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Motivation

Recall the Fourier transform of functions on (R,+): if f : R → R,
∫
R f

2 < ∞, then the Fourier

transform of f is the function f̂ : R→ R defined by

f̂(h) :=

∫
R

exp (−ihx)f(x) dx

We want to define a similar transformation on (compact) groups. In this tutorial we study the
Fourier transform on Sn, the symmetric group on n elements.
There are three aspects of Fourier transform:

• Algebraic: in a sense, the Fourier transform preserves some important algebraic structures
of the group. For instance, if we act on the group (R,+) by a left translation: f ′(x) =

f(x− t), then this corresponds to a natural action on the Fourier transform of f : f̂ ′(h) =

exp−iht f̂(h). Or if we have convolution: f̂ ∗ g(h) = f̂(h)ĝ(h).
• Analytic: terms in the Fourier transform gives smoothness information on the function.

This is important in signal processing.
• Algorithm: the efficiency of the Fast Fourier transform (FFT) makes it popular in prac-

tice.

Fourier transform on Sn

Definition 1. A representation of a group G on a vector space V is a group homomorphism
φ : G→ GL(V,F), where GL(V,F) is the general linear group of a vector space V over the field
F.

When V is of dimension d < ∞ (which it is in our case), then we can identify GL(V,F) with
GLd(F), which is the space of invertible d× d matrices with entries in F.
Example Let G = Sn. Then ρ : Sn → GLd(F) is a representation of Sn if and only if ρ is a
homomorphism:

ρ(σ1σ2) = ρ(σ1)ρ(σ2) for σ1, σ2 ∈ Sn.
Example The exponential function x 7→ exp (−ihx) is a representation of (R,+) on GL1(C).

This is the key in the usual Fourier transform. Note that h serves as an indexing over all possible
representations of the group (R,+). Therefore, generalizing this idea, we define the Fourier
transform for functions f : Sn → C as:

f̂(λ) =
∑
σ∈Sn

f(σ)ρλ(σ)

where λ (for the moment) serves as an ‘indexing’ parameter.

Definition 2. An irreducible representation of a group is a group representation that has no
nontrivial invariant subspaces. Otherwise it is called reducible.

On a compact group G, reducible representations over C can be written as direct sum of
irreducible representations. Hence we are interested in irreducible representations for Sn. What
are the possible representations on Sn?
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Figure 1. Young diagram (5,4,1)

Young diagram and representations of Sn

Young diagram. Let {λi : i = 1 . . . k} be the cardinality of a partition of n objects into k

boxes. In other words, λi ∈ N,
∑k

i=1 λi = n, λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 1. Arranging the boxes in a
stack, the diagram obtained is called the Young diagram. An example of a Young diagram for
the partition 5, 4, 1 on 10 objects is included below. The boxes are filled with numbers from 1 to
n, and the resulting table with entries is called a Young tableau. In a standard Young tableau,
the entries increase from left to right, top to bottom. The dimension of a (standard) Young
diagram is the number of distinct ways the boxes can be filled.

Young tableaux and representations of Sn. . There is a one-to-one correspondence between
Young diagrams and irreducible representations of the symmetric group Sn over C. Let λ refers
to a Young diagram. Therefore we can write

(1) f̂(λ) =
∑
σ∈Sn

f(σ)ρλ(σ)

where ρλ denotes an irreducible representation of Sn that correspond to λ.

Given a Young diagram λ, how can we construct ρλ? In this tutorial we give the formula
and an example on S3. We do not prove the construction. Interested readers can refer to Group
representations in probability and statistics (Diaconis), or the symmetric group: representations,
combinatorial algorithms and symmetric functions (Sagan).

Let d be the dimension of λ. Then ρλ maps Sn to GLd(C), therefore we can index the entries of
the matrix ρλ(σ) by distinct Young tableaux τ, τ ′ of λ. Furthermore, any σ ∈ Sn can be written
as products of adjacent transpositions, which are of the form (i, i+ 1). Therefore, it is sufficient
to define [ρλ(i, i+ 1)]τ,τ ′ . The Young’s orthogonal representation is:

[ρλ(i, i+ 1)]τ,τ ′ =


d−1τ (i, i+ 1) if τ = τ ′√

1− d−2τ (i, i+ 1) if τ ′ = (i, i+ 1)(τ)
0 else

where:

• dτ is the number of steps it take to move i to i + 1 where north and east movements
(up and right) are taken as positive, and south and west movements (down and left) are
taken as negative.
• (i, i+ 1)(τ) refers to a filling of λ obtained from τ by applying the transposition (i, i+ 1)

(swapping i an i+ 1).

Note that this results in a sparse, symmetric matrix.
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Figure 2. Young diagrams and Young tableaux for S3

Example on S3. There are 3 Young diagram on n = 3, and these are listed as unfilled boxes
in the diagram below. Denote them λ1, λ2, λ3 respectively. Note that ρλ1 , ρλ3 are of dimension
1, and ρλ2 is of dimension 2. Let τ and τ ′ denote these two Young tableaux respectively. Then
ρλ2 : S3 → G2(C), and

ρλ2((1, 2)) =

[
1 0
0 −1

]
, ρλ2((2, 3)) =

[
−1/2

√
3/2√

3/2 1/2

]
Algebraic properties of the Fourier transform on Sn

The Fourier transform on Sn defined in equation 1 satisfies the following properties:

• It is an invertible, norm-preserving transformation, where the norm of f : Sn → C is
defined by

‖f‖2 =
∑
σ∈Sn

|f(σ)|2

and the norm of f̂ is defined by

‖f̂‖ =
1

n!

∑
λ

dλ‖f̂λ‖2F

where dλ is the dimensionality of ρλ, and ‖f̂λ‖F denotes the Frobenius norm of the matrix

f̂λ.
• The inversion formula is

f(σ) =
1

n!

∑
λ

dλtr(f̂(λ)(ρλ(σ))−1)

• Translation theorem: fix τ ∈ Sn. If f τ (σ) = f(τ−1σ), then

f̂ τ (λ) = ρλ(τ)f̂(λ)

• Convolution: let (f ∗ g)(σ) :=
∑

τ f(στ−1)g(τ). Then

f̂ ∗ g(λ) = f̂(λ)ĝ(λ)

This is where we get computational gain.
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Analytic viewpoint and connections to ranking

Let σ ∈ Sn denotes the ranking in which candidate i is ranked in position σ(i). Define f : Sn → R,

f(σ) = number of people voted for this ranking. Then the Fourier transform coefficients f̂(λ)

gives ‘smoothness’ information of f . For example, the first term f̂((n)) =
∑

σ f(σ) gives the

mean of the function. The first and second term f̂((n− 1, 1)) =
∑

σ:σ(i)=j f(σ) gives the number

of votes for ranking i in position j (first order statistics). Inclusion of higher terms allow one to
obtain higher order statistics.

Applications and references

On kernel computation:
R. Kondor and M. Barbosa: Ranking with kernels in Fourier space (COLT 2010):
http://www.its.caltech.edu/r̃isi/papers/KondorBarbosaCOLT10.pdf

Multi-object tracking:
R. Kondor, A. Howard and T. Jebara: Multi-object tracking with representations of the sym-
metric group (AISTATS 2007)
http://www.its.caltech.edu/r̃isi/papers/KondorHowardJebaraAISTATS07.pdf

Jonathan Huang, Carlos Guestrin, and Leonidas Guibas (2009): Fourier Theoretic Probabilistic
Inference over Permutations. Journal of Machine Learning Research (JMLR), 10, 997-1070.
http://www.select.cs.cmu.edu/publications/paperdir/jmlr2009-huang-guestrin-guibas.pdf

Classical reference on the subject:
Diaconis: Group representations in probability and statistics, Lecture Notes 1988.
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.lnms/1215467407
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