈ Sn : P 2 = P, tr(P ) = k}.
This is the model closest to the involution model. Indeed we showed in [31, Theorem 6.1] that they
are two instances in an infinite family of such models parameterized by the condition number of
matrices used. However they are also on two opposite ends: The projection model is the unique
model in this family that represents points as singular matrices (infinitely ill-conditioned) whereas
the involution model is the unique model in this family that represents points as orthogonal ma-
trices (perfectly conditioned). Every other model in this family represents points with matrices of
condition number strictly between one and infinity.

In numerical computations, methods based on projection matrices [44, Lecture 8] are well-known
to be significantly less stable than methods based on orthogonal matrices [44, Lecture 10] — in fact
this comparison is famously used to illustrate numerical stability of algorithms.

In hand calculations, the singularity of projection matrices in (19) is a handicap, especially when
contrasted against the ease of inverting orthogonal matrices (with a reminder that matrices in (2)
are automatically orthogonal).

The equations defining (19) are also less convenient than those defining (2). Any calculations
involving tangent vectors in the involution model would require one to differentiate Q2 = I to get
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XQ + QX = 0. But doing the same in the projection model would require one to differentiate
P 2 = P to get XP + PX = X. The latter is more difficult to use than the former; indeed any
calculation involving the latter would usually involve a change of coordinates P 7→ 2P−I to simplify
but that yields exactly the involution model since Q = 2P − I [27, Proposition 3.5]. Nevertheless,
because of this relation between the two models, every expression we derived for the involution
model in this article gives one for the projection model, up to a constant factor.

The result [19, Proposition 13] comes close to obtaining the principal curvatures in Corollary 4.7
using the projection model. Nevertheless, while (19) was used to model the manifold, the tangent
spaces in [19] were still modeled as horizontal spaces in the quotient model O(n)

/(
O(k)×O(n−k)

)
,

making the messy calculations in Section 7.2 all but unavoidable.

8. Conclusion

In studying curvatures, it is helpful to have an illuminating instance of a manifold M where
all different forms of curvatures can be explicitly calculated and compared side-by-side like in
Table 1. We are unaware of any nontrivial examples of this in the literature. The reason is clear in
retrospect: For many of these curvatures, their defining equations in terms of local coordinates are
near-impossible to calculate for anything more complex than a sphere. But even when embedded
in Rm, which one may do with Nash embedding, the resulting extrinsic coordinates are still difficult
to use. The key to our simple formulas in this article is that we have embedded our manifold in
a space of matrices, and matrices are endowed with far richer structures — we may multiply or
decompose them; impose orthogonality or symmetry on them; calculate their determinant, norm,
or rank; find their eigen- or singular values and vectors; among a myriad of yet other features

Future work. The multitude of curvatures discussed in this article might lead the reader to think
that we have exhausted the topic. This is not the case.

Some tensors are beyond our reach. The obstruction tensor [18, Equation 3.25] is a 2-tensor
that equals the Bach tensor in Corollary 5.9 for four-dimensional manifolds but dimGr(k, n) ̸= 4 if
(k, n) /∈ {(1, 5), (2, 4)}. The Lanczos tensor [28] is a 3-tensor that is an antiderivative of the Weyl
tensor in Corollary 5.8 and defined as a solution to a partial differential equation, which we are not
even sure has a solution for Gr(k, n). The Bel tensor [7] is a 4-tensor constructed by contracting
the Riemann tensor with itself in all possible ways and the Bel–Robinson tensor does the same
with the Weyl tensor but we are unable to simplify their expressions for Gr(k, n) to the extent of
those in Table 1.

Although we have limited the discussions in this article to the Levi-Civita connection, the natural
choice from the perspective of Riemannian geometry, we saw in Section 3.3 that there are other
alternatives if we study the Grassmannian in the context of non-Riemannian geometry. In this case
the torsion, nonmetricity, and cocurvature tensors discussed at the end of Section 3.2 may no longer
be zero. Using a different connection permits us to study yet other curvatures like the contorsion
tensor [6, Theorem 6.2.5], a 3-tensor that quantifies its deviation from Levi-Civita.

When presented with a complicated d-tensor T ∈ V⊗d, a common gambit in mathematics and
physics [2, 5, 33, 42, 43] is to decompose it by decomposing the space in which it lies. More precisely,
for any group G ⊆ GL(V), we decompose V⊗d =

⊕
λ∈ĜVλ into irreducible G-submodules, giving a

decomposition T =
∑

λ∈Ĝ Tλ with Tλ ∈ Vλ. An example is the Ricci decomposition of the Riemann

curvature into the scalar, traceless Ricci, and Weyl curvatures [5, Chapter 1, Section G],

Rie = W +
1

k(n− k)− 2
Z 7 g +

Sca

2k(n− k)
(
k(n− k)− 1

)g 7 g,

which we have implicitly used in our definition of W; here d = 4, V = TQGr(k, n), and G =
O
(
k(n− k)

)
. It would be interesting to find similar relations among the curvatures in Table 1.
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Last but not least, while manifold optimization is not one of our goals here, it remains at the back
of our minds. Existing optimization algorithms almost exclusively rely on two quantities — gradient
and Hessian. As shown in [13], it is certainly conceivable to use, say, the second fundamental form
to optimize a smooth function. This and other curvatures computed in Table 1 may turn out to
be useful in this regard.
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