
FINM 331: MULTIVARIATE DATA ANALYSIS

FALL 2021

PROBLEM SET 2

The required files for all problems can be found either in the in the subfolder hw2 under ‘Files’ in
Canvas or at the following URL:

http://www.stat.uchicago.edu/~lekheng/courses/331/hw2/

The file name indicates which problem the file is for (p1*.txt for Problem 1, etc). You are welcomed
to use any programming language or software packages you like.

1. (Basic description of multivariate data) The data set p1.txt contains national track records
for women, with measurements for 100m, 200m, and 400m races in seconds, and longer distance
races in minutes. Variable names are not included. Compute the following for the data set and
round your answers to two decimal places.
(a) Sample means. Is there any variable for which the mean is not very meaningful?
(b) Sample covariance matrix and correlation matrix.
(c) Correlation matrix of the logarithm of the data.

The following R commands (with p1.txt in your working directory) load the data and label
the variables appropriately:
track = read.table("p1.txt")

colnames(track) = c("Country","100m","200m","400m","800m","1500m","3000m","Marathon")

2. (a) (Effects of scales) Let X1, . . . , Xp denote p jointly distributed positive random variables,
and let a1, . . . , ap ∈ R be positive constants. Let Yi = log(aiXi), i = 1, . . . , p. Show that
the covariance matrix of Y does not depend on the ai’s.

(b) (Positive semidefiniteness of covariance matrix ) Show that the covariance matrix Σ =
Cov(X) ∈ Rp×p of a random vector X = [X1, . . . , Xp]

T must have all eigenvalues nonnega-
tive.

(c) (Expectation of random matrix ) Let A ∈ Rm×p and B ∈ Rp×n be constant matrices. Let
C = AXB where X is a random matrix, i.e., a p × p matrix whose (i, j)th entries are
random variables Xij , i, j = 1, . . . , p. Write down the (i, j)th entry of the matrix C. Show
that

E(C) = AE(X)B ∈ Rm×n.

3. (Population pca) The trivariate random vector X = [X1, X2, X3]
T has covariance matrix

Cov(X) = Σ =

 2 −1 1
−1 5 0
1 0 3

 .
(a) What are the eigenvalues λ1 ≥ λ2 ≥ λ3 of Σ? The following R commands define the matrix

and compute the eigenvalues/vectors:
sigma = matrix(c(2,-1,1,-1,5,0,1,0,3),3,3)

eigen(sigma)

(b) Write down the population principal components Yi in terms of X1, X2, X3 for i = 1, 2, 3.
(c) Derive the value of Var(Y1) using the properties we saw in the lectures:

Var
(∑n

i=1
Xi

)
=
∑n

i=1
Var(Xi) + 2

∑
i<j

Cov(Xi, Xj) and Var(aXi) = a2 Var(Xi)

for any a ∈ R. Then compare Var(Y1) to the λi’s.
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4. (Sample pca) Use the same data p1.txt from Problem 1. Exclude the nominal variable
“Country” in numerical calculations.
(a) Obtain the eigenvalues and eigenvectors for the sample correlation matrix R. What is the

sum of all eigenvalues? Compare it to the dimensions of the data.
(b) Determine the first two principal components for the standardized (variance = 1) variables.

(i) Compare the two principal components PC1 and PC1 with the eigenvectors in (a).
Comment.

(ii) What are the percentages of total (standardized) sample variation explained by the
first and second principal components?

(c) Every observation has its coordinates in the space of principle components (PC1, . . . , PC7).
(i) Construct a two-dimensional scatterplot of the 54 observations in the (PC1, PC2)

plane.
(ii) Rank the nations based on their scores on the first principal component. List the top

six and the last three countries. In your opinion, does the ranking correspond with
athletic excellence for the counties?

5. (Scaling effects in sample pca) p5.txt is the air quality data set we discussed in Slides 2. We
will perform sample pca using both the original data as well as the standardized data (i.e.,
variable variance = 1). The measurements are on air pollution variables recorded at noon in 42
different days.
(a) In each of the two cases, how many principal components are needed to effectively summa-

rize at least 90% of the variability in the data?
(b) Plot two scree plots, one from pca based on the original data, one based on the standardized

data.
(c) Compare and comment, based on your results in (a) and (b).

The following R commands (with p5.txt in your working directory) load the data and label
the variables appropriately:
air = read.table("p5.txt")

colnames(air) = c("Wind", "Radiation", "CO", "NO", "NO2", "O3", "HC")

6. This is the demographics data that we saw in the first lecture. The data matrix in p6-data.txt

is a 49 × 7 matrix where each row is indexed by a country and each column is indexed by a
demographic variable. So for example, if we denote the matrix by A = [aij ] ∈ R49×7, then
a23 = 84 is Austria’s population per square kilometers (row index 2 = Austria, column index
3 = population per square kilometers). The row and column labels are reproduced in separate
files for your convenience: p6-row.txt, p6-column.txt (you may not need these, depending on
the program you use).
(a) (Standardizing) Write a program to (i) mean center the data matrix and then (ii) scale it

by standard deviation . Denote the standardized data matrix by Â.

(b) (Singular value decomposition) Find the first two right singular vectors of Â, v1,v2 ∈ R7.
Project the data onto the two-dimensional space spanned by v1 and v2. Plot this in a pca
scatter plot where the x- and y-axes correspond to v1 and v2 respectively and where the
points correspond to the countries — label each point by the country it corresponds to.
Identify the two obvious outliers.

(c) (Singular value decomposition) Now do the same with the two left singular vectors of Â,
u1,u2 ∈ R49, i.e., project the data onto the two-dimensional space spanned by u1 and u2

and plot this in a graph as before. Note that in this case, the points correspond to the
demographic variables — label them accordingly.

(d) (Biplot) Overlay the two graphs in (a) and (b) in a biplot. Identify the two demographic
variables near the two outlier countries — these explain why the two countries are outliers.



FINM 331 ASSIGNMENT 1 3

(e) (Outlier removal) Remove the two outlier countries and redo (a) with this 47 × 7 matrix.
This allows you to see features that were earlier obscured by the outliers. Which two
European countries are most alike Japan?

(f) (Biplot) Note that the reason we didn’t need to adjust the scale of the axes using the

singular values of Â in our biplot because the standardization has taken care of the scaling.
Suppose we only mean center but did not scale our matrix by standard deviation, show
how we would perform the biplot.

(g) (Effect of mean centering) Let’s suppose now that we neither mean center nor scale A by

standard deviation, i.e., we use the raw data A instead of Â. Repeat what we did in (b),
(c), (d). Discuss your results.

7. (Procrustes analysis of score matrices) The files p7-spe.csv and p7-env.csv contain species
and environmental data respectively collected at 29 sites along the Doubs River near the France–
Switzerland border. The first matrix contains coded abundances of 27 fish species, and the
second matrix contains 11 environmental variables related to the hydrology, geomorphology,
and chemistry of the river. Let X ∈ R29×11 be the enviromental data matrix and Y ∈ R29×27

the species data matrix. We will compare ordinations of X,Y in the following.
(a) Find the score matrices TX ∈ R29×11 and TY ∈ R29×27 of X and Y respectively. Take the

first two columns of TX and TY and store them as matrices AX , AY ∈ R29×2. Visualize
AX , AY in a single plot with different colors. You are free to use any package to conduct
pca for this problem.

(b) Perform orthogonal Procrustes on AX and AY as in Homework 1, Problem 9, taking trans-
lation and scaling into consideration as well. As our assumption is that the environment
influences the species, we would like to transform AY to be as close to AX as possible.
Visualize your transformed AY and AX in a single plot with different colors. What is the
corresponding distance between the transformed AY and AX in your method?

8. (Proofs behind pca) Let A ∈ Rp×p be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λp ≥ 0 and corresponding eigenvectors Q = [q1,q2, . . .qp] ∈ Rp×p.
(a) By considering the evd of A, show that for any unit vector x = [x1, . . . , xp]

T ∈ Rp,

xTAx = λ1y
2
1 + · · ·+ λpy

2
p

for some unit vector y = [y1, . . . , yp]
T ∈ Rp. Here unit vector means that ‖x‖2 = 1.

(b) Using (a), show that

max{xTAx : ‖x‖2 = 1} = λ1,

min{xTAx : ‖x‖2 = 1} = λp,

and that

argmax{xTAx : ‖x‖2 = 1} = q1,

argmin{xTAx : ‖x‖2 = 1} = qp.

(c) Suppose x = [x1, . . . , xp]
T ∈ Rp is a unit vector orthogonal to q1 ∈ Rp, i.e., xTq1 = 0, show

that

x = a2q2 + · · ·+ apqp

and that a22 + · · ·+ a2p = 1. Hence deduce that

xTAx = λ2y
2
2 + · · ·+ λpy

2
p

for some unit vector y = [y1, . . . , yp]
T ∈ Rp.



4 FINM 331 ASSIGNMENT 1

(d) Using (c), show that

max{xTAx : ‖x‖2 = 1, xTq1 = 0} = λ2,

argmax{xTAx : ‖x‖2 = 1, xTq1 = 0} = q2.

(e) Generalize (d) and show that

max{xTAx : ‖x‖2 = 1, xTq1 = · · · = xTqk−1 = 0} = λk,

argmax{xTAx : ‖x‖2 = 1, xTq1 = · · · = xTqk−1 = 0} = qk

for k = 2, . . . , p.
(f) Using Problem 2(b) and the previous parts, show that for a random vector X = [X1, . . . , Xp]

T,

qk = argmax{Var(aTX) : ‖a‖2 = 1, Cov(aTX,qT
1X) = · · · = Cov(aTX,qT

k−1X) = 0},
where qk is the kth eigenvector of Σ = Cov(X).


