STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2022 PROBLEM SET 0

This homework mostly serves as a linear algebra refresher. We will recall some definitions. The null space or kernel of a matrix $A \in \mathbb{R}^{m \times n}$ is the set

$$\ker(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$$

while the range space or image is the set

$$\operatorname{im}(A) = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}.$$

The rank and nullity of A are defined as the dimensions of these spaces,

$$rank(A) = dim im(A)$$
 and $nullity(A) = dim ker(A)$.

By convention we write all vectors in \mathbb{R}^n as column vectors.

1. (a) For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, show that

$$im(AB) \subseteq im(A)$$
 and $ker(AB) \supseteq ker(B)$.

When does equality occur in each of these inclusions?

(b) For $A, B \in \mathbb{R}^{n \times n}$, show that

$$rank(AB) \le min\{rank(A), rank(B)\},\$$

$$\operatorname{nullity}(AB) \leq \operatorname{nullity}(A) + \operatorname{nullity}(B),$$

$$rank(A + B) \le rank(A) + rank(B)$$
.

(c) For $A, B \in \mathbb{R}^{n \times n}$, show that if AB = 0, then

$$rank(A) + rank(B) < n$$
.

2. (a) Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$. Show that

$$\operatorname{rank}\left(\begin{bmatrix}A & 0\\ 0 & B\end{bmatrix}\right) = \operatorname{rank}(A) + \operatorname{rank}(B).$$

We have used the block matrix notation here. For example if $A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \in \mathbb{R}^{2\times 3}$ and $B = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{R}^{2\times 1}$, then

$$\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} = \begin{bmatrix} a & b & c & 0 \\ d & e & f & 0 \\ 0 & 0 & 0 & \alpha \\ 0 & 0 & 0 & \beta \end{bmatrix} \in \mathbb{R}^{4 \times 4}.$$

This is sometimes also denoted as $A \oplus B$. It is a direct sum of operators induced by a direct sum of vector spaces.

(b) For $\mathbf{x} = [x_1, \dots, x_m]^{\mathsf{T}} \in \mathbb{R}^m$ and $\mathbf{y} = [y_1, \dots, y_n]^{\mathsf{T}} \in \mathbb{R}^n$, observe that $\mathbf{x}\mathbf{y}^{\mathsf{T}} \in \mathbb{R}^{m \times n}$. Let $A \in \mathbb{R}^{m \times n}$. Show that rank(A) = 1 iff $A = \mathbf{x}\mathbf{y}^{\mathsf{T}}$ for some nonzero $\mathbf{x} \in \mathbb{R}^m$ and $\mathbf{y} \in \mathbb{R}^n$.

- **3.** Let $A \in \mathbb{R}^{m \times n}$.
 - (a) Show that

$$\ker(A^{\mathsf{T}}A) = \ker(A)$$
 and $\operatorname{im}(A^{\mathsf{T}}A) = \operatorname{im}(A^{\mathsf{T}}).$

Give an example to show this is not true over a finite field (e.g. a field of two elements $\mathbb{F}_2 = \{0, 1\}$ with binary arithmetic).

(b) Show that

$$A^{\mathsf{T}}A\mathbf{x} = A^{\mathsf{T}}\mathbf{b}$$

always has a solution (even if $A\mathbf{x} = \mathbf{b}$ has no solution). Give an example to show that this is not true over a finite field.

4. Let $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^n$. Let $r \leq n$ and $G_r = [g_{ij}] \in \mathbb{R}^{r \times r}$ be the matrix with

$$g_{ij} = \mathbf{v}_i^\mathsf{T} \mathbf{v}_j$$

for i, j = 1, ..., r. This is called a *Gram matrix*.

- (a) Show that $\mathbf{v}_1, \dots, \mathbf{v}_r$ are linearly independent iff nullity $(G_r) = 0$.
- (b) Show that $G_r = I_r$ iff $\mathbf{v}_1, \dots, \mathbf{v}_r$ are pairwise orthogonal unit vectors, i.e., $\|\mathbf{v}_i\|_2 = 1$ for all $i = 1, \dots, r$, and $\mathbf{v}_i^\mathsf{T} \mathbf{v}_j = 0$ for all $i \neq j$. If this holds, show that

$$\sum_{i=1}^{r} (\mathbf{v}^{\mathsf{T}} \mathbf{v}_i)^2 \le \|\mathbf{v}\|_2^2 \tag{4.1}$$

for all $\mathbf{v} \in \mathbb{R}^n$. What can you say about $\mathbf{v}_1, \dots, \mathbf{v}_r$ if equality always holds in (4.1) for all $\mathbf{v} \in \mathbb{R}^n$?

- **5.** Let $A, B \in \mathbb{R}^{m \times n}$. For any $i, j \in \{1, \dots, n\}$, let $E_{ij} \in \mathbb{R}^{p \times q}$ denote the matrix with one in the (i, j)th entry and zeros everywhere else.
 - (a) Describe the matrix $E_{ij}AE_{kl} \in \mathbb{R}^{m \times n}$ where $E_{ij} \in \mathbb{R}^{p \times m}$ and $E_{kl} \in \mathbb{R}^{n \times q}$.
 - (b) Find expressions $\operatorname{tr}(A^{\mathsf{T}}B)$, $\operatorname{tr}(AB^{\mathsf{T}})$, $\operatorname{tr}(BA^{\mathsf{T}})$, $\operatorname{tr}(B^{\mathsf{T}}A)$ in terms of the entries of A and B. What if A = B? What if $B = E_{ij} \in \mathbb{R}^{m \times n}$?
 - (c) Suppose m = n and $\operatorname{tr}(A) = \operatorname{tr}(\tilde{A}^2) = \cdots = \operatorname{tr}(A^n) = 0$. Show that $A^n = 0$.
 - (d) Suppose m = n. Show that (i) $\operatorname{tr}[(AB)^k] = \operatorname{tr}[(BA)^k]$ and (ii) if AB = 0, then $\operatorname{tr}[(A+B)^k] = \operatorname{tr}(A^k) + \operatorname{tr}(B^k)$, for all $k \in \mathbb{N}$.
- **6.** Let $A \in \mathbb{C}^{n \times n}$. Recall that A is diagonalizable iff there exists an invertible $X \in \mathbb{C}^{n \times n}$ such that $X^{-1}AX = \Lambda$, a diagonal matrix.
 - (a) Show that A is diagonalizable if and only if its minimal polynomial is of the form

$$m_A(x) = (x - \lambda_1) \cdots (x - \lambda_d)$$

where $\lambda_1, \ldots, \lambda_d \in \mathbb{C}$ are all distinct. Hence deduce for a diagonalizable matrix, the degree of its minimal polynomial equals the number of distinct eigenvalues.

(b) Let A be diagonalizable. Let $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{C}^n$ be n linearly independent right eigenvectors, i.e., $A\mathbf{x}_i = \lambda_i \mathbf{x}_i$; and $\mathbf{y}_1, \ldots, \mathbf{y}_n \in \mathbb{C}^n$ be n linearly independent left eigenvectors, i.e., $\mathbf{y}_i^{\mathsf{T}} A = \lambda_i \mathbf{y}_i^{\mathsf{T}}$. Show that we may choose $\mathbf{x}_1, \ldots, \mathbf{x}_n$ and $\mathbf{y}_1, \ldots, \mathbf{y}_n$ so that any vector $\mathbf{v} \in \mathbb{C}^n$ can be expressed as

$$\mathbf{v} = \sum_{i=1}^n (\mathbf{y}_i^{\mathsf{\scriptscriptstyle T}} \mathbf{v}) \mathbf{x}_i.$$

If we write $X = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{C}^{n \times n}$ and $Y = [\mathbf{y}_1, \dots, \mathbf{y}_n] \in \mathbb{C}^{n \times n}$. What is the relation between X and Y?