FINM 331: MULTIVARIATE DATA ANALYSIS
 FALL 2021
 PROBLEM SET 1

The required files for all problems can be found in the subfolder hw1 under 'Files' in Canvas or at the following URL:

```
http://www.stat.uchicago.edu/~lekheng/courses/331/hw1/
```

The file name indicates which problem the file is for (p1*.txt for Problem 1, etc). You are welcomed to use any programming language or software packages you like.

1. Verify our claim in the lecture that the condensed SVD of a matrix $A \in \mathbb{R}^{n \times p}$ may be expressed as

$$
A=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{\top}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{\top}
$$

where $r=\operatorname{rank}(A), \mathbf{u}_{1}, \ldots, \mathbf{u}_{r} \in \mathbb{R}^{n}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r} \in \mathbb{R}^{p}$ are left and right singular vectors of A. Find a similar expression for the EVD of a symmetric matrix $B \in \mathbb{R}^{p \times p}$.
2. Let $A, B \in \mathbb{R}^{p \times p}$ and O be the zero matrix. For each of the following statment, either give a proof or a counterexample:
(a) If all eigenvalues of A are zero, then $A=O$.
(b) If all singular values of A are zero, then $A=O$.
(c) If $A=A^{\top}$, then the EVD and SVD of A are identical.
(d) If A and B are similar (i.e., $A=X B X^{-1}$ for some nonsingular X), then A and B have the same eigenvalues.
(e) If A and B are similar, then A and B have the same singular values.
3. Let $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in \mathbb{R}^{n}$. Let $p \leq n$ and $G_{p} \in \mathbb{R}^{p \times p}$ be the matrix

$$
G_{p}=\left[\begin{array}{cccc}
\mathbf{y}_{1}^{\top} \mathbf{y}_{1} & \mathbf{y}_{1}^{\top} \mathbf{y}_{2} & \cdots & \mathbf{y}_{1}^{\top} \mathbf{y}_{p} \\
\mathbf{y}_{2}^{\top} \mathbf{y}_{1} & \mathbf{y}_{2}^{\top} \mathbf{y}_{2} & \cdots & \mathbf{y}_{2}^{\top} \mathbf{y}_{p} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{y}_{p}^{\top} \mathbf{y}_{1} & \mathbf{y}_{p}^{\top} \mathbf{y}_{2} & \cdots & \mathbf{y}_{p}^{\top} \mathbf{y}_{p}
\end{array}\right] .
$$

This is called a Gram matrix or more precisely the Gram matrix of $\mathbf{y}_{1}, \ldots, \mathbf{y}_{p}$.
(a) Show that

$$
\mathbf{y}_{1}, \ldots, \mathbf{y}_{p} \text { are linearly independent } \Longleftrightarrow \operatorname{rank}\left(G_{p}\right)=p
$$

(b) Show that

$$
\mathbf{y}_{1}, \ldots, \mathbf{y}_{p} \text { are orthonormal } \Longleftrightarrow G_{p}=I_{p}
$$

Here $I_{p} \in \mathbb{R}^{p \times p}$ is the $p \times p$ identity matrix.
(c) Suppose $G_{p}=I_{p}$. Let $P_{p} \in \mathbb{R}^{n \times n}$ be the orthogonal projection matrix for the subspace

$$
\operatorname{span}\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{p}\right\} \subseteq \mathbb{R}^{n}
$$

What is the relation between $G_{p} \in \mathbb{R}^{p \times p}$ and $P_{p} \in \mathbb{R}^{n \times n}$ in terms of the matrix

$$
Q_{p}:=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{p}\right] \in \mathbb{R}^{n \times p} ?
$$

(d) Show that if $G_{p}=I_{p}$, then for any $\mathbf{y} \in \mathbb{R}^{n}$,

$$
\sum_{i=1}^{p}\left(\mathbf{y}^{\top} \mathbf{y}_{i}\right)^{2} \leq\|\mathbf{y}\|_{2}^{2}
$$

Give an example to show that strict inequality can happen.
(e) Show that if $G_{n}=I_{n}$, then for any $\mathbf{y} \in \mathbb{R}^{n}$,

$$
\sum_{i=1}^{n}\left(\mathbf{y}^{\top} \mathbf{y}_{i}\right)^{2}=\|\mathbf{y}\|_{2}^{2}
$$

(f) Show that if $G_{n}=I_{n}$, then for any $\mathbf{y} \in \mathbb{R}^{n}$,

$$
\sum_{i=1}^{n}\left(\mathbf{y}^{\top} \mathbf{y}_{i}\right) \mathbf{y}_{i}=\mathbf{y}
$$

4. You should do this problem 'by hand', i.e., without relying on any computer program. Answers must be justified with mathematical arguments - how you get from one step to the next; there will be no credit for just plugging the matrices into Matlab or Mathematica or R and reproducing the answers.
(a) Find the singular value decomposition of the following matrices

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right] \in \mathbb{R}^{3 \times 2}, \quad B=\left[\begin{array}{cc}
5 & -1 \\
-1 & 5 \\
2 & 2
\end{array}\right] \in \mathbb{R}^{3 \times 2}
$$

(b) Show that the left singular vectors of A and B give orthonormal bases for the subspaces

$$
W_{A}:=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}, \quad W_{B}:=\operatorname{span}\left\{\left[\begin{array}{c}
5 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
5 \\
2
\end{array}\right]\right\}
$$

respectively.
(c) Find the formulas for projecting a vector

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{R}^{3}
$$

onto the subspaces W_{A} and W_{B}.
(d) Find the orthogonal projection matrices $P_{A}, P_{B} \in \mathbb{R}^{3 \times 3}$ corresponding to the two projections above.
5. Let W be a k-dimensional subspace of \mathbb{R}^{p}. Suppose $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in \mathbb{R}^{p}$ form a basis for W. Find an orthogonal projection matrix for each of the following subspaces:
(a) $W_{a}=\operatorname{span}\left\{[1, \ldots, 1]^{\top}\right\}$. Discuss how this is related to the mean

$$
\bar{x}=\frac{1}{p} \sum_{i=1}^{p} x_{i} .
$$

(b) $W_{b}=\left\{\left[x_{1}, \ldots, x_{p}\right]^{\top} \in \mathbb{R}^{p}: x_{1}+\cdots+x_{p}=0\right\}$. Discuss how this is related to the deviations $x_{i}-\bar{x}, \quad i=1, \ldots, p$.
(c) $W_{c}=\operatorname{span}\{\mathbf{w}\}$ for a nonzero vector $\mathbf{w} \in \mathbb{R}^{p}$.
(d) $W_{d}=W_{1} \oplus W_{2}$ where $W_{1} \perp W_{2}$, i.e., $\mathbf{x}^{\top} \mathbf{y}=0$ for all $\mathbf{x} \in W_{1}, \mathbf{y} \in W_{2}$.
(e) $W_{e}=E_{\lambda}=\{\mathbf{x}: B \mathbf{x}=\lambda \mathbf{x}\}$, the λ-eigenspace of a symmetric matrix $B \in \mathbb{R}^{p \times p}$.
(f) $W_{f}=\operatorname{span}\left\{[1,1,1,1]^{\top},[1,1,0,0]^{\top}[1,1,1,0]^{\top}\right\}$. Here $p=4$.
6. Let W be a subspace of \mathbb{R}^{p} and $W^{\perp}:=\left\{x \in \mathbb{R}^{p}: \mathbf{x}^{\top} \mathbf{y}=0\right.$ for all $\left.\mathbf{y} \in W\right\}$ be its orthogonal complement. Since $\mathbb{R}^{p}=W \oplus W^{\perp}$, we may define $P: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ by $P \mathbf{v}=\mathbf{w}$ where $\mathbf{v}=\mathbf{w}+\mathbf{w}^{\prime}$ with $\mathbf{w} \in W$ and $\mathbf{w}^{\prime} \in W^{\perp}$. We will see that this gives another way to define projection onto W.
(a) Show that P is an orthogonal projection matrix and $\operatorname{im}(P)=W$.
(b) Show that such a P is uniquely determined by W.
(c) Show that for every $\mathbf{v} \in \mathbb{R}^{p}, \mathbf{v}^{\top} P \mathbf{v} \geq 0$.
(d) Show that for every $\mathbf{v} \in \mathbb{R}^{p},\|P \mathbf{v}\|_{2} \leq\|\mathbf{v}\|_{2}$.
(e) Show that $I-P$ is the orthogonal projection onto W^{\perp}.
(f) Show that for every $\mathbf{v} \in \mathbb{R}^{p}$,

$$
\|\mathbf{v}\|_{2}^{2}=\|P \mathbf{v}\|_{2}^{2}+\|(I-P) \mathbf{v}\|_{2}^{2}
$$

(g) Show that P is similar to a diagonal matrix of the form $\operatorname{diag}(1, \ldots, 1,0, \ldots, 0)$ where the number of 1 's equals $\operatorname{dim} W$.
7. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}, n \geq p$, and set

$$
X:=\left[\begin{array}{c}
\mathbf{x}_{1}^{\top} \\
\mathbf{x}_{2}^{\top} \\
\vdots \\
\mathbf{x}_{n}^{\top}
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 p} \\
x_{21} & x_{22} & \cdots & x_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n p}
\end{array}\right]=\left[\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{p}\right] \in \mathbb{R}^{n \times p}
$$

i.e., the row vectors of X are $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$ and the column vectors of X are $\mathbf{y}_{1}, \ldots, \mathbf{y}_{p} \in \mathbb{R}^{n}$. We will assume throughout this problem that

$$
X^{\top} \mathbf{1}=\mathbf{0}
$$

(a) What is the relation between the sample covariance matrix S and the Gram matrix G_{p} as defined in Problem 3?
(b) Let the EVD of S be

$$
S=V \Lambda V^{\top}
$$

where $V^{\top} V=I$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{p}$. Let G_{p} be the Gram matrix of $\mathbf{y}_{1}, \ldots, \mathbf{y}_{p}$ as in Problem 3. Show that the eigenvectors of S, the eigenvectors of G_{p}, and the right singular vectors of X are all the same. How are the eigenvalues of S, the eigenvalues of G_{p}, and the singular values of X related?
(c) Write down an expression for $P_{W} \in \mathbb{R}^{p \times p}$, the orthogonal projection onto the 2-dimensional subspace

$$
W:=\operatorname{span}\left\{\mathbf{v}_{j}, \mathbf{v}_{k}\right\} \subseteq \mathbb{R}^{p}
$$

Simplify your expression as much as possible.
(d) Show that to plot the projections of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$ onto $W \cong \mathbb{R}^{2}$, we may simply plot the n points

$$
\left\{\left(\sigma_{j} u_{i j}, \sigma_{k} u_{i k}\right) \in \mathbb{R}^{2}: i=1, \ldots, n\right\}
$$

where $U=\left[u_{i j}\right] \in \mathbb{R}^{n \times n}$ and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right) \in \mathbb{R}^{n \times p}$ are the matrix of left singular vectors and matrix of singular values respectively.
(e) Explain what we meant by $W \cong \mathbb{R}^{2}$ and why the plot in (d) may be interpreted as on a graph whose x-axis is \mathbf{v}_{j} and y-axis is \mathbf{v}_{k}.
8. The file p8.txt contains an image with 359 pixels by 371 pixels of gray-scale values $1,2, \ldots, 64$ stored in the form of comma separated values (csv). Read the file and store its values as a matrix $X \in \mathbb{R}^{359 \times 371}$.
(a) Compute the singular value decomposition of X and plot its singular value profile on a semilog scale, i.e., plot the graph

$$
\left\{\left(i, \log \sigma_{i}\right) \in \mathbb{R}^{2}: i=1, \ldots, 359\right\}
$$

Why did we use the \log scale on the vertical axis? What if we had instead plotted

$$
\left\{\left(i, \sigma_{i}\right) \in \mathbb{R}^{2}: i=1, \ldots, 359\right\} ?
$$

(b) Find $X_{r} \in \mathbb{R}^{359 \times 371}$, the best rank- r approximation of X, for $r=1,20,50,100$. Your solution should show $X_{1}, X_{20}, X_{50}, X_{100}$ in the form of images (do not submit them as matrices of numerical values) alongside with the image of X. Comment on the quality of $X_{1}, X_{20}, X_{50}, X_{100}$ relative to the original X.
9. The files p9X.csv and p9Y.csv contain entries of two matrices, $X, Y \in \mathbb{R}^{1000 \times 2}$ respectively. Each row of them represents a point in \mathbb{R}^{2}.
(a) Visualize X and Y in a single plot with different colors for points in X and Y.
(b) Write a program that does orthogonal Procrustes analysis, i.e., given two matrices $X, Y \in$ $\mathbb{R}^{n \times p}$, your program should compute the orthogonal matrix $Q \in \mathbb{R}^{p \times p}$ that solves

$$
\min _{Q^{\top} Q=I}\|X-Y Q\|_{F} .
$$

You are free to use any programming language as well as packages/functions to compute sVd. Test your code on the 4×2 example in the lecture notes.
(c) Use the function you wrote to perform orthogonal Procrustes on X and Y. That is we would like to rotate Y to be as close to X as possible. Visualize your X and $Y Q$ in a single plot with different colors as in (a).
(d) In your plot for (c), do the two matrices look similar? If so, report your error $\|X-Y Q\|_{F}$. If not, how can you improve your algorithm? What is the corresponding distance between the transformed Y and X in your improved algorithm?

