STAT 309: MATHEMATICAL COMPUTATIONS I
 FALL 2022
 PROBLEM SET 3

1. Given a symmetric $A \in \mathbb{R}^{n \times n}, \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}$, and $\mathbf{b} \in \mathbb{R}^{n}$. Let

$$
\mathbf{r}=\mathbf{b}-A \mathbf{x}
$$

Consider the QR decomposition

$$
[\mathbf{x}, \mathbf{r}]=Q R
$$

and observe that if $E \mathbf{x}=\mathbf{r}$, then

$$
\left(Q^{\top} E Q\right)\left(Q^{\top} \mathbf{x}\right)=Q^{\top} \mathbf{r}
$$

Show how to compute a symmetric $E \in \mathbb{R}^{n \times n}$ so that it attains

$$
\min _{(A+E) \mathbf{x}=\mathbf{b}}\|E\|_{F},
$$

where the minimum is taken over all symmetric E (Note: The point here is that one must usually take into account that errors occurring in symmetric matrices must also be symmetric).
2. Let $A \in \mathbb{R}^{m \times n}$ and suppose its complete orthogonal decomposition is given by

$$
A=Q_{1}\left[\begin{array}{ll}
L & 0 \\
0 & 0
\end{array}\right] Q_{2}^{\top},
$$

where Q_{1} and Q_{2} are orthogonal, and L is an nonsingular lower triangular matrix. Recall that $X \in \mathbb{R}^{n \times m}$ is the unique pseudo-inverse of A if the following Moore-Penrose conditions hold:
(i) $A X A=A$,
(ii) $X A X=X$,
(iii) $(A X)^{\top}=A X$,
(iv) $(X A)^{\top}=X A$
and in which case we write $X=A^{\dagger}$.
(a) Let

$$
A^{-}=Q_{2}\left[\begin{array}{cc}
L^{-1} & Y \\
0 & 0
\end{array}\right] Q_{1}^{\top}, \quad Y \neq 0
$$

Which of the four conditions (i)-(iv) are satisfied?
(b) Prove that

$$
A^{\dagger}=Q_{2}\left[\begin{array}{cc}
L^{-1} & 0 \\
0 & 0
\end{array}\right] Q_{1}^{\top}
$$

by letting

$$
A^{\dagger}=Q_{2}\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right] Q_{1}^{\top}
$$

and by completing the following steps:

- Using (i), prove that $X_{11}=L^{-1}$.
- Using the symmetry conditions (iii) and (iv), prove that $X_{12}=0$ and $X_{21}=0$.
- Using (ii), prove that $X_{22}=0$.

3. Let $A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$, and $\mathbf{c} \in \mathbb{R}^{n}$. We are interested in the least squares problem

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2} \tag{3.1}
\end{equation*}
$$

(a) Show that \mathbf{x} is a solution to (3.1) if and only if \mathbf{x} is a solution to the augmented system

$$
\left[\begin{array}{cc}
I & A \tag{3.2}\\
A^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{r} \\
\mathbf{x}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{b} \\
\mathbf{0}
\end{array}\right] .
$$

(b) Show that the $(m+n) \times(m+n)$ matrix in (3.2) is nonsingular if and only if A has full column rank.
(c) Suppose A has full column rank and the QR decomposition of A is

$$
A=Q\left[\begin{array}{c}
R \\
0
\end{array}\right]
$$

Show that the solution to the augmented system

$$
\left[\begin{array}{cc}
I & A \\
A^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{x}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{b} \\
\mathbf{c}
\end{array}\right]
$$

can be computed from

$$
\mathbf{z}=R^{-\top} \mathbf{c}, \quad\left[\begin{array}{l}
\mathbf{d}_{1} \\
\mathbf{d}_{2}
\end{array}\right]=Q^{\top} \mathbf{b},
$$

and

$$
\mathbf{x}=R^{-1}\left(\mathbf{d}_{1}-\mathbf{z}\right), \quad \mathbf{y}=Q\left[\begin{array}{c}
\mathbf{z} \\
\mathbf{d}_{2}
\end{array}\right] .
$$

(d) Hence deduce that if A has full column rank, then

$$
A^{\dagger}=R^{-1} Q_{1}^{\top}
$$

where $Q=\left[Q_{1}, Q_{2}\right]$ with $Q_{1} \in \mathbb{R}^{m \times n}$ and $Q_{2} \in \mathbb{R}^{m \times(m-n)}$. Check that this agrees with the general formula derived for a rank-retaining factorization $A=G H$ in the lectures.
4. Let $A \in \mathbb{R}^{m \times n}$. Suppose we apply QR with column pivoting to obtain the decomposition

$$
A=Q\left[\begin{array}{cc}
R & S \\
0 & 0
\end{array}\right] \Pi^{\top}
$$

where Q is orthogonal and R is upper triangular and invertible. Let \mathbf{x}_{B} be the basic solution, i.e.,

$$
\mathbf{x}_{B}=\Pi\left[\begin{array}{cc}
R^{-1} & 0 \\
0 & 0
\end{array}\right] Q^{\top} \mathbf{b}
$$

and let $\hat{\mathbf{x}}=A^{\dagger} \mathbf{b}$. Show that

$$
\frac{\left\|\mathbf{x}_{B}-\hat{\mathbf{x}}\right\|_{2}}{\|\hat{\mathbf{x}}\|_{2}} \leq\left\|R^{-1} S\right\|_{2}
$$

(Hint: If

$$
\Pi^{\top} \mathbf{x}=\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{v}
\end{array}\right] \quad \text { and } \quad Q^{\top} \mathbf{b}=\left[\begin{array}{l}
\mathbf{c} \\
\mathbf{d}
\end{array}\right]
$$

consider the associated linearly constrained least-squares problem

$$
\min \|\mathbf{u}\|_{2}^{2}+\|\mathbf{v}\|_{2}^{2} \quad \text { s.t. } R \mathbf{u}+S \mathbf{v}=\mathbf{c}
$$

and write down the augmented system for the constrained problem).
5. Let $\mathbf{u} \in \mathbb{R}^{n}, \mathbf{u} \neq \mathbf{0}$. A Householder matrix $H_{\mathbf{u}} \in \mathbb{R}^{n \times n}$ is defined by

$$
H_{\mathbf{u}}=I-\frac{2 \mathbf{u} \mathbf{u}^{\top}}{\|\mathbf{u}\|_{2}^{2}}
$$

(a) Show that $H_{\mathbf{u}}$ is both symmetric and orthogonal.
(b) Show that for any $\alpha \in \mathbb{R}, \alpha \neq 0$,

$$
H_{\alpha \mathbf{u}}=H_{\mathbf{u}}
$$

In other words, $H_{\mathbf{u}}$ only depends on the 'direction' of \mathbf{u} and not on its 'magnitude'.
(c) In general, given a matrix $M \in \mathbb{R}^{n \times n}$ and a vector $\mathbf{x} \in \mathbb{R}^{n}$, computing the matrix-vector product $M \mathbf{x}$ requires n inner products - one for each row of M with \mathbf{x}. Show that $H_{\mathbf{u}} \mathbf{x}$ can be computed using only two inner products.
(d) Given $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$ where $\mathbf{a} \neq \mathbf{b}$ and $\|\mathbf{a}\|_{2}=\|\mathbf{b}\|_{2}$. Find $\mathbf{u} \in \mathbb{R}^{n}, \mathbf{u} \neq \mathbf{0}$ such that

$$
H_{\mathbf{u}} \mathbf{a}=\mathbf{b}
$$

(e) Show that \mathbf{u} is an eigenvector of $H_{\mathbf{u}}$. What is the corresponding eigenvalue?
(f) Show that every $\mathbf{v} \in \operatorname{span}\{\mathbf{u}\}^{\perp}$ (cf. orthogonal complement in Homework $\mathbf{1}$) is an eigenvector of $H_{\mathbf{u}}$. What are the corresponding eigenvalues? What is $\operatorname{dim}\left(\operatorname{span}\{\mathbf{u}\}^{\perp}\right)$?
(g) Find the eigenvalue decomposition of $H_{\mathbf{u}}$, i.e., find an orthogonal matrix Q and a diagonal matrix Λ such that

$$
H_{\mathbf{u}}=Q \Lambda Q^{\top}
$$

6. In this exercise, we will implement and compare Gram-Schmidt and Householder QR. Your implementation should be tailored to the program you are using for efficiency (e.g. vectorize your code in Matlab/Octave/Scilab). Assume in the following that the input is a matrix $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=n \leq m$ and we want to find its full QR decomposition $A=Q R$ where $Q \in \mathrm{O}(m)$ and $R \in \mathbb{R}^{m \times n}$ is upper-triangular.
(a) Implement the (classical) Gram-Schmidt algorithm to obtain Q and R.
(b) Implement the Householder QR algorithm to obtain Q and R. You should (i) store Q implicitly, taking advantage of the fact that it can be uniquely specified by a sequence of vectors of decreasing dimensions; (ii) choose α in your Householder matrices to have the opposite sign of x_{1} to avoid cancellation in v_{1} (cf. notations in lecture notes).
(c) Implement an algorithm for forming the product $Q \mathbf{x}$ and another for forming the product $Q^{\top} \mathbf{y}$ when Q is stored implicitly as in (b).
(d) For increasing values of n, generate an upper triangular $R \in \mathbb{R}^{n \times n}$ and a $B \in \mathbb{R}^{n \times n}$, both with random standard normal entries. Use your program's built-in function for QR factorization to obtain a random ${ }^{1} Q \in \mathrm{O}(n)$ from the QR factorization of B. Now form $A=Q R$ and apply your algorithms in (a) and (b) to find the QR factors of A - let these be \widehat{Q} and \widehat{R}. Tabulate (using graphs with appropriate scales) the relative errors

$$
\frac{\|R-\widehat{R}\|_{F}}{\|R\|_{F}}, \quad \frac{\|Q-\widehat{Q}\|_{F}}{\|Q\|_{F}}, \quad \frac{\|A-\widehat{Q} \widehat{R}\|_{F}}{\|A\|_{F}}, \quad \frac{\left\|I-\widehat{Q}^{\top} \widehat{Q}\right\|_{F}}{\|I\|_{F}}
$$

for various values of n and for each method. Scale $Q, R, \widehat{Q}, \widehat{R}$ appropriately so that R and \widehat{R} have positive diagonal elements. Note that the denominators $\|Q\|_{F}=\|I\|_{F}=\sqrt{n}$ cannot be omitted since they depend on n.
(i) Comment on the relative errors in \widehat{Q} and \widehat{R} (these are called forward errors) versus the relative error in $\widehat{Q} \widehat{R}$ and $\widehat{Q}^{\top} \widehat{Q}$ (these are called backward error; note that the latter measures a loss of orthogonality).
(ii) Comment on the relative error in $\widehat{Q} \widehat{R}$ and $\widehat{Q}^{\top} \widehat{Q}$ computed with Gram-Schmidt versus that computed with Householder QR.

[^0](e) Generate a Vandermonde matrix and a vector,
\[

A=\left[$$
\begin{array}{ccccc}
1 & \alpha_{0} & \alpha_{0}^{2} & \ldots & \alpha_{0}^{n-1} \\
1 & \alpha_{1} & \alpha_{1}^{2} & \ldots & \alpha_{1}^{n-1} \\
1 & \alpha_{2} & \alpha_{2}^{2} & \ldots & \alpha_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha_{m-1} & \alpha_{m-1}^{2} & \ldots & \alpha_{m-1}^{n-1}
\end{array}
$$\right] \in \mathbb{R}^{m \times n}, \quad \mathbf{b}=\left[$$
\begin{array}{c}
\exp \left(\sin 4 \alpha_{0}\right) \\
\exp \left(\sin 4 \alpha_{1}\right) \\
\exp \left(\sin 4 \alpha_{2}\right) \\
\vdots \\
\exp \left(\sin 4 \alpha_{m-1}\right)
\end{array}
$$\right] \in \mathbb{R}^{m},
\]

where $\alpha_{i}=i /(m-1), i=0,1, \ldots, m-1$. This arises when we try to do polynomial fitting

$$
e^{\sin 4 x} \approx c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n-1} x^{n-1}
$$

over the interval $[0,1]$ at discrete points $x=0, \frac{1}{m-1}, \frac{2}{m-1}, \ldots, \frac{m-2}{m-1}, 1$. For $n=15$ and $m=100$, solve the least squares problem $\min \|A \mathbf{x}-\mathbf{b}\|_{2}$ and state your value of c_{14} using each of the following methods:
(i) Applying QR factorization to A.
(ii) Applying QR factorization to the augmented matrix $[A, \mathbf{b}] \in \mathbb{R}^{m \times(n+1)}$.
(iii) Solving the normal equations $A^{\top} A \mathbf{x}=A^{\top} \mathbf{b}$.

For (i) and (ii), your code should show how the respective QR factors are used in obtaining a solution of the least squares problem. You are free to use your program's built-in functions (e.g., $A \backslash b$ in Matlab/Octave/Scilab) for solving linear systems but for other things, use what you have implemented in (a), (b), (c). The true value of c_{14} is 2006.787453080206.... Comment on the accuracy of each method and algorithm.

[^0]: ${ }^{1}$ This is usually how one would generate a random orthogonal matrix.

