MOTIVATION

Recall the Fourier transform of functions on $(\mathbb{R}, +)$: if $f : \mathbb{R} \to \mathbb{R}$, $\int_{\mathbb{R}} f^2 < \infty$, then the Fourier transform of f is the function $\hat{f} : \mathbb{R} \to \mathbb{R}$ defined by

$$\hat{f}(h) := \int_{\mathbb{R}} \exp(-ihx) f(x) dx$$

We want to define a similar transformation on (compact) groups. In this tutorial we study the Fourier transform on \mathbb{S}_n , the symmetric group on n elements.

There are three aspects of Fourier transform:

- Algebraic: in a sense, the Fourier transform preserves some important algebraic structures of the group. For instance, if we act on the group $(\mathbb{R}, +)$ by a left translation: f'(x) = f(x-t), then this corresponds to a natural action on the Fourier transform of f: $\hat{f}'(h) = \exp^{-iht} \hat{f}(h)$. Or if we have convolution: $\widehat{f} * g(h) = \hat{f}(h)\hat{g}(h)$.
- Analytic: terms in the Fourier transform gives smoothness information on the function. This is important in signal processing.
- Algorithm: the efficiency of the Fast Fourier transform (FFT) makes it popular in practice.

Fourier transform on \mathbb{S}_n

Definition 1. A representation of a group G on a vector space V is a group homomorphism $\phi: G \to GL(V, \mathbb{F})$, where $GL(V, \mathbb{F})$ is the general linear group of a vector space V over the field \mathbb{F} .

When V is of dimension $d < \infty$ (which it is in our case), then we can identify $GL(V, \mathbb{F})$ with $GL_d(\mathbb{F})$, which is the space of invertible $d \times d$ matrices with entries in \mathbb{F} .

Example Let $G = \mathbb{S}_n$. Then $\rho : \mathbb{S}_n \to GL_d(\mathbb{F})$ is a representation of \mathbb{S}_n if and only if ρ is a homomorphism:

$$\rho(\sigma_1\sigma_2) = \rho(\sigma_1)\rho(\sigma_2) \text{ for } \sigma_1, \sigma_2 \in \mathbb{S}_n.$$

Example The exponential function $x \mapsto \exp(-ihx)$ is a representation of $(\mathbb{R}, +)$ on $GL_1(\mathbb{C})$.

This is the key in the usual Fourier transform. Note that h serves as an indexing over all possible representations of the group $(\mathbb{R}, +)$. Therefore, generalizing this idea, we define the Fourier transform for functions $f: \mathbb{S}_n \to \mathbb{C}$ as:

$$\hat{f}(\lambda) = \sum_{\sigma \in \mathbb{S}_n} f(\sigma) \rho_{\lambda}(\sigma)$$

where λ (for the moment) serves as an 'indexing' parameter.

Definition 2. An irreducible representation of a group is a group representation that has no nontrivial invariant subspaces. Otherwise it is called reducible.

On a compact group G, reducible representations over \mathbb{C} can be written as direct sum of irreducible representations. Hence we are interested in irreducible representations for \mathbb{S}_n . What are the possible representations on \mathbb{S}_n ?

FIGURE 1. Young diagram (5,4,1)

Young diagram and representations of \mathbb{S}_n

Young diagram. Let $\{\lambda_i : i = 1 \dots k\}$ be the cardinality of a partition of n objects into k boxes. In other words, $\lambda_i \in \mathbb{N}$, $\sum_{i=1}^k \lambda_i = n$, $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k \geq 1$. Arranging the boxes in a stack, the diagram obtained is called the Young diagram. An example of a Young diagram for the partition 5, 4, 1 on 10 objects is included below. The boxes are filled with numbers from 1 to n, and the resulting table with entries is called a Young tableau. In a standard Young tableau, the entries increase from left to right, top to bottom. The dimension of a (standard) Young diagram is the number of distinct ways the boxes can be filled.

Young tableaux and representations of \mathbb{S}_n . There is a one-to-one correspondence between Young diagrams and irreducible representations of the symmetric group \mathbb{S}_n over \mathbb{C} . Let λ refers to a Young diagram. Therefore we can write

(1)
$$\hat{f}(\lambda) = \sum_{\sigma \in \mathbb{S}_n} f(\sigma) \rho_{\lambda}(\sigma)$$

where ρ_{λ} denotes an irreducible representation of \mathbb{S}_n that correspond to λ .

Given a Young diagram λ , how can we construct ρ_{λ} ? In this tutorial we give the formula and an example on \mathbb{S}_3 . We do not prove the construction. Interested readers can refer to *Group representations in probability and statistics* (Diaconis), or the symmetric group: representations, combinatorial algorithms and symmetric functions (Sagan).

Let d be the dimension of λ . Then ρ_{λ} maps \mathbb{S}_n to $GL_d(\mathbb{C})$, therefore we can index the entries of the matrix $\rho_{\lambda}(\sigma)$ by distinct Young tableaux τ, τ' of λ . Furthermore, any $\sigma \in \mathbb{S}_n$ can be written as products of adjacent transpositions, which are of the form (i, i + 1). Therefore, it is sufficient to define $[\rho_{\lambda}(i, i + 1)]_{\tau, \tau'}$. The Young's orthogonal representation is:

$$[\rho_{\lambda}(i, i+1)]_{\tau, \tau'} = \begin{cases} d_{\tau}^{-1}(i, i+1) & \text{if} & \tau = \tau' \\ \sqrt{1 - d_{\tau}^{-2}(i, i+1)} & \text{if} & \tau' = (i, i+1)(\tau) \\ 0 & \text{else} \end{cases}$$

where:

- d_{τ} is the number of steps it take to move i to i+1 where north and east movements (up and right) are taken as positive, and south and west movements (down and left) are taken as negative.
- $(i, i+1)(\tau)$ refers to a filling of λ obtained from τ by applying the transposition (i, i+1) (swapping i an i+1).

Note that this results in a sparse, symmetric matrix.

FIGURE 2. Young diagrams and Young tableaux for S_3

Example on \mathbb{S}_3 . There are 3 Young diagram on n=3, and these are listed as unfilled boxes in the diagram below. Denote them $\lambda^1, \lambda^2, \lambda^3$ respectively. Note that $\rho_{\lambda^1}, \rho_{\lambda^3}$ are of dimension 1, and ρ_{λ^2} is of dimension 2. Let τ and τ' denote these two Young tableaux respectively. Then $\rho_{\lambda^2}: \mathbb{S}_3 \to G_2(\mathbb{C})$, and

$$\rho_{\lambda^2}((1,2)) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad \rho_{\lambda^2}((2,3)) = \begin{bmatrix} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix}$$

Algebraic properties of the Fourier transform on \mathbb{S}_n

The Fourier transform on \mathbb{S}_n defined in equation 1 satisfies the following properties:

• It is an invertible, norm-preserving transformation, where the norm of $f: \mathbb{S}_n \to \mathbb{C}$ is defined by

$$||f||^2 = \sum_{\sigma \in \mathbb{S}_n} |f(\sigma)|^2$$

and the norm of \hat{f} is defined by

$$\|\hat{f}\| = \frac{1}{n!} \sum_{\lambda} d_{\lambda} \|\hat{f}_{\lambda}\|_F^2$$

where d_{λ} is the dimensionality of ρ_{λ} , and $\|\hat{f}_{\lambda}\|_{F}$ denotes the Frobenius norm of the matrix \hat{f}_{λ} .

• The inversion formula is

$$f(\sigma) = \frac{1}{n!} \sum_{\lambda} d_{\lambda} tr(\hat{f}(\lambda)(\rho_{\lambda}(\sigma))^{-1})$$

• Translation theorem: fix $\tau \in \mathbb{S}_n$. If $f^{\tau}(\sigma) = f(\tau^{-1}\sigma)$, then

$$\widehat{f^{\tau}}(\lambda) = \rho_{\lambda}(\tau)\widehat{f}(\lambda)$$

• Convolution: let $(f * g)(\sigma) := \sum_{\tau} f(\sigma \tau^{-1}) g(\tau)$. Then

$$\widehat{f * g}(\lambda) = \widehat{f}(\lambda)\widehat{g}(\lambda)$$

This is where we get computational gain.

Analytic viewpoint and connections to ranking

Let $\sigma \in \mathbb{S}_n$ denotes the ranking in which candidate i is ranked in position $\sigma(i)$. Define $f: \mathbb{S}_n \to \mathbb{R}$, $f(\sigma) =$ number of people voted for this ranking. Then the Fourier transform coefficients $\hat{f}(\lambda)$ gives 'smoothness' information of f. For example, the first term $\hat{f}(n) = \sum_{\sigma: \sigma(i) = j} f(\sigma)$ gives the mean of the function. The first and second term $\hat{f}(n-1,1) = \sum_{\sigma: \sigma(i) = j} f(\sigma)$ gives the number of votes for ranking i in position j (first order statistics). Inclusion of higher terms allow one to obtain higher order statistics.

APPLICATIONS AND REFERENCES

On kernel computation:

R. Kondor and M. Barbosa: Ranking with kernels in Fourier space (COLT 2010): $http://www.its.caltech.edu/\tilde{r}isi/papers/KondorBarbosaCOLT10.pdf$

Multi-object tracking:

R. Kondor, A. Howard and T. Jebara: Multi-object tracking with representations of the symmetric group (AISTATS 2007)

 $http://www.its.caltech.edu/\tilde{r}isi/papers/KondorHowardJebaraAISTATS07.pdf$

Jonathan Huang, Carlos Guestrin, and Leonidas Guibas (2009): Fourier Theoretic Probabilistic Inference over Permutations. Journal of Machine Learning Research (JMLR), 10, 997-1070. http://www.select.cs.cmu.edu/publications/paperdir/jmlr2009-huang-guestrin-guibas.pdf

Classical reference on the subject:

Diaconis: Group representations in probability and statistics, Lecture Notes 1988.

http://projecteuclid.org/DPubS?service=UI @version=1.0 @verb=Display@handle=euclid.lnms/1215467407. And the projecteuclid.org/DPubS?service=UI @version=1.0 @verb=Display@handle=euclid.lnms/1215467407. And the projecteuclid.org/DPubS.

Presenter: R. I. Kondor
Page 4