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NUMERICAL ALGORITHMS ON THE AFFINE GRASSMANNIAN\ast 

LEK-HENG LIM\dagger , KEN SZE-WAI WONG\ddagger , AND KE YE\S 

Abstract. The affine Grassmannian is a noncompact smooth manifold that parameterizes all
affine subspaces of a fixed dimension. It is a natural generalization of Euclidean space, points being
zero-dimensional affine subspaces. We will realize the affine Grassmannian as a matrix manifold
and extend Riemannian optimization algorithms including steepest descent, Newton method, and
conjugate gradient, to real-valued functions on the affine Grassmannian. Like their counterparts for
the Grassmannian, they rely only on standard numerical linear algebra and are readily computable.
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1. Introduction. A k-dimensional affine subspace of \BbbR n, denoted \BbbA + b, is a k-
dimensional linear subspace \BbbA \subseteq \BbbR n translated by a displacement vector b \in \BbbR n. The
set of all k-dimensional affine subspaces in \BbbR n constitutes a smooth manifold called
the affine Grassmannian, denoted Graff(k, n), an analogue of the usual Grassmannian
Gr(k, n) that parameterizes k-dimensional linear subspaces in \BbbR n.

The affine Grassmannian is a relatively obscure object compared to its ubiquitous
cousin, the Grassmannian. Nevertheless, it is Graff(k, n), which like \BbbR n is a non-
compact manifold, that is the natural generalization of Euclidean space---points are
zero-dimensional affine subspaces and so Graff(0, n) = \BbbR n. The noncompactness
makes Graff(k, n) harder to study than Gr(k, n), which is compact. The two main
objectives of our article are to (i) develop a concrete foundation for optimization
algorithms on the affine Grassmannian in the spirit of [2, 8]; (ii) explicitly describe
three such algorithms: steepest decent, conjugate gradient, and Newton method.

As in [1, 2, 8] we do not view our manifold in an abstract fashion comprising
charts glued together; instead we emphasize the use of extrinsic coordinates in the
form of matrices for efficient computations. The affine Grassmannian then becomes
a concrete computational platform (like \BbbR n) on which geodesics, exponential maps,
parallel transports, Riemannian gradient, and Hessian, etc., may all be efficiently
computed using standard numerical linear algebra.

In fact, a main reason for the widespread applicability of the Grassmannian is
the existence of several excellent choices of extrinsic matrix coordinates, allowing sub-
spaces to be represented as matrices and thereby the use of a vast range of algorithms
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in numerical linear algebra [1, 2, 3, 8]. Such concrete realizations of an abstract
manifold are essential for application purposes. By providing a corresponding set
of tools for the affine Grassmannian, we have effectively extended the wide range of
data analytic techniques that use the Grassmannian as a model for linear subspaces
[9, 13, 12, 16, 22, 24, 28, 29, 30] to affine subspaces.

Before this work, the affine Grassmannian, as used in the sense1 of this article, i.e.,
the manifold that parameterizes k-dimensional affine subspaces in \BbbR n, has received
scant attention in both pure and applied mathematics. To the best of our knowledge,
this article and its companion [23] are the first to study it systematically. We have kept
the technical materials in this article to a bare minimum, providing just enough to
discuss the numerical optimization algorithms for affine Grassmannians. Readers are
referred to the aforementioned companion article [23] for the more technical properties
of the affine Grassmannian. We summarize our contributions:

\bullet In section 2, we show that the affine Grassmannian is a Riemannian manifold
that can be embedded as an open submanifold of the Grassmannian. We
introduce some basic systems of extrinsic coordinates: affine coordinates,
orthogonal affine coordinates, and projective affine coordinates. These simple
coordinate systems are convenient in proofs but are inadequate when it comes
to actual computations.

\bullet In section 3, we introduce two more sophisticated systems of coordinates
that will be critical to our optimization algorithms---Stiefel coordinates and
projection coordinates---representing points on the affine Grassmannian as
(n+1)\times (k+1) matrices with orthonormal columns and as (n+1)\times (n+1)
orthogonal projection matrices, respectively. We establish a result that allows
us to switch between these two systems of coordinates.

\bullet In section 4, we describe the common differential geometric objects essential
in our optimization algorithms---tangent spaces, exponential maps, geodesics,
parallel transport, gradients, Hessians---concretely in terms of Stiefel coordi-
nates and projection coordinates. In particular, we will see that once ex-
pressed as matrices in either coordinate system, these objects become readily
computable via standard numerical linear algebra.

\bullet In section 5, we describe (in pseudocodes) steepest descent, Newton method,
and conjugate gradient in Stiefel coordinates and the first two in projection
coordinates.

\bullet In section 6, we report the results of our numerical experiments on two test
problems: (a) a nonlinear nonconvex optimization problem that arises from a
coupling of a symmetric eigenvalue problem with a quadratic fractional pro-
gramming problem, and (b) the problem of computing Fr\'echet and Karcher
means of two affine subspaces. These problems are judiciously chosen---they
are nontrivial and yet their exact solutions may be determined in closed form,
which in turn allows us to ascertain whether our algorithms indeed converge
to their actual global optimizers. In the extensive tests we carried out on
both problems, the iterates generated by our algorithms converge to the true
solutions in every instance.

1We would like to caution the reader that the term ``affine Grassmannian"" is now used far more
commonly to refer to another very different object; see [4, 10, 20]. In this article, it will be used
exclusively in the sense of Definition 2.1. If desired, ``Grassmannian of affine subspaces"" may be used
to avoid ambiguity.
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The utility of these algorithms will become evident when one attempts to solve an
optimization problem, say, the test problem in (a):

minimize tr(X\sansT AX) +
1

1 + \| y\| 2
(y\sansT Ay + 2b\sansT y + c)

subject to X\sansT X = I, X\sansT y = 0

for X \in \BbbR n\times k and y \in \BbbR n as a general nonlinear optimization problem without
exploiting the fact that it can be transformed into an optimization problem on the
affine Grassmannian. As we reported in section 6, all standard nonlinear optimization
methods that we tried failed without finding a feasible point, never mind the global
minimizer; whereas both the steepest descent and conjugate gradient methods on the
affine Grassmannian converge to the global minimizer rapidly over a wide range of
values of n and k.

The key to our approach involves an embedding of Graff(k, n) into Gr(k+1, n+1).
In general, the cost of manifold optimization algorithms depends on the dimension
of the ambient space---if we embed Graff(k, n) into a manifold M and perform the
computations in M , the computational cost will be dependent on dim(M). So one
cannot do better than an ambient spaceM that has the same dimension as Graff(k, n),
which is what our method does: as we will see later,

dimGraff(k, n) = (n - k)(k + 1) = dimGr(k + 1, n+ 1),

and thus there is no increase to the intrinsic dimension of Graff(k, n). This we think
is the most compelling reason for embedding Graff(k, n) into Gr(k + 1, n+ 1).

2. Affine Grassmannian. The affine Grassmannian was first described in [19]
but has received relatively little attention compared to the Grassmannian of linear
subspaces Gr(k, n). Aside from a brief discussion in [27, section 9.1.3], we are unaware
of any systematic treatment. Nevertheless, given that it naturally parameterizes all
k-dimensional affine subspaces in \BbbR n, it is evidently an important object that could
rival the usual Grassmannian in practical applicability. To distinguish it from a dif-
ferent but identically named object, we may also refer to it as the Grassmannian of
affine subspaces.

We will establish some basic properties of the affine Grassmannian with a view
towards optimization algorithms in the style of [2, 8]. These results are neither dif-
ficult nor surprising, certainly routine to the experts, but have not appeared before
elsewhere to the best of our knowledge.

We remind the reader of some basic terminologies. We write span(X) for the
linear span of a set X and im(A) for the image of a matrix A regarded as a linear
operator; so if A = [a1, . . . , ak] \in \BbbR n\times k, where a1, . . . , ak \in \BbbR n are column vectors,
then im(A) = span\{ a1, . . . , ak\} . A k-plane is a k-dimensional linear subspace and a k-
flat is a k-dimensional affine subspace. A k-frame is an ordered basis of a k-plane and
we will regard it as an n\times k matrix whose columns a1, . . . , ak are the basis vectors. A
flag is a strictly increasing sequence of nested linear subspaces, \BbbX 0 \subset \BbbX 1 \subset \BbbX 2 \subset \cdot \cdot \cdot .
A flag is said to be complete if dim\BbbX k = k, finite if k = 0, 1, . . . , n, and infinite if
k \in \BbbN \cup \{ 0\} . We write Gr(k, n) for the Grassmannian of k-planes in \BbbR n, V(k, n) for
the Stiefel manifold of orthonormal k-frames, and O(n) := V(n, n) for the orthogonal
group. We may regard V(k, n) as a homogeneous space,

(2.1) V(k, n) \sim = O(n)/O(n - k),
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or more concretely as the set of n\times k matrices with orthonormal columns; here O(n - k)
is identified with a subgroup of O(n) by regarding A \in O(n  - k) as [ I 0

0 A ] \in O(n).
There is a right action of the orthogonal group O(k) on V(k, n): For Q \in O(k) and
A \in V(k, n), the action yields AQ \in V(k, n) and the resulting homogeneous space is
Gr(k, n), i.e.,

(2.2) Gr(k, n) \sim = V(k, n)/O(k) \sim = O(n)/
\bigl( 
O(n - k)\times O(k)

\bigr) 
.

By (2.2), \BbbA \in Gr(k, n) may be identified with the equivalence class of its orthonormal
k-frames \{ AQ \in V(k, n) : Q \in O(k)\} . Note that im(AQ) = im(A) for Q \in O(k).

Definition 2.1 (affine Grassmannian). Let k < n be positive integers. The
Grassmannian of k-dimensional affine subspaces in \BbbR n or Grassmannian of k-flats in
\BbbR n, denoted by Graff(k, n), is the set of all k-dimensional affine subspaces of \BbbR n.

This set-theoretic definition reveals little about the rich geometry behind
Graff(k, n), which we will see is a smooth Riemannian manifold intimately related
to the Grassmannian Gr(k + 1, n+ 1).

Throughout this article, a blackboard boldfaced letter \BbbA will always denote a
subspace and the corresponding normal typeface letter A will then denote a matrix of
basis vectors (often but not necessarily orthonormal) of \BbbA . We denote a k-dimensional
affine subspace as \BbbA + b \in Graff(k, n), where \BbbA \in Gr(k, n) is a k-dimensional linear
subspace and b \in \BbbR n is the displacement of \BbbA from the origin. If A = [a1, . . . , ak] \in 
\BbbR n\times k is a basis of \BbbA , then

(2.3) \BbbA + b := \{ \lambda 1a1 + \cdot \cdot \cdot + \lambda kak + b \in \BbbR n : \lambda 1, . . . , \lambda k \in \BbbR \} .

The notation \BbbA + b may be taken to mean a coset of the subgroup \BbbA in the additive
group \BbbR n or the Minkowski sum of the sets \BbbA and \{ b\} in the Euclidean space \BbbR n.
The dimension of \BbbA + b is defined to be the dimension of the vector space \BbbA . As one
would expect of a coset representative, the displacement vector b is not unique: For
any a \in \BbbA , we have \BbbA + b = \BbbA + (a+ b).

Since a k-dimensional affine subspace of \BbbR n may be described by a k-dimensional
subspace of \BbbR n and a displacement vector in \BbbR n, it might be tempting to guess that
Graff(k, n) is identical to Gr(k, n)\times \BbbR n. However, as we have seen, the representation
of an affine subspace as \BbbA + b is not unique and we emphasize that

Graff(k, n) \not = Gr(k, n)\times \BbbR n.

Although Graff(k, n) can be regarded as a quotient of Gr(k, n)\times \BbbR n, this description
is not used in our article. Instead we point interested readers to [23] for details on
this and other quotient structures of Graff(k, n).

We may choose an orthonormal basis for \BbbA so that A \in V(k, n) and choose b to be
orthogonal to \BbbA so that A\sansT b = 0. Hence we may always represent \BbbA + b \in Graff(k, n)
by a matrix [A, b0] \in \BbbR n\times (k+1), where A\sansT A = I and A\sansT b0 = 0; in this case we call
[A, b0] orthogonal affine coordinates. A moment's thought would reveal that any two
orthogonal affine coordinates [A, b0], [A

\prime , b\prime 0] \in \BbbR n\times (k+1) of the same affine subspace
\BbbA + b must have A\prime = AQ for some Q \in O(k) and b\prime 0 = b0.

We will not insist on using orthogonal affine coordinates at all times as they
can be unnecessarily restrictive, especially in proofs. Without these orthogonality
conditions, a matrix [A, b0] \in \BbbR n\times (k+1) that represents an affine subspace \BbbA + b in the
sense of (2.3) is called its affine coordinates.

Our main goal is to show that the vast array of optimization techniques [1, 2, 3,
8, 14] may be adapted to the affine Grassmannian. In this regard, it is the following
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Fig. 1. The affine subspace \BbbA + b is given by the x-axis \BbbA displaced by b along the y-axis. The
embedding j : Graff(k, n) \rightarrow Gr(k + 1, n + 1) takes \BbbA + b to the smallest 2-plane containing \BbbA and
b+ e3, where e3 is the standard unit vector along the z-axis.

view of Graff(k, n) as an embedded open submanifold of Gr(k + 1, n + 1) that will
prove most useful. Our construction of this embedding is illustrated in Figure 1 and
formally stated in Theorem 2.2.

A Grassmannian comes equipped with a Radon measure [25, section 3.9] and all
measure theoretic statements on Gr(k, n) will be with respect to this. We also remind
the reader of two basic terminologies: Let M and N be smooth manifolds. Then N is
called an open submanifold of M if there is a smooth injective map f : N \rightarrow M such
that f(N) is an open subset of M . A smooth map f : N \rightarrow M is called an embedding
if f is injective and the differential map dfx : \sansT x(N) \rightarrow \sansT f(x)(M) is also injective at
any x \in N .

Theorem 2.2. Let n \geq 2 and 1 \leq k \leq n. The affine Grassmannian Graff(k, n)
is an open submanifold of Gr(k+1, n+1) whose complement has codimension at least
two and measure zero. For concreteness, we will use the map

(2.4) j : Graff(k, n) \rightarrow Gr(k + 1, n+ 1), \BbbA + b \mapsto \rightarrow span(\BbbA \cup \{ b+ en+1\} ),

where en+1 = (0, . . . , 0, 1)\sansT \in \BbbR n+1 as our default embedding map.

Proof. We will first prove that j as defined in (2.4) is an injective map and its
image is an open subset of Graff(k, n). Let \BbbA + b \in Graff(k, n). First we observe that
whenever

span(\BbbA \cup \{ b+ en+1\} ) = span(\BbbA \prime \cup \{ b\prime + en+1\} ),

we have that b\prime + en+1 \in span(\BbbA \cup \{ b+ en+1\} ). This implies that b\prime  - b \in \BbbA since \BbbA is
a subspace of \BbbR n. So \BbbA = \BbbA \prime and therefore \BbbA + b = \BbbA \prime + b\prime , i.e., the map j is injective.

Next, for the complement of j
\bigl( 
Graff(k, n)

\bigr) 
in Gr(k+1, n+1), note that a (k+1)-

dimensional linear subspace \BbbB of \BbbR n+1 is an image of some \BbbA + b \in Graff(k, n)
under the map j iff the (n + 1)th coordinate of some vector in \BbbB is nonzero. So
the complement consists of all \BbbB contained in the subspace \BbbR n of \BbbR n+1, i.e., it is
diffeomorphic to the Grassmannian Gr(k + 1, n), which has dimension (k + 1)(n  - 
k  - 1) = (k + 1)(n - k) - (k + 1), thus codimension k + 1 \geq 2 and, thus, of measure
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zero. Being diffeomorphic to Gr(k+1, n), the complement of j
\bigl( 
Graff(k, n)

\bigr) 
is a closed

subset of Gr(k + 1, n+ 1) and thus j
\bigl( 
Graff(k, n)

\bigr) 
is an open subset.

In the proof we have identified \BbbR n with the subset

\{ (x1, . . . , xn, 0)
\sansT \in \BbbR n+1 : x1, . . . , xn \in \BbbR \} 

to obtain a complete flag \{ 0\} \subset \BbbR 1 \subset \BbbR 2 \subset \cdot \cdot \cdot \subset \BbbR n \subset \BbbR n+1 \subset \cdot \cdot \cdot . Given this, our
choice of en+1 in the embedding j in (2.4) is the most natural one. Henceforth we
will often identify Graff(k, n) with its embedded image j

\bigl( 
Graff(k, n)

\bigr) 
. Whenever we

speak of Graff(k, n) as if it is a subset of Gr(k+1, n+1), we are implicitly assuming
this identification. In this regard, we may view Gr(k+1, n+1) as a compactification
of the noncompact manifold Graff(k, n). Note that any embedding of \BbbR n into \BbbR n+1

(mapping \BbbR n to an n-dimensional subspace of \BbbR n+1) will give a different embedding
of Graff(k, n) into Gr(k + 1, n + 1). While we would argue that there is a natural
simplicity with our preferred choice of embedding, we are open to the possibility that
depending on the application under consideration, other embeddings could be useful
as well. Fortunately, the subsequent discussions in this article can be readily adapted
to a different choice of embedding via a linear change of coordinates.

As an open subset of Gr(k+1, n+1), Graff(k, n) inherits a smooth structure from
that on Gr(k + 1, n + 1) but one may also define a smooth structure on Graff(k, n)
intrinsically, i.e., in a way that does not depend on the map j. Nevertheless these two
smooth structures are identical. We refer interested readers to [23] for the details.

From Theorem 2.2, we derive a few other observations that will be important
for our optimization algorithms. As we mentioned at the end of section 1, from the
perspective of optimization, the most important feature of the embedding j is that it
does not increase dimension; since the computational costs of optimization algorithms
invariably depend on the dimension of the ambient space, it is ideal in this regard.

Corollary 2.3. Let n \geq 2 and 1 \leq k \leq n. Graff(k, n) is a path-connected
Riemannian manifold with the canonical metric induced from that of Gr(k+1, n+1).
In addition,
(i) the dimension of the ambient manifold Gr(k + 1, n + 1) is exactly the same as

Graff(k, n), i.e.,

dimGraff(k, n) = (n - k)(k + 1) = dimGr(k + 1, n+ 1);

(ii) the geodesic distance between two points \BbbA + b and \BbbB + c in Graff(k, n) is equal
to that between j(\BbbA + b) and j(\BbbB + c) in Gr(k + 1, n+ 1);

(iii) if f : Graff(k, n) \rightarrow \BbbR is a continuous function that can be extended to\widetilde f : Gr(k + 1, n+ 1) \rightarrow \BbbR ,

then the minimizer and maximizer of \widetilde f are almost surely attained in Graff(k, n)
with respect to the uniform probability measure on Gr(k + 1, n+ 1).

Proof. Again, we will identify Graff(k, n) with its embedded image j(Graff(k, n))
so that an expression like \BbbA + b \in Gr(k + 1, n+ 1) is understood to mean j(\BbbA + b) \in 
Gr(k + 1, n + 1). It is a basic fact in differential geometry [21, Chapter 8] that
every open subset of a Riemannian manifold is also a Riemannian manifold with the
induced metric. Explicit expressions for the Riemannian metric on Graff(k, n) will
be discussed later in Propositions 4.1(ii) and 4.4(ii). (i) follows from Theorem 2.2,
i.e., Graff(k, n) is an open submanifold of Gr(k + 1, n + 1). Since the codimension
of the complement of Graff(k, n) in Gr(k + 1, n+ 1) is at least two, (ii) follows from
the transversality theorem in differential topology [15], as we will show next. Let
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X := Gr(k+1, n+1)\setminus Graff(k, n), i.e., the complement of Graff(k, n) in Gr(k+1, n+1).
As we noted in the proof of Theorem 2.2, X is diffeomorphic to Gr(k + 1, n), which
is of dimension (k + 1)(n - k  - 1), and thus

dim(X) + 1 < dimGr(k + 1, n+ 1).

This implies that every curve \gamma on Gr(k + 1, n + 1) can be perturbed to some \gamma \prime so
that \gamma \prime \cap X = \varnothing . Since geodesic distance between two points x0 and x1 on a manifold
M is defined by

dM (x0, x1) := inf\{ L(\gamma ) : \gamma curve connecting x0 and x1\} 

with L(\gamma ) the length of \gamma , it follows that

dGraff(k,n)(\BbbA + b,\BbbB + c) \geq L(\gamma 0),

where \gamma 0 is the shortest geodesic curve in Gr(k+1, n+1) connecting \BbbA + b and \BbbB + c.
Now, for any \varepsilon > 0, we may perturb \gamma 0 to \gamma \varepsilon so that \gamma \varepsilon \cap X = \varnothing , i.e., \gamma \varepsilon lies entirely
within Graff(k, n), and L(\gamma \varepsilon ) = L(\gamma 0) + \varepsilon . So we have

dGraff(k,n)(\BbbA + b,\BbbB + c) \leq L(\gamma 0) + \varepsilon ,

and since \varepsilon > 0 can be made arbitrarily small,

dGraff(k,n)(\BbbA + b,\BbbB + c) = L(\gamma 0) = dGr(k+1,n+1)(\BbbA + b,\BbbB + c),

where the second equality is by our choice of \gamma 0. Note that the existence of \gamma \varepsilon , lying
entirely within Graff(k, n) and connecting any pair of points \BbbA +b,\BbbB +c \in Graff(k, n),
also shows that Graff(k, n) is path connected. For (iii), first note that the Radon
measure on Gr(k + 1, n + 1) is finite on the whole space since Gr(k + 1, n + 1) is
compact and thus we may normalize it to give a uniform probability measure. It also
follows from the compactness of Gr(k+1, n+1) that \widetilde f always attains its extrema on
Gr(k+1, n+1). That the minimizer and maximizer lie in Graff(k, n) with probability
one is then a consequence of the fact that its complement has null measure.

Note that (ii) and (iii) rely on Theorem 2.2 and do not hold in general for other
embedded manifolds. For example, if B is the solid unit ball in \BbbR 3 and M is the
complement of B in \BbbR 3, then (ii) and (iii) obviously fail to hold for M . Clearly,
the uniform probability measure in (iii) may be replaced by any probability measure
that is absolutely continuous with respect to it, e.g., those corresponding to the von
Mises--Fisher or Langevin--Gaussian distributions in [23].

A word about why we have excluded k = 0 from Theorem 2.2 and Corollary 2.3: In
this case, Graff(0, n) = \BbbR n and Gr(1, n+1) = \BbbR \BbbP n, the n-dimensional real projective
space; the map j in (2.4) is the classical embedding of \BbbR n into \BbbR \BbbP n. If we regard \BbbR \BbbP n

as a disjoint union
\BbbR \BbbP n = \BbbR n \sqcup \BbbR n - 1 \sqcup \cdot \cdot \cdot \sqcup \BbbR 0,

then the copy of \BbbR n on the right is precisely j(\BbbR n). Thus the complement of j(\BbbR n)
has codimension one in \BbbR \BbbP n and Corollary 2.3(ii) and (iii) do not hold for k = 0
(although (i) does).

The Riemannian metric on j(\BbbR n) induced from that on \BbbR \BbbP n is also not the usual
Euclidean metric on \BbbR n. Indeed, if we regard \BbbR \BbbP n as \BbbS n with antipodal points iden-
tified, then j : \BbbR n \rightarrow \BbbR \BbbP n is the stereographic projection and j(\BbbR n) is the upper
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hemisphere2 of \BbbS n where each point in j(\BbbR n) is identified with its antipodal point
on the lower hemisphere. The Riemannian metric on j(\BbbR n) is simply the one on \BbbS n
restricted to the upper hemisphere.

It is sometimes desirable to represent elements of Gr(k, n) as actual matrices
instead of equivalence classes of matrices. The Grassmannian has a well-known rep-
resentation [27, Example 1.2.20] as rank-k orthogonal projection3 matrices or, equiv-
alently, trace-k idempotent symmetric matrices:

(2.5) Gr(k, n) \sim = \{ P \in \BbbR n\times n : P \sansT = P 2 = P, tr(P ) = k\} .

Note that rank(P ) = tr(P ) for an orthogonal projection matrix P . A straightforward
affine analogue of (2.5) for Graff(k, n) is simply

(2.6) Graff(k, n) \sim = \{ [P, b] \in \BbbR n\times (n+1) : P \sansT = P 2 = P, tr(P ) = k, Pb = 0\} ,

where \BbbA + b \in Graff(k, n) with orthogonal affine coordinates [A, b0] \in \BbbR n\times (k+1) is
represented as4 [AA\sansT , b0] \in \BbbR n\times (n+1). We call this the matrix of projection affine
coordinates for \BbbA + b.

There are three particularly useful systems of matrix coordinates on the Grass-
mannian: A point on Gr(k, n) may be represented as (i) an equivalence class of
matrices A \in \BbbR n\times k with linearly independent columns such that A \sim AS for any
S \in GL(k), the group of invertible k \times k matrices; (ii) an equivalence class of ma-
trices A \in V(k, n) with orthonormal columns such that A \sim AQ for any Q \in O(k);
(iii) a projection matrix P \in \BbbR n\times n satisfying P 2 = P \sansT = P and tr(P ) = k. These
correspond to representing \BbbA by (i) bases of \BbbA , (ii) orthonormal bases of \BbbA , (iii) an
orthogonal projection onto \BbbA . The affine coordinates, orthogonal affine coordinates,
and projection affine coordinates introduced in this section are analogues of (i), (ii),
and (iii), respectively.

These relatively simplistic extrinsic coordinates are inadequate in computations.
As we will see in sections 4 and 5, explicit representations of tangent space vectors and
geodesics, effective computations of exponential maps, parallel transports, gradients,
and Hessians, require more sophisticated systems of extrinsic matrix coordinates. In
section 3 we will introduce two of these.

Nevertheless, the simpler coordinate systems in this section do serve a valuable
role---they come in handy in proofs, where the more complicated systems of coordi-
nates in section 3 can be unnecessarily cumbersome. The bottom line is that different
coordinates are good for different purposes5 and having several choices makes the
affine Grassmannian a versatile platform in applications.

3. Matrix coordinates for the affine Grassmannian. One reason for the
wide applicability of the Grassmannian is the existence of several excellent choices
of extrinsic coordinates in terms of matrices, allowing subspaces to be represented as
matrices and thereby facilitating the use of a vast range of algorithms in numerical
linear algebra [1, 2, 3, 8]. Here we will introduce two systems of extrinsic coordinates,

2Here hemispheres are open hemispheres, i.e., the equator is excluded.
3A projection matrix satisfies P 2 = P and an orthogonal projection matrix is in addition sym-

metric, i.e., P \sansT = P . An orthogonal projection matrix P is not an orthogonal matrix unless P = I.
4If A is an orthonormal basis for the subspace \BbbA , then AA\sansT is the orthogonal projection onto \BbbA .
5This is also the case for Grassmannians: Orthonormal or projection matrix coordinates may be

invaluable for computations as in [8, 14] but they obscure mathematical properties evident in, say,
Pl\"ucker coordinates [26, Chapter 14].
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representing a point on Graff(n, k) as an (n+1)\times (k+1) orthonormal matrix and as
an (n+ 1)\times (n+ 1) projection matrix, respectively.

For an affine subspace \BbbA + b \in Graff(k, n), its orthogonal affine coordinates are
[A, b0] \in V(k, n) \times \BbbR n, where A\sansT b0 = 0, i.e., b0 is orthogonal to the columns of A.
However as b0 is in general not of unit norm, we may not regard [A, b0] as an element
of V(k + 1, n). With this in mind, we introduce the notion of Stiefel coordinates,
which is the most suitable system of coordinates for computations.

Definition 3.1. Let \BbbA + b \in Graff(k, n) and [A, b0] \in \BbbR n\times (k+1) be its orthogonal
affine coordinates, i.e., A\sansT A = I and A\sansT b0 = 0. The matrix of Stiefel coordinates for
\BbbA + b is the (n+ 1)\times (k + 1) matrix with orthonormal columns,

Y\BbbA +b :=

\biggl[ 
A b0/

\sqrt{} 
1 + \| b0\| 2

0 1/
\sqrt{} 

1 + \| b0\| 2

\biggr] 
\in V(k + 1, n+ 1).

Two orthogonal affine coordinates [A, b0], [A
\prime , b\prime 0] of \BbbA + b give two corresponding

matrices of Stiefel coordinates Y\BbbA +b, Y \prime 
\BbbA +b. By the remark after our definition of

orthogonal affine coordinates, A = A\prime Q\prime for some Q\prime \in O(k) and b0 = b\prime 0. Hence

(3.1) Y\BbbA +b =

\biggl[ 
A b0/

\sqrt{} 
1 + \| b0\| 2

0 1/
\sqrt{} 
1 + \| b0\| 2

\biggr] 
=

\biggl[ 
A\prime b\prime 0/

\sqrt{} 
1 + \| b\prime 0\| 2

0 1/
\sqrt{} 

1 + \| b\prime 0\| 2

\biggr] \biggl[ 
Q\prime 0
0 1

\biggr] 
= Y \prime 

\BbbA +bQ,

where Q :=
\bigl[ 
Q\prime 0
0 1

\bigr] 
\in O(k+1). Hence two different matrices of Stiefel coordinates for

the same affine space differ by an orthogonal transformation.

Proposition 3.2. Consider the equivalence class of matrices given by

\biggl[ 
A b
0 \gamma 

\biggr] 
\cdot O(k + 1) :=

\biggl\{ \biggl[ 
A b
0 \gamma 

\biggr] 
Q \in \BbbR (n+1)\times (k+1) : Q \in O(k + 1)

\biggr\} 
.

The affine Grassmannian may be represented as a set of equivalence classes of
(n+ 1)\times (k + 1) matrices with orthonormal columns,

Graff(k, n) \sim =
\biggl\{ \biggl[ 

A b
0 \gamma 

\biggr] 
\cdot O(k + 1) :

\biggl[ 
A b
0 \gamma 

\biggr] 
\in V(k + 1, n+ 1)

\biggr\} 
(3.2)

\subseteq V(k + 1, n+ 1)/O(k + 1) = Gr(k + 1, n+ 1).(3.3)

An affine subspace \BbbA + b \in Graff(k, n) is represented by the equivalence class Y\BbbA +b \cdot 
O(k + 1) corresponding to its matrix of Stiefel coordinates.

Proof. The set of equivalence classes on the right-hand side (RHS) of (3.2) is
the set j

\bigl( 
Graff(k, n)

\bigr) 
, j as defined in (2.4), if Gr(k + 1, n + 1) is regarded as the

homogeneous space in (3.3).

The following lemma is easy to see from the definition of Stiefel coordinates and
our discussion above. It will be useful for the optimization algorithms in section 5,
allowing us to check feasibility, i.e., whether a point represented as an (n+1)\times (k+1)
matrix is in the feasible set j

\bigl( 
Graff(k, n)

\bigr) 
.
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Lemma 3.3.
(i) Any matrix of the form

\bigl[ 
A b
0 \gamma 

\bigr] 
\in V(k + 1, n+ 1), i.e.,

A\sansT A = I, A\sansT b = 0, \| b\| 2 + \gamma 2 = 1,

is the matrix of Stiefel coordinates for some \BbbA + b \in Graff(k, n).

(ii) Two matrices of Stiefel coordinates
\bigl[ 
A b
0 \gamma 

\bigr] 
,
\Bigl[ 
A\prime b\prime 

0 \gamma \prime 

\Bigr] 
\in V(k + 1, n + 1) represent

the same affine subspace iff there exists
\bigl[ 
Q\prime 0
0 1

\bigr] 
\in O(k + 1) such that\biggl[ 

A b
0 \gamma 

\biggr] 
=

\biggl[ 
A\prime b\prime 

0 \gamma \prime 

\biggr] \biggl[ 
Q\prime 0
0 1

\biggr] 
.

(iii) If
\bigl[ 
A b
0 \gamma 

\bigr] 
\in V(k + 1, n + 1) is a matrix of Stiefel coordinates for \BbbA + b, then

every other matrix of Stiefel coordinates for \BbbA + b belongs to the equivalence
class

\bigl[ 
A b
0 \gamma 

\bigr] 
\cdot O(k + 1), but not every matrix in

\bigl[ 
A b
0 \gamma 

\bigr] 
\cdot O(k + 1) is a matrix of

Stiefel coordinates for \BbbA + b.

The matrix of projection affine coordinates [P, b] \in \BbbR n\times (n+1) in (2.6) is not an
orthogonal projection matrix. With this in mind, we introduce the following notion.

Definition 3.4. Let \BbbA + b \in Graff(k, n) and [P, b] \in \BbbR n\times (n+1) be its projection
affine coordinates. The matrix of projection coordinates for \BbbA + b is the orthogonal
projection matrix

P\BbbA +b :=

\biggl[ 
P + bb\sansT /(\| b\| 2 + 1) b/(\| b\| 2 + 1)

b\sansT /(\| b| 2 + 1) 1/(\| b\| 2 + 1)

\biggr] 
\in \BbbR (n+1)\times (n+1).

Alternatively, in terms of orthogonal affine coordinates [A, b0] \in \BbbR n\times (k+1),

P\BbbA +b =

\biggl[ 
AA\sansT + b0b

\sansT 
0/(\| b0\| 2 + 1) b0/(\| b0\| 2 + 1)

b\sansT 0/(\| b0| 2 + 1) 1/(\| b0\| 2 + 1)

\biggr] 
\in \BbbR (n+1)\times (n+1).

It is straightforward to verify that P\BbbA +b is indeed an orthogonal projection matrix, i.e.,
P 2
\BbbA +b = P\BbbA +b = P \sansT 

\BbbA +b. Unlike Stiefel coordinates, projection coordinates of a given
affine subspace are unique. As in Proposition 3.2, the next result gives a concrete
description of the set j

\bigl( 
Graff(k, n)

\bigr) 
, j as defined in (2.4), but in terms of projection

coordinates. With this description, Graff(k, n) may be regarded as a subvariety of
\BbbR (n+1)\times (n+1).

Proposition 3.5. The affine Grassmannian may be represented as a set of
(n+ 1)\times (n+ 1) orthogonal projection matrices,

(3.4) Graff(k, n) \sim =
\biggl\{ \biggl[ 

P + bb\sansT /(\| b\| 2 + 1) b/(\| b\| 2 + 1)
b\sansT /(\| b| 2 + 1) 1/(\| b\| 2 + 1)

\biggr] 
\in \BbbR (n+1)\times (n+1) :

P \in \BbbR n\times n, P \sansT = P 2 = P, tr(P ) = k, Pb = 0

\biggr\} 
.

An affine subspace \BbbA + b \in Graff(k, n) is uniquely represented by its projection coor-
dinates P\BbbA +b.

Proof. Let \BbbA + b \in Graff(k, n) have orthogonal affine coordinates [A, b0]. Since
P = AA\sansT \in \BbbR n\times n is an orthogonal projection matrix that satisfies Pb0 = 0, the map
\BbbA + b \mapsto \rightarrow P\BbbA +b takes Graff(k, n) onto the set of matrices on the RHS of (3.4) with
inverse given by P\BbbA +b \mapsto \rightarrow im(P ) + b0.

The next lemma allows feasibility checking in projection coordinates.
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Lemma 3.6. An orthogonal projection matrix
\Bigl[ 

S d
d\sansT \gamma 

\Bigr] 
\in \BbbR (n+1)\times (n+1) is the matrix

of projection coordinates for some affine subspace in \BbbR n iff
(i) \gamma \not = 0;
(ii) S  - \gamma  - 1dd\sansT \in \BbbR n\times n is an orthogonal projection matrix;
(iii) Sd = 0.

In addition,
\Bigl[ 

S d
d\sansT \gamma 

\Bigr] 
\in \BbbR (n+1)\times (n+1) is the matrix of projection coordinates for \BbbA + b \in 

Graff(k, n) iff S  - \gamma  - 1dd\sansT = AA\sansT and \gamma  - 1d = b0, where [A, b0] \in \BbbR n\times (k+1) is \BbbA + b
in orthogonal affine coordinates.

The next lemma allows us to switch between Stiefel and projection coordinates.

Lemma 3.7.
(i) If Y\BbbA +b \in V(k + 1, n + 1) is a matrix of Stiefel coordinates for \BbbA + b, then the

matrix of projection coordinates for \BbbA + b is given by

P\BbbA +b = Y\BbbA +bY
\sansT 

\BbbA +b \in \BbbR (n+1)\times (n+1).

(ii) If P\BbbA +b \in \BbbR (n+1)\times (n+1) is the matrix of projection coordinates for \BbbA + b, then
there exists a matrix of Stiefel coordinates Y\BbbA +b for \BbbA + b such that P\BbbA +b =
Y\BbbA +bY

\sansT 

\BbbA +b.

Proof. (i) follows from the observation that for any Q \in O(k + 1),\biggl( \biggl[ 
A b/

\sqrt{} 
\| b\| 2 + 1

0 1/
\sqrt{} 

\| b\| 2 + 1

\biggr] 
Q

\biggr) \biggl( \biggl[ 
A b/

\sqrt{} 
\| b\| 2 + 1

0 1/
\sqrt{} 

\| b\| 2 + 1

\biggr] 
Q

\biggr) \sansT 

=

\biggl[ 
AA\sansT + bb\sansT /(\| b\| 2 + 1) b/(\| b\| 2 + 1)

b\sansT /(\| b| 2 + 1) 1/(\| b\| 2 + 1)

\biggr] 
.

For (ii), recall that the eigenvalues of an orthogonal projection matrix are 0's and
1's with multiplicities given by its nullity and rank, respectively. Thus we have an

eigenvalue decomposition of the form P\BbbA +b = V
\Bigl[ 
Ik+1

0n - k

\Bigr] 
V \sansT = Vk+1V

\sansT 

k+1, where the

columns of Vk+1 \in V(k+1, n+1) are the eigenvectors corresponding to the eigenvalue
1, which form an orthonormal basis of j(\BbbA + b) = span(\BbbA \cup \{ b+ en+1\} ). Let v \in \BbbR k+1

be the last row of Vk+1 and Q \in O(k + 1) be a Householder matrix [11] such that
Q\sansT v = \| v\| ek+1. Then Y\BbbA +b = Vk+1Q has the form required in Lemma 3.3(i) for a
matrix of Stiefel coordinates, as

Y \sansT 

\BbbA +bY\BbbA +b = Q\sansT V \sansT 

k+1Vk+1Q = I.

The above proof also shows that projection coordinates are unique even though
Stiefel coordinates are not. In principle, they are interchangeable via Lemma 3.7 but
in reality, one form is usually more natural than the other for a specific use.

4. Tangent space, exponential map, geodesic, parallel transport, gra-
dient, and Hessian on the affine Grassmannian. The embedding of Graff(k, n)
as an open smooth submanifold of Gr(k+1, n+1) by Theorem 2.2 and Corollary 2.3
allows us to borrow the Riemannian optimization framework on Grassmannians in
[1, 2, 3, 8] to develop optimization algorithms on the affine Grassmannian. We will
present various geometric notions and algorithms on Graff(k, n) in terms of both
Stiefel and projection coordinates. The higher dimensions required by projection
coordinates generally make them less desirable than Stiefel coordinates.

Propositions 4.1, Theorem 4.2, and Proposition 4.4 are, respectively, summaries
of [8] and [14] adapted for the affine Grassmannian. We will only give a sketch of the
proof, referring readers to the original sources for more details.

Proposition 4.1. The following are basic differential geometric notions on
Graff(k, n) expressed in Stiefel coordinates.
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(i) Tangent space: The tangent space at \BbbA + b \in Graff(k, n) has representation

\sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
=
\bigl\{ 
\Delta \in \BbbR (n+1)\times (k+1) : Y \sansT 

\BbbA +b\Delta = 0
\bigr\} 
.

(ii) Riemannian metric: The Riemannian metric g on Graff(k, n) is given by

g\BbbA +b(\Delta 1,\Delta 2) = tr(\Delta \sansT 
1\Delta 2)

for \Delta 1,\Delta 2 \in \sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
, i.e., Y \sansT 

\BbbA +b\Delta i = 0, i = 1, 2.

(iii) Exponential map: The geodesic with Y (0) = Y\BbbA +b and \.Y (0) = H in Graff(k, n)
is given by

Y (t) =
\bigl[ 
Y\BbbA +bV U

\bigr] \biggl[ cos(t\Sigma )
sin(t\Sigma )

\biggr] 
V \sansT ,

where H = U\Sigma V \sansT is a condensed SVD.
(iv) Parallel transport: The parallel transport of \Delta \in \sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
along the

geodesic given by H has expression

\tau \Delta (t) =

\biggl( \bigl[ 
Y\BbbA +bV U

\bigr] \biggl[  - sin(t\Sigma )
cos(t\Sigma )

\biggr] 
U \sansT + (I  - UU \sansT )

\biggr) 
\Delta ,

where H = U\Sigma V \sansT is a condensed SVD.
(v) Gradient: Let f : \BbbR (n+1)\times (k+1) \rightarrow \BbbR satisfy f(Y Q) = f(Y ) for every Y with

Y \sansT Y = I and Q \in O(k + 1). The gradient of f at Y = Y\BbbA +b is

\nabla f = fY  - Y Y \sansT fY \in \sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
,

where fY \in \BbbR (n+1)\times (k+1) with (fY )ij =
\partial f
\partial yij

.

(vi) Hessian: Let f be as in (v). The Hessian of f at Y = Y\BbbA +b is,
(a) as a bilinear form, \nabla 2f : \sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
\times \sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
\rightarrow \BbbR ,

\nabla 2f(\Delta ,\Delta \prime ) = fY Y (\Delta ,\Delta \prime ) - tr(\Delta \sansT \Delta \prime Y \sansT fY ),

where fY Y \in \BbbR (n+1)(k+1)\times (n+1)(k+1) with (fY Y )ij,hl =
\partial 2f

\partial yij\partial yhl
and

fY Y (\Delta ,\Delta \prime ) =

n+1,k+1,n+1,k+1\sum 
i,j,h,l=1

(fY Y )ij,hl\delta ij\delta 
\prime 
hl;

(b) as a linear map, \nabla 2f : \sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
\rightarrow \sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
,

\nabla 2f(\Delta ) =

n+1,k+1,n+1,k+1\sum 
i,j,h,l=1

(fY Y )ij,hl\delta ijEhl  - \Delta f\sansT 

Y Y,

where Ehl \in \BbbR (n+1)\times (k+1) has (h, l)th entry 1 and all other entries 0.

Sketch of proof. These essentially follow from the corresponding formulas for the
Grassmannian in [8, 14]. For instance, the Riemannian metric g is induced by the
canonical Riemannian metric on Gr(k + 1, n + 1) [8, section 2.5], the geodesic X(t)
on Gr(k, n) starting at X(0) = X\BbbA in the direction \.X(0) = H is given in [8, Equation
(2.65)] as

X(t) =
\bigl[ 
X\BbbA V U

\bigr] \biggl[ cos(t\Sigma )
sin(t\Sigma )

\biggr] 
V \sansT ,
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where X\BbbA is the matrix representation of X(0) and H = U\Sigma V \sansT is a condensed SVD
of H. The displayed formula in (iii) for a geodesic in Graff(k, n) is then obtained by
taking the inverse image of the corresponding geodesic in Gr(k + 1, n+ 1) under the
embedding j. Other formulas may be similarly obtained by the same procedure from
their counterparts on the Grassmannian.

As the complement of Graff(k, n) in Gr(k + 1, n + 1) has codimension at least
two, in Proposition 4.1(iii) the situation Y (t) \not \in Graff(k, n) occurs with probability
zero. For an analogue, one may think of a geodesic in \BbbR 3 with the x-axis removed.
This guarantees that Algorithms 5.1--5.5 will almost never lead to a point outside
Graff(k, n); and even if that happens, it does not matter since these algorithms are
formulated as infeasible methods (see discussion after Algorithm 5.1).

Since the distance-minimizing geodesic connecting two points on Gr(k+1, n+1)
is not necessarily unique,6 it is possible that there is more than one geodesic on
Graff(k, n) connecting two given points. However, distance-minimizing geodesics can
all be parameterized as in Proposition 4.1 even if they are not unique. In fact, we
may explicitly compute the geodesic distance between any two points on Graff(k, n).
Before stating the result, we first recall from Corollary 2.3(ii) that for any two affine
k-flats \BbbA + b and \BbbB + c \in Graff(k, n),

dGraff(k,n)(\BbbA + b,\BbbB + c) := dGr(k+1,n+1)

\bigl( 
j(\BbbA + b), j(\BbbB + c)

\bigr) 
,

where j is the embedding in (2.4), defines a notion of distance consistent with the
geodesic distance on a Grassmannian.

Theorem 4.2. Let \BbbA + b and \BbbB + c \in Graff(k, n). If

Y\BbbA +b =

\biggl[ 
A b0/

\sqrt{} 
1 + \| b0\| 2

0 1/
\sqrt{} 
1 + \| b0\| 2

\biggr] 
, Y\BbbB +c =

\biggl[ 
B c0/

\sqrt{} 
1 + \| c0\| 2

0 1/
\sqrt{} 

1 + \| c0\| 2

\biggr] 
are the matrices of Stiefel coordinates for \BbbA + b and \BbbB + c, respectively, then

(4.1) dGraff(k,n)(\BbbA + b,\BbbB + c) =

\Biggl( 
k+1\sum 
i=1

\theta 2i

\Biggr) 1/2

,

where \theta i = cos - 1 \sigma i and \sigma i is the ith singular value of Y \sansT 

\BbbA +bY\BbbB +c \in \BbbR (k+1)\times (k+1).

Proof. Any nonempty subset of a metric space is a metric space. It remains to
check that the definition does not depend on a choice of Stiefel coordinates. Let Y\BbbA +b

and Y \prime 
\BbbA +b be two different matrices of Stiefel coordinates for \BbbA + b and Y\BbbB +c and Y \prime 

\BbbB +c

be two different matrices of Stiefel coordinates for \BbbB + c. By Lemma 3.3(ii), there
exist Q1, Q2 \in O(k + 1) such that Y\BbbA +b = Y \prime 

\BbbA +bQ1, Y\BbbB +c = Y \prime 
\BbbB +cQ2. The required

result then follows from

\sigma i(Y
\sansT 

\BbbA +bY\BbbB +c) = \sigma i(Q
\sansT 
1Y

\prime \sansT 
\BbbA +bY

\prime 
\BbbB +cQ2) = \sigma i(Y

\prime \sansT 
\BbbA +bY

\prime 
\BbbB +c), i = 1, . . . , k.

The proof above also shows that \theta 1, . . . , \theta k+1 are independent of the choice of
Stiefel coordinates. We will call \theta i the ith affine principal angles between the respec-
tive affine subspaces and denote it by \theta i(\BbbA + b,\BbbB + c). Consider the SVD,

(4.2) Y \sansT 

\BbbA +bY\BbbB +c = U\Sigma V \sansT ,

6For example, there are two distance-minimizing geodesics on Gr(1, 2) \simeq \BbbS 1 for any pair of
antipodal points.
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where U, V \in O(k + 1) and \Sigma = diag(\sigma 1, . . . , \sigma k+1). Let

Y\BbbA +bU = [p1, . . . , pk+1], Y\BbbB +cV = [q1, . . . , qk+1].

We will call the pair of column vectors (pi, qi) the ith affine principal vectors between
\BbbA + b and \BbbB + c. These are the affine analogues of principal angles and vectors of
linear subspaces [6, 11, 32].

This expression for a geodesic in Proposition 4.1(iii) assumes that we are given
an initial point and an initial direction; the following gives an alternative expression
for a geodesic in Graff(k, n) that connects two given points.

Corollary 4.3. Let \BbbA +b and \BbbB +c \in Graff(k, n). Let \gamma : [0, 1] \rightarrow Gr(k+1, n+1)
be the curve

(4.3) \gamma (t) = span(Y\BbbA +bU cos(t\Theta )U \sansT +Q sin(t\Theta )U \sansT ),

where Q,U \in O(k + 1) and the diagonal matrix \Theta \in \BbbR (k+1)\times (k+1) are determined by
the SVD

(I  - Y\BbbA +bY
\sansT 

\BbbA +b)Y\BbbB +c(Y
\sansT 

\BbbA +bY\BbbB +c)
 - 1 = Q(tan\Theta )U \sansT .

The orthogonal matrix U is the same as that in (4.2) and \Theta = diag(\theta 1, . . . , \theta k+1) is
the diagonal matrix of affine principal angles. Then \gamma has the following properties:
(i) \gamma is a distance-minimizing curve connecting j(\BbbA + b) and j(\BbbB + c), i.e., attains

(4.1);
(ii) the derivative of \gamma at t = 0 is given by

(4.4) \gamma \prime (0) = Q\Theta U \sansT ;

(iii) there is at most one value of t \in (0, 1) such that \gamma (t) /\in j
\bigl( 
Graff(k, n)

\bigr) 
.

Sketch of proof. The expression in [8, Theorem 2.3] for a distance-minimizing
geodesic connecting two points in Gr(k + 1, n + 1) gives (4.3). By Theorem 2.2,
Graff(k, n) is embedded in Gr(k+1, n+1) as an open submanifold whose complement
has measure zero. Since the complement of Graff(k, n) in Gr(k + 1, n+ 1) comprises
points with coordinates [A0 ] \in \BbbR (n+1)\times (k+1), where A \in \BbbR n\times (k+1) and A\sansT A = I, a
simple calculation shows \gamma has at most one point not contained in Graff(k, n).

As a reminder, the situation \gamma (t) \not \in Graff(k, n) occurs with probability zero as
the complement of Graff(k, n) in Gr(k + 1, n + 1) has codimension at least two. We
conclude this section with the analogue of Proposition 4.1 in projection coordinates.

Proposition 4.4. The following are basic differential geometric notions on
Graff(k, n) expressed in projection coordinates. We write [X,Y ] = XY  - Y X for
the commutator bracket and \sansLambda 2(\BbbR n) for the space of n\times n skew symmetric matrices.
(i) Tangent space: The tangent space at \BbbA + b \in Graff(k, n) has representation

\sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
= \{ [P\BbbA +b,\Omega ] \in \BbbR (n+1)\times (n+1) : \Omega \in \sansLambda 2(\BbbR n+1)\} .

(ii) Riemannian metric: The Riemannian metric g on Graff(k, n) is given by

g\BbbA +b(\Delta 1,\Delta 2) = tr(\Delta \sansT 
1\Delta 2),

where \Delta 1,\Delta 2 \in \sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
, i.e., \Delta i = [P\BbbA +b,\Omega i] for some \Omega i \in \sansLambda 2(\BbbR n+1),

i = 1, 2.
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(iii) Exponential map: Let P = P\BbbA +b and \Theta \in \BbbR (n+1)\times (n+1) be such that [[P,\Omega ], P ] =

\Theta \sansT 

\Bigl[ 
0 Z

 - Z\sansT 0

\Bigr] 
\Theta and P = \Theta \sansT 

\bigl[ 
Ik+1 0
0 0

\bigr] 
\Theta . The exponential map is given by

exp\BbbA +b([P,\Omega ]) =
1

2
In+1 +\Theta T

\biggl[ 
1
2 cos(2

\surd 
ZZ\sansT )  - sinc(2

\surd 
ZZ\sansT )Z

 - Z\sansT sinc(2
\surd 
ZZ\sansT )  - 1

2 sin(2
\surd 
Z\sansT Z)

\biggr] 
\Theta .

(iv) Gradient: Let f : \BbbR (n+1)\times (n+1) \rightarrow \BbbR . The gradient of f at P = P\BbbA +b is

\nabla f = [P, [P, fP ]] \in \sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
,

where fP \in \BbbR (n+1)\times (n+1) with (fP )ij =
\partial f
\partial pij

.

(v) Hessian: Let f and fP be as in (iv). The Hessian of f at P = P\BbbA +b is,
(a) as a bilinear form, \nabla 2f : \sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
\times \sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
\rightarrow \BbbR ,

\nabla 2f(\Delta ,\Delta \prime )

= tr

\Biggl( \Biggl( \Biggl[ 
P,

\Biggl[ 
P,

n+1\sum 
i,j,h,l=1

(fPP )ij,hl\delta ijEhl

\Biggr] \Biggr] 
 - 1

2
[P, [\nabla f,\Delta ]] - 1

2
[\nabla f, [P,\Delta ]]

\bigr) 
\Delta \prime 

\Biggr) 
,

where fPP \in \BbbR (n+1)2\times (n+1)2 with (fPP )ij,hl =
\partial 2f

\partial pij\partial phl
and Ehl \in \BbbR (n+1)\times (n+1)

has (h, l)th entry 1 and all other entries 0;
(b) as a linear map, \nabla 2f : \sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
\rightarrow \sansT \BbbA +b

\bigl( 
Graff(k, n)

\bigr) 
,

\nabla 2f(\Delta ) =

\Biggl[ 
P,

\Biggl[ 
P,

n+1\sum 
i,j,h,l=1

(fPP )ij,hl\delta ijEhl

\Biggr] \Biggr] 
 - 1

2
[P, [\nabla f,\Delta ]] - 1

2
[\nabla f, [P,\Delta ]].

Sketch of proof. Again, these formulas follow from their counterparts on the Grass-
mannian in [14] by applying j - 1, as we did in the proof of Proposition 4.1.

A notable omission in Proposition 4.4 is a formula for parallel transport. While
parallel transport on Graff(k, n) in Stiefel coordinates takes a relatively simple form
in Proposition 4.1, its explicit expression in projection coordinates is extremely com-
plicated, and as a result unilluminating and error prone. We do not recommend
computing parallel transport in projection coordinates---one should instead change
projection coordinates to Stiefel coordinates by Lemma 3.7, compute parallel trans-
port in Stiefel coordinates using Proposition 4.1(iv), and then transform the result
back to projection coordinates by Lemma 3.7 again.

5. Steepest descent, conjugate gradient, and Newton method on the
affine Grassmannian. We now describe the methods of steepest descent, conjugate
gradient, and Newton on the affine Grassmannian. The steepest descent and Newton
methods are given in both Stiefel coordinates (Algorithms 5.1 and 5.3) and projection
coordinates (Algorithms 5.4 and 5.5) but the conjugate gradient method is only given
in Stiefel coordinates (Algorithm 5.2) as we do not have a closed-form expression for
parallel transport in projection coordinates.

We will rely on our embedding of Graff(k, n) into Gr(k + 1, n + 1) via Stiefel or
projection coordinates as given by Propositions 3.2 and 3.5, respectively. We then
borrow the corresponding method on the Grassmannian in [2, 8] in conjunction with
Propositions 4.1 and 4.4.

There is one caveat: Algorithms 5.1--5.5 are formulated as infeasible methods. If
we start from a point in Graff(k, n), regarded as a subset of Gr(k+1, n+1), the next
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Algorithm 5.1 Steepest descent in Stiefel coordinates.

Initialize \BbbA 0 + b0 \in Graff(k, n) in Stiefel coordinates Y0 := Y\BbbA 0+b0
\in \BbbR (n+1)\times (k+1).

for i = 0, 1, . . . do
set Gi = fY (Yi) - YiY

\sansT 
i fY (Yi);  \triangleleft gradient of f at Yi

compute  - Gi = U\Sigma V \sansT ;  \triangleleft condensed SVD
minimize f(Y (t)) = f(YiV cos(t\Sigma )V \sansT + U sin(t\Sigma )V \sansT ) over t \in \BbbR ;  \triangleleft exact line

search
set Yi+1 = Y (tmin);

end for

Algorithm 5.2 Conjugate gradient in Stiefel coordinates.

Initialize \BbbA 0 + b0 \in Graff(k, n) in Stiefel coordinates Y0 := Y\BbbA 0+b0
\in \BbbR (n+1)\times (k+1).

Set G0 = fY (Y0) - Y0Y
\sansT 
0 fY (Y0) and H0 =  - G0.

for i = 0, 1, . . . do
compute Hi = U\Sigma V \sansT ;  \triangleleft condensed SVD
minimize f(Y (t)) = f(YiV cos(t\Sigma )V \sansT + U sin(t\Sigma )V \sansT ) over t \in \BbbR ;  \triangleleft exact line

search
set Yi+1 = Y (tmin);
set Gi+1 = fY (Yi+1) - Yi+1Y

\sansT 
i+1fY (Yi+1);  \triangleleft gradient of f at Yi+1

procedure Descent(Yi, Gi, Hi)  \triangleleft set new descent direction at Yi+1

\tau Hi = ( - YiV sin(tmin\Sigma ) + U cos(tmin\Sigma ))\Sigma V
\sansT ;  \triangleleft parallel transport of Hi

\tau Gi = Gi  - 
\bigl( 
YiV sin(tmin\Sigma ) + U(I  - cos(tmin\Sigma ))

\bigr) 
U \sansT Gi;  \triangleleft parallel transport

of Gi

\gamma i = tr((Gi+1  - \tau Gi)
\sansT Gi+1)/ tr(G

\sansT 
iGi);

Hi+1 =  - Gi+1 + \gamma i\tau Hi;
end procedure
reset Hi+1 =  - Gi+1 if i+ 1 \equiv 0 mod (k + 1)(n - k);

end for

Algorithm 5.3 Newton's method in Stiefel coordinates.

Initialize \BbbA 0 + b0 \in Graff(k, n) in Stiefel coordinates Y0 := Y\BbbA 0+b0
\in \BbbR (n+1)\times (k+1).

for i = 0, 1, . . . do
set Gi = fY (Yi) - YiY

\sansT 
i fY (Yi);  \triangleleft gradient of f at Yi

find \Delta such that Y \sansT 
i \Delta = 0 and \nabla 2f(\Delta ) - \Delta (Y \sansT 

i fY (Yi)) =  - G;
compute \Delta = U\Sigma V \sansT ;  \triangleleft condensed SVD
Yi+1 = YiV cos(t\Sigma )V \sansT + U sin(t\Sigma )V \sansT ;  \triangleleft arbitrary step size t

end for

iterate along the geodesic may become infeasible, i.e., fall outside Graff(k, n). By
Theorem 2.2, this will occur with probability zero but even if it does, the algorithms
will still work fine as algorithms on Gr(k + 1, n+ 1).

If desired, we may undertake a more careful prediction--correction approach. In-
stead of having the points Yi+1 (in Stiefel coordinates) or Pi+1 (in projection coor-
dinates) be the next iterates, they will be ``predictors"" of the next iterates. We will
then use Lemmas 3.3 or 3.6 to check if Yi+1 or Pi+1 is in Graff(k, n). In the unlikely
scenario when they do fall outside Graff(k, n), e.g., if we have Yi+1 =

\bigl[ 
A b
0 \gamma 

\bigr] 
, where

A\sansT b \not = 0 or Pi+1 =
\Bigl[ 

S d
d\sansT \gamma 

\Bigr] 
, where Sd \not = 0, we will ``correct"" the iterates to feasible

points \widetilde Yi+1 or \widetilde Pi+1 by an appropriate reorthogonalization.
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Algorithm 5.4 Steepest descent in projection coordinates.

Initialize \BbbA 0 + b0 \in Graff(k, n) in projection coordinates P0 := P\BbbA 0+b0
\in 

\BbbR (n+1)\times (n+1).
for i = 0, 1, . . . do

set \nabla f(Pi) = [Pi, [Pi, fP (Pi)]];
find \Theta \in \BbbR (n+1)\times (n+1) and t > 0 so that Pi = \Theta \sansT 

\bigl[ 
Ik+1 0
0 0

\bigr] 
\Theta and  - t\nabla f(Pi) =\Bigl[ 

0 Z
 - Z\sansT 0

\Bigr] 
;

set Pi+1 = 1
2In+1 +\Theta T

\biggl[ 
1
2 cos(2

\surd 
ZZ\sansT )  - sinc(2

\surd 
ZZ\sansT )Z

 - Z\sansT sinc(2
\surd 
ZZ\sansT )  - 1

2 sin(2
\surd 
Z\sansT Z)

\biggr] 
\Theta ;

end for

Algorithm 5.5 Newton's method in projection coordinates.

Initialize \BbbA 0 + b0 \in Graff(k, n) in projection coordinates P0 := P\BbbA 0+b0
\in 

\BbbR (n+1)\times (n+1).
for i = 0, 1, . . . do

find \Omega i \in \sansLambda 2(\BbbR n+1) such that

[Pi, [Pi,\nabla 2f([Pi, [Pi,\Omega i]])]] - [Pi, [\nabla f(Pi), [Pi,\Omega i]]] =  - [Pi, [Pi,\nabla f(Pi)]];

find \Theta i \in SO(n+ 1) such that Pi = \Theta \sansT 
i

\bigl[ 
Ik+1 0
0 0

\bigr] 
\Theta i;  \triangleleft QR factorization

compute \Theta i(I  - [Pi, [Pi, t\Omega i]])\Theta 
\sansT 
i = QiRi;  \triangleleft QR factorization with positive

diagonal in Ri

set Pi+1 = \Theta \sansT 
iQi\Theta iPi\Theta 

\sansT 
iQ

\sansT 
i\Theta i;

end for

We recognize that the univariate optimization problem for finding the step size t
may not be easily solvable for a given choice of objective function f . The ``exact line
search"" step is intended to be a placeholder; it may be substituted for with any other
reasonable methodology for choosing step size.

6. Numerical experiments. We will present various numerical experiments on
two test problems to illustrate the conjugate gradient and steepest descent algorithms
in section 5. These problems are deliberately chosen to be nontrivial and yet have
closed-form solutions---so that we may check whether our algorithms have converged
to the true solutions of these problems. The measured ``error"" in any of these problems
will be taken to mean the distance between a true solution and the corresponding
computed solution, with distance as defined in (4.1). We implemented Algorithms 5.1
and 5.2 in MATLAB and Python and used a combination of (i) the Frobenius norm
of the Riemannian gradient, (ii) distance between successive iterates, and (iii) number
of iterations, for our stopping conditions.

6.1. Eigenvalue problem coupled with quadratic fractional program-
ming. Let A \in \BbbR n\times n be symmetric, b \in \BbbR n, and c \in \BbbR . We would like to solve

(6.1)
minimize tr(X\sansT AX) +

1

1 + \| y\| 2
(y\sansT Ay + 2b\sansT y + c)

subject to X\sansT X = I, X\sansT y = 0

over all X \in \BbbR n\times k and y \in \BbbR n. If we set y = 0 in (6.1), the resulting quadratic
trace minimization problem with orthonormal constraints is essentially a symmetric
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Fig. 2. Convergence trajectories of steepest descent and conjugate gradient for a quadratic
optimization problem on the affine Grassmannian Graff(3, 6).

eigenvalue problem; if we set X = 0 in (6.1), the resulting nonconvex optimization
problem is called quadratic fractional programming.

By rearranging terms, (6.1) transforms into a minimization problem over an affine
Grassmannian,

(6.2) min
\BbbX +y\in Graff(k,n)

tr

\biggl( \biggl[ 
X y/

\sqrt{} 
1 + \| y\| 2

0 1/
\sqrt{} 
1 + \| y\| 2

\biggr] \sansT \biggl[ 
A b
b\sansT c

\biggr] \biggl[ 
X y/

\sqrt{} 
1 + \| y\| 2

0 1/
\sqrt{} 

1 + \| y\| 2

\biggr] \biggr) 
,

which shows that the problem (6.1) is in fact coordinate independent, depending on
X and y only through the affine subspace im(X) + y = \BbbX + y. Formulated in this
manner, we may determine a closed-form solution via the eigenvalue decomposition
of
\bigl[ 
A b
b\sansT c

\bigr] 
---the optimum value is the sum of the k + 1 smallest eigenvalues.

Figure 2 shows convergence trajectories of steepest descent and conjugate gradient
in Stiefel coordinates, i.e., Algorithms 5.1 and 5.2, on Graff(3, 6) for the problem
(6.2). Graff(3, 6) is a 12-dimensional manifold; we generate A \in \BbbR 6\times 6, b \in \BbbR 6,
c \in \BbbR randomly with \scrN (0, 1) entries, and likewise pick a random initial point in
Graff(3, 6). The gradient of f(Y ) := tr

\bigl( 
Y \sansT 
\bigl[ 
A b
b\sansT c

\bigr] 
Y
\bigr) 
is given by \nabla f(Y ) =

\bigl[ 
A b
b\sansT c

\bigr] 
Y .

Both algorithms converge to the true solution but conjugate gradient converges twice
as fast when measured by the number of iterations, taking around 20 iterations for
near-zero error reduction as opposed to steepest descent's 40 iterations. The caveat is
that each iteration of conjugate gradient is more involved and requires roughly twice
the amount of time it takes for each iteration of steepest descent.

We perform more extensive experiments by taking the average of 100 instances
of the problem (6.1) for various values of k and n to generate tables of timing and
accuracy. Tables 1 and 3 are from the same set of numerical experiments; ditto for
Tables 2 and 4.
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Table 1
Accuracy (distance to true solution) of steepest descent and conjugate gradient for a quadratic

optimization problem on Graff(k, 100).

k 10 21 32 43 54 65 76 87 98

Steepest descent (\times 10 - 6) 0.61 3.1 1.5 1.7 2.9 6.8 1.2 0.25 0.1

Conjugate gradient (\times 10 - 8) 0.77 1.5 1.9 2.4 2.3 2.9 3.1 3.5 3.3

Table 2
Accuracy (distance to true solution) of steepest descent and conjugate gradient for a quadratic

optimization problem on Graff(6, n).

n 7 17 27 37 47 57 67 77 87

Steepest descent (\times 10 - 7) 4.4 4.8 4.4 4.7 4.7 4.7 4.3 4.7 4.1

Conjugate gradient (\times 10 - 6) 0.83 0.98 1.0 1.3 1.2 1.3 1.5 1.6 1.5

Table 3
Elapsed time (in seconds) of steepest descent and conjugate gradient for a quadratic optimization

problem on Graff(k, 100).

k 10 21 32 43 54 65 76 87 98

Steepest descent 0.6 0.89 1.4 1.4 1.8 1.9 2.0 2.0 1.3
Conjugate gradient 0.18 0.26 0.35 0.39 0.49 0.48 0.51 0.51 0.41

Table 4
Elapsed time (in seconds) of steepest descent and conjugate gradient for a quadratic optimization

problem on Graff(6, n).

n 7 17 27 37 47 57 67 77 87

Steepest descent 0.67 0.96 0.94 1.1 1.2 1.3 1.4 1.4 1.5
Conjugate gradient 0.23 0.29 0.3 0.34 0.33 0.38 0.39 0.39 0.42

Tables 1 and 2 show the robustness of the algorithm with respect to different
choices of k and n. Table 3 shows a modest initial increase followed by a decrease
in elapsed time to convergence as k increases---a reflection of the intrinsic dimension
of the problem as dim

\bigl( 
Graff(k, 100)

\bigr) 
= (k + 1)(100  - k) first increases and then

decreases. On the other hand, if we fix the dimension of ambient space, Table 4 shows
that the elapsed time increases with k. The results indicates that the elapsed time
increases moderately with the dimension of the affine Grassmannian. The takeaway
from Tables 1--4 is the lack of any conspicuous trend---speed and accuracy for both
algorithms remain relatively flat over the range of values of n and k compared.

For comparison, we attempted to solve (6.1) as a general nonlinear constrained
optimization problem using the MATLAB Optimization Toolbox. Even for values
of n and k as small as n = 4 and k = 2, every available method in the toolbox---
interior point, trust region, sequential quadratic programming, active set---failed with-
out finding a feasible point. There is not a single case that converged even with minor
adjustments of tolerance and maximum iterations to nondefault values.

6.2. Fr\'echet and Karcher means of affine subspaces. Let d = dGraff(k,n)

be the geodesic distance on Graff(k, n) as defined in (4.1). We would like to solve
for the minimizer \BbbX + y \in Graff(k, n) in the sum-of-square-distances minimization
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Fig. 3. Convergence trajectories of steepest descent and conjugate gradient for Fr\'echet mean
on the affine Grassmannian Graff(7, 19).

problem:

(6.3) min
\BbbX +y\in Graff(k,n)

m\sum 
i=1

d2(\BbbA i + bi,\BbbX + y),

where \BbbA i + bi \in Graff(k, n), i = 1, . . . ,m. The Riemannian gradient [17] of the
objective function

(6.4) fm(\BbbX + y) =

m\sum 
i=1

d2(\BbbA i + bi,\BbbX + y)

is given by

\nabla fm(\BbbX + y) =
1

2

m\sum 
i=1

log\BbbX +y(\BbbA i + bi),

where log\BbbX +y(\BbbA + b) denotes the derivative of the geodesic \gamma (t) connecting \BbbX + y and
\BbbA + b at t = 0 with an explicit expression given by (4.4).

The global minimizer of this problem is called the Fr\'echet mean and a local
minimizer is called a Karcher mean [18]. They are not equal in general [5] even for
the case m = 2, although in this case a Fr\'echet mean is the midpoint, i.e., t = 1/2,
of the geodesic connecting \BbbA 1 + b1 and \BbbA 2 + b2 given by the closed-form expression
(4.3).

We will take the Graff(7, 19), a 96-dimensional manifold, as our specific example.
Our objective function is f2(\BbbX + y) = d2(\BbbA 1 + b1,\BbbX + y) + d2(\BbbA 2 + b2,\BbbX + y) and we
set our initial point as one of the two affine subspaces.

The result, depicted in Figure 3, shows that steepest descent outperforms conju-
gate gradient in this specific example, unlike the example we considered in section 6.1,
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Table 5
Accuracy (distance to true solution) of steepest descent and conjugate gradient for Fr\'echet mean

on Graff(k, 10).

k 1 2 3 4 5 6 7 8 9

Steepest descent (\times 10 - 7) 5.3 5.1 4.6 4.8 4.4 4.9 4.7 4.6 5.0

Conjugate gradient (\times 10 - 1) 0.5 2.6 1.5 1.6 2.7 2.0 2.0 2.5 19.0

Table 6
Accuracy (distance to true solution) of steepest descent and conjugate gradient for Fr\'echet mean

on Graff(6, n).

n 7 8 9 10 11 12 13 14 15

Steepest descent (\times 10 - 7) 4.4 4.8 4.4 4.7 4.7 4.7 4.3 4.7 4.1

Conjugate gradient (\times 10 - 2) 0.36 1.6 1.3 1.3 1.2 1.5 1.5 1.4 1.6

Table 7
Elapsed time (in seconds) of steepest descent and conjugate gradient for Fr\'echet mean on

Graff(k, 10).

k 1 2 3 4 5 6 7 8 9

Steepest descent (\times 10 - 2) 4.0 4.6 4.9 5.1 5.1 5.5 5.3 5.1 5.4

Conjugate gradient (\times 10 - 2) 3.6 4.5 4.9 5.0 5.4 5.4 5.3 4.5 12.0

Table 8
Elapsed time (in seconds) of steepest descent and conjugate gradient for Fr\'echet mean on

Graff(6, n).

n 7 8 9 10 11 12 13 14 15

Steepest descent (\times 10 - 1) 3.1 3.0 3.5 3.3 3.7 4.1 3.8 4.1 4.3

Conjugate gradient (\times 10 - 1) 17.0 2.1 2.8 3.1 3.4 3.8 3.9 3.6 3.6

which shows the opposite. So each algorithm serves a purpose for a different type of
problem. On the other hand, when we attempted to find the Karcher mean of m > 2
affine subspaces by extending fm to the objective function in (6.3), we see faster
convergence (as measured by actual elapsed time) in conjugate gradient instead.

More extensive numerical experiments indicate that steepest descent is more accu-
rate than conjugate gradient by orders of magnitude in minimizing (6.4) (see Tables 5
and 6), but that both are about equally fast (see Tables 7 and 8). While these nu-
merical experiments are intended for testing our algorithms, we would like to point
out their potential application to model averaging, i.e., aggregating affine subspaces
estimated from different datasets.

7. Conclusion. We introduce the affine Grassmannian Graff(k, n), study its
basic differential geometric properties, and develop several concrete systems of coor-
dinates---three simple ones that are handy in proofs and two more sophisticated ones
intended for computations; the latter two we called Stiefel and projection coordi-
nates, respectively. We show that when expressed in terms of Stiefel or projection
coordinates, basic geometric objects on Graff(k, n) may be readily represented as
matrices and manipulated with standard routines in numerical linear algebra. With
these in place, we ported the three standard Riemannian optimization algorithms on
the Grassmannian---steepest descent, conjugate gradient, and Newton method---to
the affine Grassmannian. We demonstrated the efficacy of the first two algorithms
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through extensive numerical experiments on two nontrivial problems with closed-form
solutions, which allows us to ascertain the correctness of our results. The encouraging
outcomes in these experiments provide a positive outlook towards further potential
applications of our framework. Our hope is that numerical algorithms on the affine
Grassmannian could become a mainstay in statistics and machine learning, where es-
timation problems may often be formulated as optimization problems on Graff(k, n).

We end with a few words on future directions. In order to ascertain the correct-
ness of our algorithms, we have restricted our numerical experiments to problems for
which true solutions can be determined analytically. Our next goal is to use the algo-
rithms developed here to solve realistic problems for which solutions are not known
in advance. A more ambitious goal would be to develop the theory and algorithms
for convex optimization on the affine Grassmannian: Note that every continuous
geodesically convex function on Gr(k, n) is constant as it is compact [31], putting
a damper on ``convex optimization on the Grassmannian."" On the other hand, one
could potentially define a nontrivial class of continuous geodesically convex functions
on Graff(k, n), a noncompact manifold, and thus ``convex optimization on the affine
Grassmannian"" may be a possibility---in fact we already have a well-known example,
namely, convex optimization on Graff(0, n) = \BbbR n.
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