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Abstract. Inverse transport consists of reconstructing the optical properties of
a domain from measurements performed at the domain’s boundary. This paper
concerns several types of measurements: time dependent, time independent, angularly
resolved and angularly averaged measurements. We review recent results on the
reconstruction of the optical parameters from such measurements and the stability
of such reconstructions. Inverse transport finds applications e.g. in medical imaging
(optical tomography, optical molecular imaging) and in geophysical imaging (remote
sensing in the Earth atmosphere).
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1. Introduction

This paper reviews recent results on the inverse problem for the linear transport

equation. The transport equation typically models the density of particles u(t, x, v)

in the space of positions x and velocities v as a function of time t or the energy density

of high frequency waves in the space of positions and wavenumbers as a function of time.

We shall use the terminology of “particles” to represent both particles and the energy

density of wave packets. The most general transport equation we consider here has the

form:

∂u

∂t
+∇vH(x, v) · ∇xu−∇xH(x, v) · ∇vu+ σ(x, v)u

=

∫
V

k(x, v′, v)u(t, x, v′)dv′ + S(t, x, v), (t, x, v) ∈ (0,T)×X × V

u|(0,T)×Γ−(t, x, v) = g(t, x, v) (t, x, v) ∈ (0,T)× Γ−

u(0, x, v) = 0, (x, v) ∈ X × V.

(1)

The spatial domain X is a convex, bounded, open subset of Rd for dimension d ≥ 2, with

a C1 boundary ∂X. The space of velocities V is a subset of Rd. The theories presented

in this paper apply when V is a bounded, open subset of Rd or the unit sphere Sd−1.

Most results will be presented in the latter setting to simplify. We are interested here

in two types of problems: the first one in which the probing particles enter the domain

through its boundary ∂X and the second one in which particles are created inside the
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domain. In the former problem, g(t, x, v) models the density of particles entering the

domain as a function of time, space, and incoming velocities. The sets of incoming

conditions Γ− and outgoing conditions Γ+ are defined by

Γ± = {(x, v) ∈ ∂X × V, s.t. ± v · ν(x) > 0}, (2)

where ν(x) is the outgoing normal vector to X at x ∈ ∂X. In the latter problem,

S(t, x, v) models the density of creation of particles inside the domain X.

In the absence of interaction of the particles with the underlying medium, the

dynamics are governed by the HamiltonianH ≡ H(x, v) and (1) is the Liouville equation

of classical mechanics. In most of the paper, we consider the propagation of particles or

energy densities along straight lines so that

∇vH(x, v) · ∇xu−∇xH(x, v) · ∇vu = v · ∇xu, H(x, v) :=
|v|2

2

∇vH(x, v) · ∇xu−∇xH(x, v) · ∇vu = cv̂ · ∇xu, H(x, v) := c|v|,
(3)

where we define v̂ = v
|v| . The first Hamiltonian in (3) models the propagation of particles

with kinetic energy 1
2
|v|2 in the absence of external force field. The second Hamiltonian

models the propagation of classical waves, such as e.g. acoustic, electromagnetic,

elastic waves in a medium with constant speed c. This paper mostly focuses on the

latter setting, which finds several applications in medical and geophysical imaging.

Generalizations to spatially varying Hamiltonians such as e.g. H(x, v) = c(x)|v|, which

corresponds to a varying index of refraction, will also be considered in later sections.

The optical parameters σ(x, v) and k(x, v′, v) model the interaction of the

propagating particles with the underlying structure. We assume here that such an

interaction is linear. The parameter σ(x, v) models the total absorption of particles

caused by true, intrinsic absorption, and by scattering of particles into other directions.

The scattering coefficient k(x, v′, v) indicates the amount of particles scattering from

a direction v′ into a direction v at position x. In most inverse problems considered in

this paper, σ and k are the unknown parameters that need to be reconstructed from

available measurements. The measurements considered here are measurements collected

at the boundary ∂X of the domain of interest. We assume some control over the

density of particles entering the domain through ∂X. The measurements are therefore

functionals of the incoming density of particles u|Γ−(t, x, v) and outgoing density of

particles u|Γ+(t, x, v). The source term S is then set to 0. While u|Γ−(t, x, v) = g(t, x, v)

is prescribed, u|Γ+(t, x, v) is obtained by solving (1). The relationship between both

quantities is the so-called albedo operator defined by

A : u|Γ−(t, x, v) 7→ Au|Γ−(t, x, v) = u|Γ+(t, x, v). (4)

Most of the paper will be concerned with answering the questions of what may be

reconstructed in σ(x, v) and k(x, v′, v) from full or partial knowledge of the albedo

operator A and with which stability estimate. This is the inverse transport problem.
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For general relevant references on theoretical and computational inverse problems, we

refer the reader to [53, 59, 68, 101, 114, 140]. For general references and earlier review

papers on inverse transport, we refer the reader to e.g. [2, 78, 89, 90, 129].

The inverse transport problem finds applications in many areas including medical

imaging and optical tomography [6, 38, 65, 113], radiative transfer in the atmosphere

and the ocean [83, 88] (where the inverse transport problem is referred to as remote

sensing), neutron transport [46, 127], as well as the propagation of seismic waves in the

earth crust [122]. Independent of the physical context, we refer to the parameters σ and

k as the “optical” parameters throughout the paper.

A second class of inverse problems consists of reconstructing parts of the source

term S(t, x, v) from available boundary measurements u|Γ+(t, x, v). Such an inverse

source problem typically requires that the optical parameters σ(x, v) and k(x, v′, v) be

known. The inverse source problem finds applications e.g. in medical imaging techniques

such as optical molecular imaging [67, 72, 142] and in ocean optics [135]. We consider

inverse transport source problems in section 7.

The transport equation may be derived either phenomenologically [39, 60, 83, 110]

or from first principles as a high frequency limit of (classical or quantum) waves

propagating in highly heterogeneous media; see e.g. [13, 55, 85, 120, 125, 128, 137] and

their references. The direct problem (1) has been analyzed extensively in the literature

[35, 45, 52, 96]. We present the theory needed for the inverse transport analysis in

section 2. This will allow us to properly define the albedo operator (4). A large number

of theoretical results on the reconstruction of the optical parameters are based on the

singular decomposition of the albedo operator A; see e.g. [31, 32, 43, 44, 79]. In the

absence of scattering, a localized beam of particles entering X at (x0, v0) ∈ Γ− exits the

domain at (x0 + τv0, v0) ∈ Γ+, where τ is the time spent by the particles in the domain.

In the presence of scattering, a positive fraction of the entering beam called the ballistic

part still exits the domain (x0 + τv0, v0) ∈ Γ+. This ballistic part is more singular than

the contributions caused by scattering. In dimensions d ≥ 2 for the time-dependent

problem and d ≥ 3 for the time-independent problem, the single scattering contribution

to u|Γ+ also turns out to be more singular, in a sense that will be clarified later, than

the contribution that has scattered at least twice before exiting the domain. These

two singular contributions in the albedo operator allow us to uniquely reconstruct the

optical parameters.

While the analysis of the singular decomposition of the albedo operator is one

of the main focuses in this paper, its main limitations are best understood by

analyzing the different regimes or particle propagation in the transport equation. The

singular decomposition offers a practically useful methodology to invert for the optical

parameters when two situations are met: (i) scattering should not be too large for the

ballistic and single scattering components to be detectable; and (ii) scattering should

be sufficiently isotropic for the ballistic front not to be too blurred. Large scattering

results in the regime of diffusion whereas highly anisotropic (peaked forward) scattering
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results in the regime of Fokker Planck propagation. These two regimes, which may be

derived as asymptotic approximations to the transport equation, are reviewed in section

2. In either regime, the decomposition of the albedo operator becomes less meaningful

and the development of other inversion tools is necessary.

When scattering is not too large and not too anisotropic, then inverse transport

may be analyzed by means of the singular decomposition of the albedo operator. Which

part of the optical parameters may be reconstructed then depends on the available

measurements. The available measurements may be categorized as follows. One may

first separate between time-dependent and time-independent measurements. Time

dependent measurements are richer and therefore preferable. They are available e.g.

in cloud parameter retrievals [109]. They are however not feasible or too expensive

in many medical imaging modalities, where time-independent measurements should be

analyzed. A second separation analyzes the angular dependence of the measurements.

Angularly resolved measurements are very expensive to acquire and may face the hurdle

of low particle counts. Most applications of inverse transport are therefore performed

from angularly averaged measurements or other types of measurements in which the

density of incoming particles and the measured density of outgoing particles is a function

of the spatial variable x ∈ ∂X only. We analyze what may be reconstructed in the

optical parameters and with which stability under the following four scenarios: (i) time-

dependent angularly resolved measurements; (ii) time-independent angularly resolved

measurements; (iii) time-dependent angularly averaged measurements; and (iv) time-

independent angularly averaged measurements. Although the latter setting is by far

the most common in applications, it is also the worst-case scenario as far as theoretical

uniqueness and stability results are concerned. These settings are analyzed in sections

3 and 4. Section 3 presents several uniqueness (and non-uniqueness) results based on

the decomposition of the albedo operator in singular components. Section 4 focuses on

the stability estimates that can be obtained in these different measurement settings.

In many applications of wave energy density propagation in scattering media,

the spatially independent Hamiltonians in (3) offer accurate approximations. Some

applications however, require spatially varying indices of refraction, which may be

modeled for scalar waves by a Hamiltonian of the form H(x, v) = c(x)|v| for classical

waves. Most of the results obtained in the setting of free transport along straight

lines generalizes to this setting of non-Euclidean geometry. Such generalizations are

considered in section 6 below.

Once the optical parameters σ(x, v) and k(x, v′, v) are known, another important

inverse transport problem is the inverse source problem, where S(t, x, v) is to

be reconstructed from boundary measurements on Γ+. Typical applications of

the inverse source problem in medical imaging may be found in positron-electron

tomography (PET), single photon emission computerized tomography (SPECT) and

optical molecular imaging (OMI). The source term may then be considered as isotropic

(independent of the velocity variable v) and since the photon propagation arises at a
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much faster time scale than the scale of emission, the source term and measurements

are well-approximated by time-independent processes. The reconstruction of spatially

varying source terms S(x) from steady-state measurements is considered in section 7.

Practical aspects in the numerical simulation of inverse transport problems and

other theoretical results not mentioned in earlier sections are addressed in section 8.

Some perspective and open problems are offered in section 9.

2. Transport equations and regimes of propagation

2.1. Theory of transport

For detailed presentations of the theory of transport equations, we refer the reader to

e.g. [35, 45, 96] and their references. We now recall the theoretical results that are used

in the analysis of inverse transport problems.

To simplify the theoretical presentation of the main results in this paper, we shall

assume that V = Sd−1, the unit sphere. All results generalize after minor modifications

to the setting where V is a finite union of spheres or a bounded open subset of Rd such

that infv∈V |v| > 0. The latter constraint is necessary because particles propagating with

arbitrarily small speeds take arbitrary long times to escape the domain. The presence of

arbitrarily small speeds of propagation therefore requires modifications in the derivation

of the theoretical results; see e.g. [44].

We say that the optical parameters (σ, k) are admissible when

0 ≤ σ ∈ L∞(X × V )

0 ≤ k(x, v′, ·) ∈ L1(V ) a.e. in X × V

σp(x, v
′) :=

∫
V

k(x, v′, v)dv ∈ L∞(X × V ).

(5)

In practice, the optical parameters are non-negative and bounded. The above hypotheses

are therefore not restrictive and are assumed to hold for the rest of the paper.

We define the times of escape of free-moving particles from X as

τ±(x, v) = inf{s > 0|x± sv 6∈ X} (6)

and τ(x, v) = τ+(x, v) + τ−(x, v). On the boundary sets Γ±, we introduce the measure

dξ(x, v) = |v · ν(x)|dµ(x)dv, where dµ(x) is the surface measure on ∂X.

Let us introduce the operators

Ku(x, v) =

∫
V

k(x, v′, v)u(x, v′)dv′, D(K) = L1(X × V )

Tu = −v · ∇xu− σu+Ku

D(T ) =
{
u ∈ L1(X × V )|v · ∇xu ∈ L1(X × V ) and u|Γ− = 0

}
.

(7)

We now recall results of existence for the time-dependent and time-independent

transport problems.
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2.1.1. Time dependent case. We first consider the evolution equation( ∂
∂t
− T

)
u = 0, (t, x, v) ∈ (0,T)×X × V

u|Γ−(t, x, v) = g(t, x, v) (t, x, v) ∈ (0,T)× Γ−

u(0, x, v) = 0 (x, v) ∈ X × V.

(8)

Let T1 = −v · ∇x − σ with domain D(T1) = D(T ). The unbounded operators T1

and T are generators of strongly continuous semigroups U1(t) and U(t), respectively, in

L1(X × V ); see e.g [45, Proposition 2 p.226]. Moreover, for f ∈ L1(X × V ), we have

U1(t)f(x, v) = e−
∫ t
0 σ(x−sv,v)dsf(x− tv, v)χX(x− tv), a.e. in X × V, (9)

where χX(y) = 1 when y ∈ X and χX(y) = 0 otherwise.

The Duhamel formula then allows us to relate U to U1 as

U(t) = U1(t) +

∫ t

0

U1(t− s)KU(s)ds, t ≥ 0. (10)

A natural functional setting for the transport solution is

W =
{
u ∈ L1((0,T)×X × V )|∂u

∂t
+ v · ∇xu ∈ L1((0,T)×X × V )

}
, (11)

with its natural norm. It is shown e.g. in [36, 37] that the trace maps

γ−(ψ) =
(
ψ(0, ·), ψ|(0,T)×Γ−

)
and γ+(ψ) =

(
ψ(T, ·), ψ|(0,T)×Γ+

)
, (12)

are well defined as a map from W to L1(X × V, τ+(x, v)dxdv) × L1((0,T) ×
Γ−,min (T− t, τ+(x, v))dtdξ) for γ− and with a similar expression for γ+. Both maps

are continuous, onto, and admit continuous liftings. We then introduce the Banach

space

W :=
{
u ∈ W|γ−(u) ∈ L1(X × V )× L1((0,T)× Γ−, dtdξ)

}
. (13)

For u ∈ W , the trace γ+(u) is then well-defined as an element in L1(X×V )×L1((0,T)×
Γ+, dtdξ) so that the measurements u(0,T)×|Γ+ are indeed well-defined for u ∈ W .

The above setting allows us to incorporate the boundary condition on Γ−. Let us

assume that g ∈ L1((0, η);L1(Γ−, dξ)) for some η > 0 and let g be extended by 0 for

times outside of (0, η). Then we consider the lifting G−(t)φ of (0, φ) to W defined by

G−(t)φ(t, x, v) = exp
(
−
∫ τ−(x,v)

0

σ(x− sv, v)ds
)
φ
(
t− τ−(x, v), x− τ−(x, v)v, v

)
, (14)

for (t, x, v) ∈ (0,T) × X × V . As a consequence, we have the following result [45,

Theorem 3 p.229]

Theorem 2.1 The equation (8) admits a unique solution u in W given by

u(t) = G−(t)g +

∫ t

0

U(t− s)KG−(s)gds. (15)
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Moreover, the albedo operator is given by

Ag = u|(0,T)×Γ+ , (16)

and is a bounded operator from L1((0, η), L1(Γ−, dξ)) to L1((0,T), L1(Γ+, dξ)).

For consistency with the time-independent case, we recast the above transport

equation and the transport solution as

(I −K)u = Ig, u = (I −K)−1Ig,

where we have defined formally the operators

Ig(t) = G−(t)g t ∈ (0,T)

Kφ(t) =

∫ t

0

U1(t− s)Kφ(s)ds, t ∈ (0,T).

Using these operators, we may recast the transport solution as

u = Ig +KIg + (I −K)−1K2Ig, (17)

where u0 := Ig is the ballistic component, u1 := KIg the single scattering component

and u2 := u− u0 − u1 = (I −K)−1K2Ig is the multiple scattering component.

2.1.2. Time independent case. A similar theory may be developed for the time-

independent transport problem

−Tu = S, (x, v) ∈ X × V

u|Γ−(x, v) = g(x, v) (x, v) ∈ Γ−,
(18)

where S(x, v) ∈ L1(X × V ) is a volume source term. The assumptions (5) on the

optical parameters are however no longer sufficient to guarantee a unique solution to

(18). The physical reason is that the “creation” of particles caused by scattering Ku

needs to be compensated by another mechanism in order for a steady equilibrium to

take place. Two mechanisms compensate for this creation of particles: the absorption

of particles inside X and the leakage of particles leaving X across the boundary ∂X. In

applications in medical and geophysical imaging, total absorption is defined as the sum

of scattering plus intrinsic absorption. Leakage is therefore not important. In nuclear

physics however, neutrons are also created by fission so that leakage at the domain’s

boundary is an important contribution to the stability of the transport solution [1, 96].

We define the following Banach space

W :=
{
u ∈ L1(X × V )|v · ∇xu ∈ L1(X × V ), τ−1u ∈ L1(X × V )

}
, (19)

with its natural norm. We recall that τ is defined below (6). We have the following

trace formula [44]

‖f|Γ±‖L1(Γ±,dξ) ≤ ‖f‖W , f ∈ W. (20)
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This allows us to introduce the following lifting operator

Ig(x, v) = exp
(
−
∫ τ−(x,v)

0

σ(x− sv, v)ds
)
g(x− τ−(x, v)v, v). (21)

It is proved in [44] that I is a bounded operator from L1(Γ−, dξ) to W .

Let us next define the bounded operators

Ku(x, v) =

∫ τ−(x,v)

0

exp
(
−
∫ t

0

σ(x− sv, v)ds
)∫

V

k(x− tv, v′, v)u(x− tv, v′)dv′dt

LS(x, v) =

∫ τ−(x,v)

0

exp
(
−
∫ t

0

σ(x− sv, v)ds
)
S(x− tv, v)dt (22)

for (x, v) ∈ X × V . Looking for solutions in W , the integro-differential equation (18) is

thus recast as

(I −K)u = Ig + LS. (23)

Then we have the following result [17, 44].

Theorem 2.2 Assume that

(I −K) admits a bounded inverse in L1(X × V, τ−1dxdv). (24)

Then the integral equation (23) admits a unique solution u ∈ W for g ∈ L1(Γ−, dξ) and

S ∈ L1(X × V ). Furthermore, the albedo operator

A : L1(Γ−, dξ) → L1(Γ+, dξ), g 7→ Ag = u|Γ+ , (25)

where u solves (23) with S ≡ 0, is a bounded operator.

The invertibility condition (24) holds under either of the following assumptions

σ − σp ≥ 0 (26)

‖τσp‖∞ < 1. (27)

The above theorem states that the transport equation admits a unique solution provided

that (I − K) is invertible, which is somewhat tautological. The main messages of the

theorem are that (i) the albedo operator is then well-defined and that the results stated

below for the inverse transport problem hold so long as I−K is invertible; and (ii) I−K is

not necessarily invertible and conditions, which are not necessary in the time-dependent

setting, need be imposed. It turns out that under general assumptions on k(x, v′, v), Km

is compact in the L1 and L2 settings for m sufficiently large [45, 96, 131, 133] so that

(24) is invertible when 1 6∈ Σp(K), the spectrum of K (see also the results in [131, 133]

recalled below (141)). Note that K is linear in k. When 1 ∈ Σp(K), we thus verify

that replacing k by λk with λ 6= 1 sufficiently close to 1 makes (I − λK) invertible so

that the steady-state transport equation may be seen to be invertible for generic optical

coefficients.

When Σp(K) ⊂ [0, 1), the problem is said to be subcritical. This is the case

in most applications of forward and inverse transport, with the notable exception of
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nuclear reactor physics, where the objective is for the reactor to be exactly critical [96].

Sufficient conditions for subcriticality are given in (26) and (27). The former is the

most physical in practice. It states that particles “created” by scattering into direction

v have scattered from direction v′ and are thus “absorbed” for direction v′. The total

absorption (intrinsic absorption plus “absorption” caused by scattering) is thus always

larger than “creation” caused by scattering. The latter constraint is less physical. It

states that leakage alone compensates for the creation of particles in the operator K even

when absorption σ vanishes. Note that when the problem is subcritical, its solution may

be expressed in terms of the following Neumann expansion in L1(X × V )

u =
∞∑

m=0

Km(Ig + LS). (28)

The contribution m = 0 is the ballistic part of u, the contribution m = 1 the single

scattering part of u, and so on. It is essentially this decomposition of the transport

solution into orders of scatterings that allows us to stably reconstruct the optical

parameters in the following sections. Note that the above Neumann series expansions

has an additional benefit. Since the optical parameters are non-negative, each term in

the above series is non-negative provided that g and S are non-negative so that the

transport solution itself is non-negative. A little more work [45] allows us to prove the

maximum principle, which states that u in X × V is bounded a.e. by the (essential)

supremum of g in Γ− when S ≡ 0.

When S ≡ 0, the transport solution may be decomposed as in (17) as a

superposition of the ballistic part Ig, the single scattering part KIg, and the multiple

scattering part (I −K)−1K2Ig.

2.2. Diffusive regime

The theory outlined in the preceding section holds independent of the strength of the

scattering and absorption coefficients so long as a subcriticality condition such as (26) or

(27) is verified in the time independent setting. Yet the regime of interest in this paper

is the regime where scattering is not too overwhelming. When scattering is strong and

particles interact often with the underlying medium, the transport solution is very well

approximated by the solution to simplified equations such as the diffusion equation

or the Fokker-Planck equation. In such regimes, the inverse transport problem is

fundamentally modified. The ballistic Ig and single scattering KIg components become

asymptotically negligible. The techniques presented in this paper are based on using

the ballistic and single scattering components, and therefore become asymptotically

irrelevant as the diffusive or Fokker-Planck regimes set in.

In order to better understand the limitations of the techniques detailed in this

paper, we briefly present the regimes of validity of the diffusion and Fokker-Planck

approximations and mention the related inverse problems. We start with the diffusion

approximation.
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The diffusion approximation is valid when (i) scattering is strong, and (ii)

absorption is weak. The derivation of diffusion approximations is well-developed in

the physical and mathematical literatures; see e.g. [27, 28, 45, 80, 120]. What may be

less well appreciated is the fact that diffusion approximations also hold in the presence

of spatially varying indices of refraction.

We thus consider the transport equation with H(x, v) = c(x)|v| = ω, where ω

is fixed. We also assume that the Hamiltonian H is preserved by scattering (elastic

scattering); see e.g. [39, 120]. Under these assumptions, the transport equation (1)

takes the form

∂u

∂t
+ c(x)

v

|v|
· ∇xu− |v|∇c(x) · ∇vu+ σ(x)u =

∫
Rd

k(x, v′, v)u(t, x, v′)δ(ω− c(x)|v′|)dv′,

(29)

augmented here with non-vanishing initial conditions u(0, x, v) = uin(x) independent of

v to simplify. In order to derive the diffusion approximation to the above equation, we

follow the presentation in [15]. It is convenient to perform the change of variables

ũ(t, x, θ) = u(t, x,
ω

c(x)
θ),

where θ = v
|v| ∈ Sd−1. After the change of variables (x, v) → (x, ω = c(x)|v|, θ = v

|v|), we

find that ũ solves the transport equation

∂ũ

∂t
+ c(x)θ · ∇xũ−∇c(x) · (I − θ⊗ θ)∇θũ+ σ(x)ũ =

∫
Sd−1

k̃(x, θ′, θ)ũ(t, x, θ′)dθ′, (30)

with

k̃(x, θ′, θ) =
ωd−1

c(x)d
k
(
x,

ω

c(x)
θ′,

ω

c(x)
θ
)
.

In optical tomography, it is customary to introduce

µa(x) =
σ(x)

c(x)
− µs(x), µs(x)f(x, θ · θ′) =

k̃(x, θ′, θ)

c(x)
, (31)

where µa(x) is the intrinsic absorption coefficient, µs(x) the scattering coefficient, and

f(x, θ · θ′) the phase function , which we assume depends on θ and θ′ only through θ · θ′
and integrates to 1 in the sense that

∫
Sd−1 f(x, θ · θ′)dθ′ = 1. This models the fact that

scattering is invariant by rotation.

The diffusion regime sets in when scattering is large so that µs is replaced by µs/η

for η � 1, when absorption is small so that µa is replaced by ηµa, and when time is

rescaled so that dynamics have time to develop with t replaced by t/η. In such a regime,

the mean free path ηl(x, ω) is defined as

ηl(x, ω) :=
η

µt(x, ω)
� L,

µt(x, ω)

η
=
µs(x, ω)

η
+ ηµa(x, ω), (32)
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where L is the distance over which propagation is observed. The equation for ũη then

becomes

η

c(x)

∂ũη

∂t
+ θ · ∇xũη −

∇c(x)
c(x)

· (I − θ ⊗ θ)∇θũη + ηµa(x)ũη

=
µs(x, ω)

η

∫
Sd−1

f(x, θ′ · θ)
(
ũη(t, x, θ

′, ω)− ũη(t, x, θ, ω)
)
dθ′,

(33)

with initial conditions ũη(0, x, θ, ω) = ũin(x, ω) independent of θ to simplify.

We may then write ũη = U0 + ηũ1 + η2ũ2, plug the asymptotic expansion into

(33) and equate like powers of η [15, 45]. The first equation shows that U0 = U0(t, x)

independent of θ since the right-hand side in (33) is a conservative operator. The second

equation allows us to obtain that

ũ1(t, x, θ) =
−θ · ∇xU0(t, x)

µs(x)(1− λ1(x))
,

where λ1(x) is uniquely defined by the equation

λ1(x)θ =

∫
Sd−1

f(x, θ · θ′)θ′dθ′.

The third equation corresponding to terms proportional to O(η) admits a compatibility

condition, which after some algebra, may be recast as

1

cd(x)

∂U0

∂t
−∇ ·

( D(x)

cd−1(x)
∇U0

)
+

µa(x)

cd−1(x)
U0 = 0, (34)

with initial conditions U0(0, x) = ũin(x) and where the diffusion coefficient is defined by

D(x) :=
l∗(x)

d
=

l(x)

d(1− λ1(x))
=

1

dµt(x)(1− λ1(x))
, (35)

where µt is defined in (32) above. Here l∗(x) is the rescaled transport mean free path

(while ηl∗(x) is the physical transport mean free path). The transport mean free path

l∗ is always larger than the mean free path l. While the latter characterizes the mean

distance between interactions with the underlying medium, the former characterizes the

mean distance it takes of particles to significantly change direction because of scattering.

When scattering is isotropic so that f(µ) := 1, then λ1 = 0 and l = l∗. When scattering

is anisotropic, in the sense that it is primarily occurring in the forward direction, then

λ1 > 0 and l∗ > l. The diffusive regime sets in when the transport mean free path ηl∗ is

sufficiently small so that the initial direction of the particles is lost because of multiple

interactions with the underlying medium.

In the presence of a boundary ∂X, the above diffusion equation needs to be

augmented with boundary conditions. The derivation of boundary conditions is not

completely straightforward because the decomposition uη = U0 + O(η) is not valid in

the vicinity of the boundary (since U0 does not depend on v while uη prescribed on Γ−
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inevitably does). The proper derivation of boundary conditions involves the introduction

of boundary layers and is now well-understood, even if it is seldom used in practice. The

resulting boundary conditions are of Robin type U0 − ηLeD(x)ν · ∇xU0 = G on ∂X for

some boundary source term G and extrapolation length Le. We refer the reader to e.g.

[26, 28, 45, 84].

In the diffusive regime of propagation, the ballistic and single scattering components

of the transport solution are negligible and of order e−
σ0
η , where σ0 is a typical value for

the attenuation coefficient σ. The inverse problem for the reconstruction of the optical

parameters from boundary measurements becomes an inverse elliptic or inverse parabolic

problem for the diffusion coefficient D(x) and the attenuation coefficient µa(x) assuming

that the sound speed c(x) is known. Such inverse problems are qualitatively quite

different from the inverse transport problem. We refer the reader to e.g. [6, 7, 59, 136]

for a few references on the theory and practice of such widely used inverse problems.

2.3. Highly peaked forward regime

The preceding section presented a limitation to the inverse transport theory in the

regime of strong scattering, when the transport mean free path l∗ is small compared to

the overall distance of propagation. We now consider another limitation of the inverse

transport theory when the transport mean free path l∗ is not necessarily small but the

mean free path l is small. This occurs in the presence of strong highly peaked forward

scattering. While strong highly peaked forward scattering may not be sufficiently

strong to generate significant spatial diffusion as in the diffusive regime, it may be

sufficiently strong to generate diffusion in the angular variable. This angular diffusion

then destroys the singularities of the transport operator and as such significantly reduce

the applicability of the inverse transport methods presented later in the paper; except

the approximate stability results shown in section 5. For references on the derivation of

the Fokker-Planck model in this context and its applications, see e.g. [66, 81, 111].

Let us consider the transport equation (29) with c(x) = c := 1 constant with ω

normalized to ω = 1 to simplify, which we recast, using the notation in (31) above, as

∂u

∂t
+ θ · ∇xu+ µa(x)u = µs(x)

∫
Sd−1

f(θ′ · θ)
(
u(t, x, θ′)− u(t, x, θ)

)
dθ′. (36)

Here, f(θ · θ′) is the phase function, which indicates how the scattered particles are

distributed in the angle θ′ after collision. Mie scattering theory [60] tends to show that

f(µ) is constant for small size scatterers while it is significantly peaked in the vicinity

of µ = 1 for large size scatterers. A typical expression for the phase function is the

Henyey-Greenstein phase function (when d = 3) [57]

f(θ′ · θ) =
1− g2

(1 + g2 − 2g cos(θ′ · θ)) 3
2

. (37)

Here, g ∈ [0, 1) is called anisotropic factor, which measures the strength of forward-

peakedness of the phase function. Typical values in animal tissues for g are in the range

0.9 ≤ g ≤ 0.99, which correspond to quite highly peaked forward scattering.
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Let us assume highly peaked forward scattering. We also assume that the mean

free path is sufficiently small so that enough highly peaked forward scattering occurs to

have a visible effect. The right scaling for (36) is then

∂uε

∂t
+θ ·∇xuε+µa(x)uε =

µs(x)

εd+1

∫
Sd−1

f̃
(1− (θ′ · θ)2

ε2

)(
uε(t, x, θ

′)−uε(t, x, θ)
)
dθ′, (38)

where f̃( 1
ε2 (1 − µ2)) = Cεf(µ) for the rescaled highly peaked forward phase function.

Define a system of coordinates on Sd−1 such that θ = (0, . . . , 0, 1) and θ′ =

(sinφθ′′, cosφ), where φ ∈ (0, π
2
) and θ′′ is a parameterization of Sd−2 so that dθ′ =

sinφd−2dφdθ′′.

Assuming that f̃(µ) is rapidly decaying at infinity, the above scaling implies

that sinφ is of order ε. We define sinφ = εψ and vε(sinφθ
′′, cosφ) = uε(θ

′) =

vε(εψθ
′′,
√

1− ε2ψ2). A Taylor expansion of vε in the vicinity of θ = (0, . . . , 0, 1) shows

that ∫
Sd−2

(vε(εψθ
′′,
√

1− ε2ψ2)− vε(0, . . . , 0, 1))dθ′′

=
ε2ψ2cd

2

(
∆d−1vε − (d− 1)∂dvε)(0, . . . , 0, 1) + o(ε2),

provided that vε is sufficiently smooth, where ∆d−1 is the (Euclidean) Laplacian with

respect to the first d− 1 variables and ∂d is derivative with respect to the last variable

and where cd =
∫

Sd−2(θ
′′
1)

2dθ′′ = 1
d−1

∫
Sd−2 dθ

′′ (obtained e.g. by completing the squares).

Using the definition of the Laplace Beltrami operator ∆⊥ in spherical coordinates,

we observe after some algebra that at θ = (0, . . . , 0, 1),

∆⊥uε = ∆d−1vε − (d− 1)∂dvε.

In other words, we find that∫
Sd−1

f̃
(1− (θ′ · θ)2

ε2

)(
uε(t, x, θ

′)− uε(t, x, θ)
)
dθ′ = εd+1

∫
R+

ψdf̃(ψ2)dψ
cd
2

∆⊥uε + o(εd+1).

This means that uε = u + o(1), where u is the solution to the following Fokker-Planck

equation

∂u

∂t
+ θ · ∇xu+ µa(x)u = µs(x)D∆⊥u, D =

cd
2

∫
R+

ψdf̃(ψ2)dψ. (39)

The above equation is mathematically quite different from the transport equation. The

operator θ · ∇x −D∆⊥ is known to be hypo-elliptic, which implies that the solution to

the above equation is smooth, at least when µa and µs are smooth. The singularities

of the albedo operator that will be useful in later sections are therefore smoothed-out

by the angular diffusion operator ∆⊥. The reconstruction of µa(x) and µs(x)D from

boundary measurements is an open problem to-date.

The regimes of diffusion and Fokker Planck approximations are major limitations to

the theory presented in the following sections. In these regimes, the ballistic and single
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scattering contributions to the albedo operator are negligible because the mean free path,

the mean distance between successive interactions of the particles with the underlying

medium, is very small. In the diffusive regime, both the transport mean free path and

the mean free path are small, and the ballistic front is extremely strongly damped. In

the Fokker Planck regime, the transport mean free path may still be large while the

mean free path is small. The ballistic front, however, may not be completely destroyed.

It is simply blurred by the angular diffusion as a beam of particles propagates through

the scattering medium. The blurring caused by the angular diffusion, when D in (39) is

small, may then be modeled as noise at the detector levels. Stable reconstructions are

no longer feasible at those scales that have been blurred by the angular diffusion. The

approximate stability estimates obtained in section 5 may then be used to understand

how the reconstructions degrade as D increases.

3. Decomposition of the albedo operators and Uniqueness results

In both the time dependent and the time independent settings, we may follow (17) and

decompose the albedo operator as

Ag = Ig
∣∣
Γ+

+ KIg
∣∣
Γ+

+ K2(I −K)−1Ig
∣∣
|Γ+

:= A0g + A1g + A2g.
(40)

We denote by α the Schwartz kernel of the albedo operator A and use the same symbol

α both for the time dependent and the time independent settings. In other words,

Ag(t, x, v) =

∫
(0,η)×Γ−

α(t− s, x, v, y, w)g(s, y, w)dµ(y)dwds

Ag(x, v) =

∫
Γ−

α(x, v, y, w)g(y, w)dµ(y)dw,

in the time dependent and time independent settings, respectively. We follow here the

convention in [17, 19, 44] for the definition of α. The Schwartz kernel in [75, 129]

is defined as |ν(y) · w|−1 times the above Schwartz kernel as the integrals on Γ− are

considered with respect to the measure dξ(y, w) = |ν(y) ·w|dµ(y)dw in those references.

The Schwartz kernel is decomposed as the sum of α0, α1 and α2, the contributions

of the ballistic, single scattering, and multiple scattering components, respectively, as

in the decomposition (40). The decomposition was first developed in [43, 44] to obtain

uniqueness results for the reconstruction of the optical parameters and was later used in

[17, 19, 141] to prove stability results. We mainly follow the presentation in the latter

references. For other works on the decomposition of the transport solution and their

use in inverse transport theory, we refer the reader to [31, 32, 79].

What makes the decomposition useful is that α0 is more singular, as a distribution,

than α1 and α2 in the sense that there exists a sequence of continuous functions φε such

that 〈α0, φε〉 → 1 as ε → 0 while 〈αm, φε〉 → 0, m = 1, 2. These statements will be

made more precise in the next section.
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3.1. Time dependent case

We have the following decompositions in the time dependent case:

α0(t, x, v, y, w) = exp
(
−
∫ τ−(x,v)

0

σ(x− sv, v)ds
)
δv(w)δ{x−τ−(x,v)v}(y)δ(t− τ−(x, v)), (41)

α1(t, x, v, y, w) =

∫ τ−(x,v)

0

exp
(
−
∫ s

0

σ(x− τv, v)dτ −
∫ τ−(x−sv,w)

0

σ(x− sv − τw,w)dτ
)

k(x− sv, w, v)δ{x−sv−τ−(x−sv,w)w}(y)δ(t− s− τ−(x− sv, w))ds.

(42)

Here, δ{x} is the delta function on the surface ∂X defined by
∫

∂X
δ{x}(y)φ(y)dµ(y) = φ(x)

for x ∈ ∂X and φ continuous on ∂X. The other delta functions δv(w) and δ(t) are defined

similarly on V = Sd−1 and R. Note that α0 and α1 are not necessarily functions and

have to be defined as distributions.

The multiple scattering contribution α2 does not admit as simple an expression as

those above. However, α2, unlike α0 and α1, is always a function. It is shown in [43]

that |ν(y)·w|−1α2 ∈ L∞(Γ−, L
1
loc(R, L1(Γ+, dξ))). Under the additional assumption that

k ∈ L∞(X × V × V ), we have the following more precise estimate, shown in [19],

|ν(y) · w|−1α2(t, x, v, y, w) ∈ L∞(Γ−, L
p((−η,T), Lp(Γ+, dξ))), 1 ≤ p <

d+ 1

d
. (43)

3.2. Time independent case

We have the following decompositions in the time independent case:

α0(x, v, y, w) = exp
(
−
∫ τ−(x,v)

0

σ(x− sv, v)ds
)
δv(w)δ{x−τ−(x,v)v}(y). (44)

α1(x, v, y, w) =

∫ τ−(x,v)

0

exp
(
−
∫ t

0

σ(x− sv, v)ds−
∫ τ−(x−tv,w)

0

σ(x− tv − sw,w)ds
)

k(x− tv, w, v)δ{x−tv−τ−(x−tv,w)w}(y)dt.

(45)

Note that the corresponding terms in the time domain are decomposed as the product of

the time independent terms above and delta functions in time corresponding to arrival

times. Also, we verify that

αm(x, v, y, w) =

∫ ∞

0

αm(t, x, v, y, w)dt, m = 0, 1.

As in the time dependent setting, the multiple scattering α2 is a function unlike the

ballistic part α0, which needs to be interpreted as a bounded distribution. The single

scattering contribution α1 is a function in dimension d = 2 whereas it is not necessarily

a function in dimension d ≥ 3. The reason is essentially due to the fact that two lines

almost always intersect in two space dimensions whereas they almost never intersect in

dimensions three and higher. Single scattering is therefore more singular than multiple

scattering only in dimension d ≥ 3.
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The analysis of the multiple scattering term A2 is best performed by recasting

A2 = K2(I − K)−1I. We have seen in the preceding section that (I − K)−1I is a

bounded operator from L1(Γ−, dξ) to L1(X × V, τ−1dxdv). Let then k(x, v, y, w) be the

Schwartz kernel of K2
|Γ+

with (x, v) ∈ Γ+ and (y, w) ∈ X × V . Then, it is shown in [18,

Lemma 4.1] that ∥∥∥∥∫
Γ+

ψ(x, v)k(x, v, y, w)τ(y, w)dξ(x, v)

∥∥∥∥
L∞(Xy×Vw)

≤ C

∫
V

(∫
x∈∂X

ν(x)·v>0

|ψ(x, v)|p′(ν(x) · v)dµ(x)

) 1
p′

dv,

(46)

for any ψ ∈ L∞(Γ+) and any 1 < p < 1 + 1
d−1

, p−1 + p′−1 = 1. This estimate, which

improves on a similar estimate obtained in [17] shows thatK2
|Γ+

maps L1(X×V, τ−1dxdv)

into a space that is smaller than the space Lp(Γ+, dξ) for 1 ≤ p < 1+ 1
d−1

. This estimate

will be useful in the analysis of approximate stability estimates in section 5. It admits

a similar expression in the time dependent setting, which improves on (43) above.

3.3. Full measurement setting

Let us now consider the setting in which the full albedo operator A is supposed to be

known as an operator from L1((0, η), L1(Γ−, dξ)) to L1((0,T), L1(Γ+, dξ)) in the time

dependent setting and from L1(Γ−, dξ) to L1(Γ+, dξ) in the time independent setting.

This is equivalent to knowing the Schwartz kernels α(t, x, v, y, w) on (0,T)×X ×
V ×X × V in the time dependent setting and α(x, v, y, w) on X × V ×X × V in the

time independent setting [43, 44].

Recovery of σ = σ(x) independent of v. Since α0 is more singular than αm, m = 1, 2,

knowledge of α provides knowledge of α0, which in turns provides knowledge of σ = σ(x).

More precisely, considering the time independent setting, let (x0, v0) ∈ Γ+ and define

y0 = x0−τ−(x0, v0)v0 such that (y0, v0) ∈ Γ−. Let now gε be a sequence of normalized L1

functions on Γ− converging to δv0(v)δ{y0}(y). Let φε be a sequence of bounded functions

on Γ+ equal to 1 in the vicinity of (x0, v0) and with vanishing support as ε→ 0. Then

we verify [17, 44] that∫
Γ+×Γ−

αm(x, v, y, w)φε(x, v)gε(y, w)dµ(x)dvdµ(y)dw
ε→0−−→ 0, m = 1, 2,

so that

〈φε,Agε〉 :=

∫
Γ+×Γ−

α(x, v, y, w)φε(x, v)gε(y, w)dµ(x)dvdµ(y)dw

ε→0−−→ exp
(
−
∫ τ−(x0,v0)

0

σ(x0 − sv0, v0)ds
)
.

(47)
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A similar result [43] holds in the time dependent setting. As a consequence, − ln〈φε,Agε〉
converges to the integral of σ(x, v0) along the line passing through x0 with direction v0.

Since x0 and v0 are arbitrary in Γ+, we have thus obtained that knowledge of A provides

knowledge of the X-ray transform (hence of the Radon transform) of σ(x, v).

It is known that the X-ray transform does not allow us to uniquely determine a

general function σ(x, v); we refer the reader to section 3.4 below for a presentation of a

recent result in [131] on the obstructions to uniqueness in inverse transport theory. When

σ = σ(x) depends only on position however, then the X-ray transform of σ uniquely

determines σ with an explicit inversion formula [59, 101]. The absorption coefficient

is thus uniquely determined by knowledge of A, both in the time dependent and time

independent settings for all dimensions d ≥ 2.

The measurements corresponding to the above choices of functions gε and φε then

converge to the function

〈φε,Agε〉
ε→0−−→ E(x, y) := exp

(
−
∫ |x−y|

0

σ
(
x− s

x− y

|x− y|
)
ds
)
. (48)

Recovery of k(x, v, w). We assume that σ = σ(x) is now recovered. Let z0 ∈ X,

v0 ∈ V , and v0 6= w0 ∈ V . Define x0 = z0 + τ+(z0, v0)v0 so that (x0, v0) ∈ Γ+ and

y0 = z0 − τ−(z0, w0)w0 so that (y0, w0) ∈ Γ−. We formally show how the scattering

coefficient may be uniquely reconstructed from full knowledge of A.

We first consider the time independent setting. Let us define gε1 as before and φε

as a sequence of bounded functions on Γ+ equal to a constant in the vicinity of (x0, v0)

and with vanishing support as ε→ 0. Since v0 6= w0, we find that∫
Γ+×Γ−

α0(x, v, y, w)φε(x, v)gε1(y, w)dµ(x)dvdµ(y)dw = 0, 0 ≤ ε, ε1 < ε0(x0, v0, y0, w0).

i.e., the ballistic contribution vanishes with such measurements. Let us define gε1 such

that |ν(y0) · w0|−1gε1(y, w) converges to a delta function. The factor |ν(y0) · w0|−1 is

here to ensure that the number of emitted particles is independent of y0 and w0. The

ballistic part of the transport solution is then approximately concentrated on the line

passing through y0 and with direction w0. Scattering occurs along this line and particles

scattered in direction v0 are approximately supported on the plane with directions v0

and w0 passing through x0. The intersection of that plane with the boundary ∂X is a

one-dimensional curve γ(x0, v0, w0) ⊂ X. In two space dimensions, the curve γ has the

same dimension as ∂X. As a consequence, α1 is a function and therefore is not more

singular than α2 in the time independent setting when d = 2.

Let φε(x, v) be a bounded test function supported in the ε−vicinity of γ. Because

γ is of measure 0 in ∂X when d ≥ 3, we find using (46) that∫
Γ+×Γ−

α2(x, v, y, w)φε(x, v)gε1(y, w)dµ(x)dvdµ(y)dw
ε,ε1→0−−−−→ 0,
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i.e., the multiple scattering contribution is asymptotically negligible with such

measurements. Now, choosing φε(x, v) properly normalized and supported in the

ε2−vicinity of (x0, v0) (for ε� ε2 � 1), we find that

〈φε,Agε1〉
ε,ε1,ε2→0−−−−−→ E(y0, z0)E(z0, x0)k(z0, w0, v0),

at each point of continuity of k(z0, w0, v0), where E(x, y) is defined in (48). Since σ(x)

and hence E(x, y) are known from knowledge of A, then so is k(z0, w0, v0) at each point

of continuity in X × V × V thanks to the above formula. For more general admissible

k as defined in (5), other test functions need be constructed. Such a construction was

performed, using a different strategy from the one exposed here, in [44].

The same type of results hold in the time dependent setting in dimension d ≥ 2.

We consider as before a boundary condition gε1(s, y, w) supported in the ε1-vicinity of

(0, y0, w0). The time it takes for particles scattering exactly once to travel from y0 to z0

and then from z0 to y0 is τ0 = |x0− z0|+ |z0− y0|. Particles scattering more than twice

will arrive at later times t > τ0. We thus define the function ψε(t, x, v) as the product of

the test function φε(x, v) defined in the time independent setting and a function ϕε(t)

equal to 1 in the ε-vicinity of the travel time τ0 and equal to 0 in a larger ε-vicinity of

τ0. We then find that∫
(0,T)×Γ+×(0,η)×Γ−

αm(t− s, x, v, y, w)ψε(t, x, v)gε1(s, y, w)dµ(x)dvdtdµ(y)dwds→ 0, m = 0, 2,

so that

〈ψε,Agε〉 :=

∫
(0,T)×Γ+×(0,η)×Γ−

α(t− s, x, v, y, w)ψε(t, x, v)gε1(s, y, w)dµ(x)dvdtdµ(y)dwds

ε,ε1→0−−−−→ E(y0, z0)E(z0, x0)k(z0, w0, v0). (49)

The result now holds in all dimension d ≥ 2 at all points of continuity of k.

Note that the above reconstructions of σ(x) and k(x, v′, v) are explicit. The above

formal results are proved in [43] for the time dependent case and in [44] for the time

independent case using the decomposition of the Schwartz kernel of the albedo operators

into singular components but with a different choice for the test functions gε1 ⊗φε. The

proofs in [43, 44] also extend to arbitrary admissible optical parameters in the sense of

(5). The test functions presented above follow more closely the definitions in [19] for

the time dependent case and [17] for the time independent case, to which we refer the

reader for additional details. We may state the uniqueness results obtained in [43, 44]

as follows:

Theorem 3.1 ([43, 44]) Let (σ, k) and (σ̃, k̃) be two admissible pairs of optical

parameters associated with the same albedo operator A and such that σ and σ̃ are

independent of the velocity variable. Then σ = σ̃ in dimension d ≥ 2 both in the

time dependent and time independent settings. Moreover, k = k̃ in dimension d ≥ 2 in

the time dependent setting and in dimension d ≥ 3 in the time independent setting.
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3.4. Angularly dependent absorption and non-uniqueness results

We have seen that A uniquely characterizes σ(x) independent of v. When σ = σ(x, v)

and k = 0, then only
∫

R σ(x+ tv, v)dt may be reconstructed [44] and this is not enough

to uniquely characterize σ(x, v) for x ∈ X and v ∈ Sd−1. The presence of scattering

when k 6≡ 0 might help us reconstruct more information about σ. A recent result in

[131] shows that this is sometimes but now always the case and rather that σ(x, v) and

k(x, v′, v) are uniquely characterized up to an arbitrary gauge transformation of the

form

σ̃ = σ − v · ∇x lnφ(x, v), k̃(x, v′, v) =
φ(x, v)

φ(x, v′)
k(x, v′, v), (50)

where φ(x, v) > 0 is an arbitrary bounded function such that v · ∇xφ is also bounded

and φ(x, v) = 1 on ∂X ×Sd−1. A simple calculation shows that A = Ã, where A and Ã
are the albedo operators associated with the coefficients (σ, k) and (σ̃, k̃), respectively.

The striking result is that the above gauge transformation is the only obstruction to

reconstructing the optical parameters:

Theorem 3.2 ([131]) Let (σ, k) and (σ̃, k̃) be two admissible pairs such that the

corresponding transport problem (18) is well-posed. Then A = Ã if and only if there is a

positive bounded function φ such that v ·∇xφ is also bounded, φ(x, v) = 1 on ∂X×Sd−1,

and (50) holds.

The above theorem is proved using the decomposition of the albedo operator (40) into

singular components. It admits the uniqueness result stated in Theorem 3.1 in the

stationary case as a corollary. Indeed, when σ and σ̃ are independent of v, then φ ≡ 1

[131] so that (σ, k) = (σ̃, k̃). It also allows us to derive uniqueness results in cases where

symmetries are present. For instance, we have the following result:

Corollary 3.3 ([131]) Let (σ, k) and (σ̃, k̃) be two admissible pairs such that the

corresponding transport problem (18) is well-posed and A = Ã. Assume moreover that

k and k̃ are positive and such that k(x, v, v′) = k(x, v′, v) and k̃(x, v, v′) = k̃(x, v′, v).

Then k = k̃ and a = ã+ v · ∇w(x) for some function w vanishing on ∂X.

A corollary of the corollary is that when a(x, v) = a(x,−v) and ã(x, v) = ã(x,−v), then

v · ∇w(x) = 0 above and a = ã. In anisotropic media with the physical reciprocity

relations σ(x, v) = σ(x,−v) and k(x, v′, v) = k(x, v, v′), we thus obtain the important

result that A uniquely determines the optical parameters (σ, k).

3.5. Angularly averaged measurements

In practice of inverse transport, full knowledge of the albedo operator is rarely available.

There are two primary reasons for this. First, acquiring the full albedo operator requires

many experiments in order for Γ− to be sampled accurately. Second, it is difficult to

measure the angular dependency of particles on Γ+. Such a dependency is typically

achieved by using collimators, which absorb particles away from a narrow solid angle in

the vicinity of a direction w0 of interest. However, good angular accuracy often results
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in very low particle counts and is therefore very much affected by noise. In practice,

neither the incoming conditions on Γ− nor the measured particles on Γ+ are angularly

resolved. We may however assume that the spatial resolution is adequate. We may also

assume, although this is significantly more problematic in practice, that the temporal

resolution is also adequate.

We consider the situation where the incoming boundary conditions are of the form

g(t, y, w) = g(t, y)h(y, w), (51)

where the weight h(y, w) is known on Γ− and g(t, x) is arbitrary in L1((0, η) × ∂X).

Similarly, we assume that angularly averaged measurements of the form

Jw(t, x) =

∫
Vx,+

u|Γ+(t, x, v)w(x, v)dv, (52)

are available for some known weight w(x, v) modeling how detectors located at x capture

particles exiting X at x with velocity v ∈ V = Sd−1. Here, we have defined for x ∈ ∂X:

Vx,± = {v ∈ V ; ±v · ν(x) > 0}. (53)

A typical choice for w(x, v) is w(x, v) = ν(x) · v for (x, v) ∈ Γ+. Then Jw(t, x) the flux

of particles leaving X at x ∈ ∂X and time t ∈ (0,T).

The resulting angularly averaged albedo operators are therefore now of the form

B : g(t, x) ∈ L1((0, η)× ∂X) 7→ Bg(t, x) = Jw(t, x) ∈ L1((0,T)× ∂X) (54)

for the time dependent case and

B : g(x) ∈ L1(∂X) 7→ Bg(x) = Jw(x) ∈ L1(∂X) (55)

for the time independent case. We may introduce the Schwartz kernels β(t, x, y) and

β(x, y) in the time dependent and time independent settings, respectively, of the above

albedo operators. The kernel of B may be related to that of A as follows

β(t, x, y) =

∫
Vx,+×Vy,−

α(t, x, v, y, w)w(x, v)h(y, w)dvdw (56)

β(x, y) =

∫
Vx,+×Vy,−

α(x, v, y, w)w(x, v)h(y, w)dvdw, (57)

in the time dependent and time independent settings, respectively.

Let us consider first the time independent setting. It is not difficult to see that the

singularities in α(x, v, y, w) are no longer present in β(x, y) after integration in Vx,+×Vy,−

for integrable functions w(x, v) and h(y, w). No uniqueness results on the reconstruction

of σ(x) or k(x, v′, v) are available in this setting. The stability results obtained in [21]

with w(x, v) = ν(x) · v and h(y, w) = |ν(y) · w|, which will be made more explicit in

the following section, show that the reconstruction of k = k(x) when σ(x) is known

and small is severely ill-posed, in the sense that the error in the reconstruction of the
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mth Fourier coefficient of k grows exponentially with m. This behavior is quite similar

to what is observed in the reconstruction of a diffusion coefficient from Cauchy data in

the inverse conductivity problem [59] or in the diffusion approximation to the transport

equation (34).

The situation is more favorable in the time dependent setting. Although the

spatial singularities of α(t, x, v, y, w) are no longer present in β(t, x, y), the temporal

singularities survive after angular averaging. Let us decompose

β(t, x, y) =
2∑

m=0

βm(t, x, y),

βm(t, x, y) =

∫
Vx,+×Vy,−

αm(t, x, v, y, w)w(x, v)h(y, w)dvdw, 0 ≤ m ≤ 2.

We assume that w(x, v) and h(y, w) are continuous functions on Γ+ and Γ−, respectively.

It is shown in [20] that the ballistic component β0(t, x, y) is more singular than the

remaining components and that β1(t, x, y) is also more singular than β2(t, x, y) in an

appropriate sense and that all components are supported on the domain t ≥ |x − y|.
We have βm(t, x, y) = 0 for t < |x − y| and from now on provide expressions for the

coefficients βm(t, x, y) over the domain t ≥ |x − y|. The singularities are however

of a different nature than the singularities observed with full, angularly-resolved,

measurements. More precisely, the first two terms in the Schwartz kernel take the

form

β0(t, x, y) =
E(x, y)

|x− y|d−1
δ(t− |x− y|)

[
w(x, v)h(y, v)|ν(y) · v|

]
|v= x−y

|x−y|
(58)

β1(t, x, y) = χ(0,+∞)(t− |x− y|)
∫

Vx,+

w(x, v)
(t− (x− y) · v)d−3

|x− y − tv|2d−4
(59)[

E(x, x− sv)E(x− sv, y)k(x− sv, w, v)h(y, w)
]
|w= x−sv−y

|x−sv−y| ,s=
t2−|x−y|2

2(t−v·(x−y))

dv.

We recall that Vx,+ is defined in (53).

Let x0 ∈ ∂X and y0 ∈ ∂X and let τ0(x0, y0) = |x0 − y0| the travel time between

x0 and y0. Assume that gε(s, y) is a function that concentrates in the vicinity of s = 0

and y = y0 (and converges to δ(s)δ{y0}(y)). Assume also that φε(t, x) concentrates in

the vicinity of t = τ0(x0, y0) and x = x0. Then it is shown in [20] that

〈〈βm, φε ⊗ gε〉〉
ε→0−−→ 0, m = 1, 2, (60)

where we have defined

〈〈β, φ⊗ g〉〉 =

∫
∂X×(0,η)×∂X×(0,T)

β(t− s, x, y)φ(t, x)g(s, y)dtdxdsdy. (61)

The ballistic term, however, converges to

〈〈β0, φε ⊗ gε〉〉
ε→0−−→ E(x0, y0)

|x0 − y0|d−1

[
w(x0, v0)h(y0, v0)|ν(y0) · v0|

]
, (62)
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where v0 = x0−y0

|x0−y0| . The angularly averaged measurements therefore provide E(x, y) for

all x ∈ ∂X and y ∈ ∂X. This is again equivalent to knowing the X-ray transform of σ

so that σ = σ(x) is uniquely determined by the measurement operator B.

The reconstruction of the scattering coefficient is significantly more difficult.

Because of the angular averaging in the construction of B, only temporal singularities

survive. Yet, it is apparent from (59) that β1(t, x, y) is a function. Its behavior in time

for t− |x− y| small however allows us to distinguish this single scattering contribution

from the multiple scattering component.

Let us assume that k ∈ L∞(X × V × V ) and that k vanishes in the 0 < δ-vicinity

of an analytic boundary ∂X. Under these assumptions, it is shown in [20] that the

following holds:

β2(t, x, y) ∈ L∞((0,T)× V × V ), d = 2

1

(t− |x− y|) d−1
2

β2(t, x, y) ∈ L∞((0,T)× V × V ), d ≥ 3.
(63)

In the vicinity of t = τ , with τ := |x − y|, single scattering is larger than the multiple

scattering contributions. We also define v = x−y
|x−y| . We have [20] in dimension d ≥ 2,

β1(t, x, y) = (t− τ)
d−3
2 |Sd−2|

(2

τ

) d−1
2

w(x, v)h(y, v)|ν(y) · v|

E(x, y)

∫ τ

0

k(x− sv, v, v)

(s(τ − s))
d−1
2

ds+ o
(
(t− τ)

d−3
2

)
,

(64)

where |Sd−2| is the volume of the unit sphere Sd−2 and |S0| = 2.

Comparing the asymptotic behavior of β1 and β2 for small values of t−τ , we observe

that β1(t) is arbitrary larger than β2(t) as t → τ+. By appropriately choosing the test

function gε(s, y) to concentrate in the vicinity of (0, y0) and φε(t, x) to concentrate in

the vicinity of τ0 + ε2 and x0, and then sending ε2 to 0, we gain knowledge of

R2k(x0, y0) :=

∫ τ0

0

k(x0 − sv0, v0, v0)

(s(τ0 − s))
n−1

2

ds. (65)

We observe that R2k(x0, y0) is the weighted line integral of k(x, v0, v0) along the

line passing through x0 and v0. This does not provide enough information about

k(x,w, v) to uniquely determine it. However, in the simplified setting where k(x, v′, v) =

k0(x)f(v′, v), where f(v′, v) is known in advance and normalized so that f(v, v) = 1,

then we have that

R2k(x0, y0) :=

∫ τ0

0

k0(x0 − sv0)

(s(τ0 − s))
n−1

2

ds, (66)

is a weighted X-ray transform of k0 along the segment (x0, y0). Since k0(x) is assumed

to vanish in the vicinity of ∂X, the weight (s(τ0 − s))−
n−1

2 is real-analytic on an open

set including the support of k(x). A recent result in [56] shows that knowledge of the

weighted X-ray transform (for all x0 ∈ ∂X and y0 ∈ ∂X) uniquely determines k(x)

under appropriate analyticity assumptions on the weight; see Theorem 7.2 below. We

summarize the results as follows.
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Theorem 3.4 ([20]) Let (σ, k) and (σ̃, k̃) be admissible functions corresponding to the

same time dependent, angularly averaged measurement operator B. Let us assume that

σ and σ̃ are independent of the angular variable v and that k(x, v′, v) = k0(x)f(v′, v)

and k̃(x, v′, v) = k̃0(x)f(v′, v) for a known function f(v′, v). We also assume that k0(x)

and k̃0(x) are continuous and supported away from the boundary ∂X, which we assume

to be analytic.

Then in all dimensions d ≥ 2, σ(x) = σ̃(x) and k0(x) = k̃0(x).

The uniqueness result for the reconstruction of k0(x) is based on the invertibility of the

weighted X-ray transform (66). When X is an open sphere in Rd, it turns out that the

weighted X-ray transform is in fact a classical X-ray transform, which admits explicit

inversion formulas; see e.g. [101]. Up to rescaling and translation, we may assume that

X = Bd(0, 1), the unit sphere in Rd centered at 0 and of radius 1. Let us then define

the X-ray transform of f(x) for (x0, y0) ∈ (∂X)2 and f ∈ L2(X) extended by 0 outside

of X:

R0[f ](x0, y0) =

∫
R
f
(
x0 + t

y0 − x0

|y0 − x0|

)
dt. (67)

Then we have the result:

Theorem 3.5 ([20]) Assume that X = Bd(0, 1). Then we have

R2k0(x0, y0) = R0[ρk0](x0, y0), for (x0, y0) ∈ (∂X)2,

where ρ(x) =
1

(1− |x|2) d−1
2

for x ∈ X.

This shows that the reconstruction of k0(x) is quite straightforward in the geometry

where X is a ball (which requires one to place the source terms and the detectors

around a sphere).

4. Stability in inverse transport

The results stated in the preceding section show which parameters may be uniquely

reconstructed from the singularities of the albedo operators A or B. In this section, we

consider the problem of stability estimates, which addresses the question of the errors

committed in the reconstruction of the optical parameters based on a given error in the

measurements. A typical estimate assumes the existence of two types of measurements

A and Ã, say, corresponding to the optical parameters (σ, k) and (σ̃, k̃), respectively.

The question is to bound the errors σ − σ̃ and k − k̃ as a function of A− Ã.

We first consider the case of full measurements and look at the stability of the

reconstruction of σ(x) and k(x, v′, v) from knowledge of A, first in the time dependent

setting and second in the time independent setting. We next consider the stability of the

reconstruction in the two dimensional setting under additional smallness assumptions

on scattering.
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We then consider reconstructions from angularly averaged measurements, first in

the time independent setting assuming angularly resolved sources and then in the time

dependent setting assuming isotropic sources.

4.1. Time dependent angularly resolved measurements

We consider here X a bounded open convex subset of Rd, d ≥ 2 with C1 boundary and

assume that σ ∈ C0(X) and k ∈ C0(X × V × V ). We assume that (σ̃, k̃) is another

admissible pair of optical parameters satisfying the same assumptions. Let A and Ã be

the associated albedo operators in the time dependent setting. We want to find error

estimates for σ − σ̃ and k − k̃ in terms of A − Ã. In order to do so, we revisit the

decomposition of the albedo operator and follow a strategy first proposed in [141]. We

follow the presentation in [19].

The strategy that allows one to obtain stability estimates is the following. The

difference of albedo operators A − Ã is a bounded operator from incoming radiation

bounded in L1 to outgoing radiations bounded in L1. We thus construct sequences of

probing source terms on (0,T)×Γ− (see φε1,ε2(t, x, v) in (68) below) that are uniformly

bounded in the L1 sense and whose support is increasingly concentrated in the vicinity

of time t = 0 and point (x0, v0) ∈ Γ−. We then construct uniformly bounded test

functions on (0,T) × Γ+ (see ψ(t, x, v) (68) below) whose support converges either to

the support of the outgoing ballistic part in order to obtain stability estimates for the

attenuation coefficient or to the support of the exiting single scattering part in order to

obtain stability estimates for the scattering coefficient. More precisely, the constructions

are performed as follows.

Let (x0, v0) be a fixed point in Γ−. Let ε1 > 0 and η > ε2 > 0 and 0 ≤ fε1 ∈ C1(Γ−)

and 0 ≤ gε2 ∈ C∞(R) be such that fε1 is supported in the ε1 vicinity of (x0, v0) (in the

sense that f(x, v) = 0 for (x, v) ∈ Γ− such that |x − x0| + |v − v0| > ε1), gε2(t) is

supported in the ε2 vicinity of 0 ( in the sense that gε2(t) = 0 for t > ε2), and both fε1

and gε2(t) are normalized so that
∫

Γ−
fε1dξ = 1 and

∫ η

0
gε2(t)dt = 1.

Define now the incoming source term φε1,ε2(t, x, v) = gε2(t)fε1(x, v). The above

normalizations show that |ν(x) · v|φε1,ε2(t, x, v) is a smooth approximation of the delta

function on R× Γ− which normalizes to one after integration on (0, η)× Γ−.

Let now ψ be a compactly support continuous function on (0,T) × Γ+ such that

‖ψ‖∞ ≤ 1. Then we obtain that∣∣∣ ∫
(0,T)×Γ+

ψ(t, x, v)
(
(A− Ã)φε1,ε2

)
(t, x, v)dtdξ(x, v)

∣∣∣ ≤ ‖(A− Ã)φε1,ε2‖L1((0,T),L1(Γ+,dξ))

≤ ‖(A− Ã)‖L(L1), (68)

where we have defined ‖ · ‖L(L1) = ‖ · ‖L(L1((0,η),L1(Γ−,dξ)),L1((0,T),L1(Γ+,dξ))).

Using the decomposition of the albedo operator (40), we introduce

Im(ψ, ε1, ε2) =

∫
(0,T)×Γ+

ψ(t, x, v)
(
(Am − Ãm)φε1,ε2

)
(t, x, v)dtdξ(x, v), m = 0, 1, 2.
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We may thus recast (68) as

|I0(ψ, ε1, ε2)| ≤ ‖(A− Ã)‖L(L1) + |I1(ψ, ε1, ε2)|+ |I2(ψ, ε1, ε2)|
|I1(ψ, ε1, ε2)| ≤ ‖(A− Ã)‖L(L1) + |I0(ψ, ε1, ε2)|+ |I2(ψ, ε1, ε2)|.

(69)

The above upper bound is independent of the choice of the test function ψ such that

‖ψ‖∞ ≤ 1 and of the values of εm, m = 1, 2. Let us define y0 = x0 + τ+(x0, v0)v0

such that (y0, v0) ∈ Γ+. We first send εm, m = 1, 2 to 0 and obtain [19] that when

T > diam(X), we have

lim
ε2→0+

lim
ε1→0+

I0(ψ, ε1, ε2) = ψ
(
τ+(x0, v0), y0, v0

)(
E(x0, y0)− Ẽ(x0, y0)

)
, (70)

where E(x, y) is defined in (48) and Ẽ is defined similarly with σ replaced by σ̃.

When T > 2diam(X), then we find [19] that

lim
ε2→0+

lim
ε1→0+

I1(ψ, ε1, ε2) = I1(ψ), (71)

where

I1(ψ) =

∫
V

∫ τ+(x0,v0)

0

ψ(s+ τ+(x0 + sv0, v0), x0 + sv0 + τ+(x+ sv0, v)v, v)

×
(
E+k − Ẽ+k̃)(x0 + sv0, v0, v)dsdv (72)

and where we have defined

E+(x, v, w) = exp
(
−
∫ τ−(x,v)

0

σ(x− sv)ds−
∫ τ+(x,w)

0

σ(x+ sw)ds
)
, (73)

the total attenuation factor on the broken line (x− τ−(x, v)v, x, x+ τ+(x,w)w).

Let ψ(t, x, v) be extended by 0 on (0,T) × Γ− so that it is now defined on

(0,T)×X × V . A similar estimate to (46) for the Schwartz kernel of K2 shows that

∣∣I2(ψ, ε1, ε2)
∣∣ ≤ C

∫ T

0

∫
V

(∫
∂X

|ψ(t, x, v)|p′dx
) 1

p′
dvdt, (74)

for all p′ > d. In other words, I2 → 0 as the support of ψ on (0,T) × Γ− tends to 0.

This shows that multiple scattering contributions are negligible on the measurements

when the support of the bounded function ψ tends to 0, and hence are also negligible

on the reconstruction of the optical parameters using (69).

Two sequences of test functions ψ := ψλ are then considered. In the first sequence,

we choose ψλ to have a small support concentrated in the vicinity of (y0, v0) ∈ Γ+.

In such a situation, the explicit expression for I1 allows us to show that I1(ψλ) → 0

as λ → 0. The first inequality in (69) then provides a stability estimate for the total

attenuation coefficient between x0 and y0.

The second sequence of test functions is more involved and is constructed as

follows. Let w0 be fixed in V . We have already mentioned that the single scattering
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contribution for a fixed (x0, v0) source term emitting at time 0 and a fixed direction

of outgoing particles w0 6= v0 is concentrated on a curve s 7→ γ(s, x0, v0, w0) =

x0+sv0+τ+(x0+sv0)w0. Moreover, such particles exit the domain at time s+τ+(x0+sv0).

The corresponding contribution in I1(ψ) involves an integration along the curve γ(s) of

a term proportional to (E+k− Ẽ+k̃)(x0 + sv0, v0, w0). We therefore choose the sequence

of functions ψλ such that they are concentrated in the vicinity of the curve γ(s) on

Γ+, that they concentrate in the vicinity of the time s+ τ+(x0 + sv0) along that curve,

and that they approximately take the value sign(E+k − Ẽ+k̃)(x0 + sv0, v0, w0) along

that curve. Such functions are indeed bounded uniformly and have small support on

(0,T)× Γ+ in all dimension d ≥ 2. Since v0 6= w0, we verify that I0(ψλ) → 0 for such a

sequence of functions. Their construction is detailed in [17, 19]. This allows us to state

the following result.

Theorem 4.1 ([19]) Assume that σ(x) and k(x, v′, v) are continuous on X̄ and X̄ ×
V × V , respectively and that (σ̃, k̃) satisfy the same hypotheses. Let (x0, v0) ∈ Γ− and

y0 = x0 + τ+(x0, v0)v0. Then we have for T > 2diam(X) the following estimates∣∣E(x0, y0)− Ẽ(x0, y0)
∣∣ ≤ ‖A− Ã‖L(L1)∫

V

∫ τ+(x0,v0)

0

∣∣E+k − Ẽ+k̃
∣∣(x0 + sv0, v0, v)dsdv ≤ ‖A− Ã‖L(L1).

(75)

We obtain a stability estimate for the X-ray transform of σ and for the scattering

coefficient k weighted by the total absorption along each broken geodesic taken by

particles that have scattered only once. Such are the terms that appear in the

decomposition of the albedo operator. In order to obtain direct stability estimates

on σ(x) and k(x, v′, v), additional regularity assumptions on σ are necessary since the

inverse X-ray transform is an unbounded operation. Before addressing this issue, we

consider the quite similar case of time independent measurements.

4.2. Time independent angularly resolved measurements when d ≥ 3

The same stability estimates as before may be obtained in the setting of time

independent measurements in dimension d ≥ 3. We follow the presentation in [17, 141].

For other stability results in this context, we refer the reader to [116, 117].

Our hypotheses of regularity on the optical parameters are the same as in the time

dependent setting. The construction of the incoming source φε(x, v) is the same as that

of fε1 above: φε ∈ C1(Γ−) is supported in the ε1 vicinity of (x0, v0) and normalized so

that
∫

Γ−
φεdξ = 1. Let ψ be a compactly support continuous function, which models

the array of detectors, on Γ+ such that ‖ψ‖∞ ≤ 1. Then∣∣∣ ∫
Γ+

ψ(x, v)
(
(A− Ã)φε

)
(x, v)dξ(x, v)

∣∣∣ ≤ ‖(A− Ã)‖L(L1), (76)

where now ‖ · ‖L(L1) = ‖ · ‖L(L1(Γ−,dξ),L1(Γ+,dξ)). We still introduce

Im(ψ, ε) =

∫
Γ+

ψ(x, v)
(
(Am − Ãm)φε

)
(x, v)dξ(x, v), m = 0, 1, 2,
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and obtain that

lim
ε→0+

I0(ψ, ε) = ψ(y0, v0)
(
E(x0, y0)− Ẽ(x0, y0)

)
lim

ε→0+
I1(ψ, ε) =

∫
V

∫ τ+(x0,v0)

0

ψ(x(s) + τ+(x(s), v)v, v)
(
E+k − Ẽ+k̃)(x(s), v0, v)dsdv

(77)

where we have introduced x(s) = x0 + sv0.

With ψ(t, x, v) extended by 0 on (0,T)× Γ− as before, the estimate (46) allows us

to show that ∣∣I2(ψ, ε)∣∣ ≤ C

∫
V

(∫
∂X

|ψ(t, x, v)|p′dx
) 1

p′
dv, p′ > d. (78)

Multiple scattering is therefore still negligible when the support of ψ := ψλ tends to 0

when λ→ 0.

The first sequence of functions ψλ is chosen as in the time dependent setting: we

choose ψλ to have a small support concentrated in the vicinity of (y0, v0) ∈ Γ+. Then

the single scattering contribution I1(ψλ) → 0 as λ→ 0 as before. The second sequence

of test functions is also similar to the situation in the time dependent setting, except

that no concentration in the time variable is possible. For w0 fixed in V , we choose the

sequence of functions ψλ such that they are concentrated in the vicinity of the curve γ(s)

on Γ+ and that they approximately take the value sign(E+k−Ẽ+k̃)(x0+sv0, v0, w0) along

that curve. Since v0 6= w0, we verify that I0(ψλ) → 0 for such sequence of functions;

see [17]. Now, the function ψλ has a small support only in dimension d ≥ 3. Indeed, in

dimension d = 2, the curve γ has the same dimensionality as the boundary ∂Ω. When

d = 2, multiple scattering may no longer be separated from single scattering by using

the singular structure of the albedo operator A. This allows us to state the result:

Theorem 4.2 ([17]) Assume that σ(x) and k(x, v′, v) are continuous on X̄ and X̄ ×
V × V , respectively and that (σ̃, k̃) satisfy the same hypotheses. Let (x0, v0) ∈ Γ− and

y0 = x0 + τ+(x0, v0)v0. Then we have for d ≥ 2 that∣∣E(x0, y0)− Ẽ(x0, y0)
∣∣ ≤ ‖A− Ã‖L(L1), (79)

while in dimension d ≥ 3, we have∫
V

∫ τ+(x0,v0)

0

∣∣E+k − Ẽ+k̃
∣∣(x0 + sv0, v0, v)dsdv ≤ ‖A− Ã‖L(L1). (80)

The stability estimates are the same in the time dependent and time independent

settings. The only difference is that we have no stability result on the reconstruction of

the scattering coefficient in dimension d = 2 in the time independent setting.

4.3. Regularity assumptions and stability

The stability obtained above for the X-ray transform of the absorption coefficient is not

sufficient to obtain any stability of σ itself without a priori regularity assumptions on σ.
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This results from the well known fact that the X-ray transform is a smoothing (compact)

operator so that the inverse X-ray transform is an unbounded operator. Let us assume

that σ belongs to some space Hs(Rd) for s sufficiently large and that σp defined in (5)

is bounded. More precisely, define

M =
{
(σ, k) ∈ C0(X̄)×C0(X̄×V ×V )|σ ∈ H

d
2
+r(X), ‖σ‖

H
d
2 +r(X)

+‖σp‖∞ ≤M
}
, (81)

for some r > 0 and M > 0. Then using Theorem 4.1 in the time dependent setting and

Theorem 4.2 in the time independent setting, we have the following result.

Theorem 4.3 ([17, 19]) Let d ≥ 2 and assume that (σ, k) ∈M and that (σ̃, k̃) ∈M.

Then the following is valid:

When T > diam(X) in the time dependent setting, and without additional

hypotheses in the time independent setting, we have

‖σ − σ̃‖Hs(X) ≤ C‖A − Ã‖κ
L(L1), (82)

where −1
2
≤ s < d

2
+ r and κ = d+2(r−s)

d+1+2r
.

When T > 2diam(X) in the time dependent setting and when d ≥ 3 in the time

independent setting, we have

‖k − k̃‖L1(X×V×V ) ≤ ‖A− Ã‖κ′

L(L1)

(
1 + ‖A − Ã‖1−κ′

L(L1)

)
, (83)

where κ′ = 2(r−r′)
d+1+2r

and 0 < r′ < r.

Such estimates show that under additional regularization assumptions on σ, we have

explicit stability expression of Hölder type on σ and k. The first stability result (82)

was first established in [141].

4.4. Time independent angularly resolved measurements when d = 2

In dimension d = 2, the single scattering component is a function that cannot be

distinguished from higher orders of scattering solely based on its singular structure.

What makes the recovery of k possible is that multiple scattering is at least quadratic

in k and therefore smaller than the single scattering contribution when k is sufficiently

small. We follow the presentation in [132] and refer the reader to [115, 134] for other

inversion results in two dimensions of space.

The uniqueness of the reconstruction of the absorption coefficient and its stability

was obtained in Theorem 4.3 above. In the two-dimensional context, we may rewrite

the scattering component α1 as [132]

α1(x, v, y, w) = χ(x, v, y, w)
E(x, z)k(z, v, w)E(z, y)|ν(y) · w|

|v · w|
, (84)

where χ(x, v, y, w) = 1 when z := z(x, v, y, w) = x − tv = y + sw ∈ X for some s > 0

and t > 0 (i.e., when the half lines {x− tv, t > 0} and {y + sw, s > 0} meet at z ∈ X)
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and χ(x, v, y, w) = 0 otherwise. We thus obtain an explicit expression for k(z, v, w) from

the single scattering kernel.

In a similar spirit to the bound in (43), it is shown in [132] that multiple scattering

is bounded as follows:

0 ≤ α2(x, v, y, w) ≤ C‖k‖2
L∞

(
1 + log

1

|v · w|

)
. (85)

Let us now assume that α = α̃. Since α0 = α̃0, hence σ = σ̃, we have

α2 − α̃2 = α̃1 − α1 = χ(x, v, y, w)
E(x, z)(k̃ − k)(z, v, w)E(z, y)|ν(y) · w|

|v · w|
,

from which we deduce that

|k − k̃|(z, v, w) ≤ C sup
Γ+×Γ−

|v · w||α2 − α̃2|. (86)

The expansion (40) may be recast as α1 = Kα0 and α2 = (I −K)−1K2α0 so that

α2 − α̃2 = (I −K)−1K2α0 − (I − K̃)−1K̃2α0

= (I −K)−1
(
K(K − K̃) + (K − K̃)K̃

)
α0 + (I − K̃)−1(K − K̃)(I −K)−1K̃2α0,

from which it is possible to show that

|α2 − α̃2| ≤ Cε‖k − k̃‖L∞

(
1 + log

1

|v · w|

)
, ε = sup(‖k‖L∞ , ‖k̃‖L∞). (87)

Since x(1− lnx) is bounded on [0, 1], we deduce from (86)-(87) that

‖k − k̃‖L∞ ≤ Cε‖k − k̃‖L∞ (88)

so that k − k̃ = 0 when ε is sufficiently small.

A similar analysis allows us to obtain stability estimates for the attenuation and

scattering coefficients. Following [132], let us define

a(x, v) =

∫ τ+(x,v)

0

σ(x+ tv)dt, (x, v) ∈ Γ−

and

δ1 = ‖a− ã‖H1(Γ−), δ2 =
∥∥∥((α1 + α2)− (α̃1 + α̃2))

|v · w|
|ν(y) · w|

∥∥∥
L∞(Γ−×Γ+)

. (89)

Then we have the following uniqueness and stability result:

Theorem 4.4 ([132]) Define

V =
{

(σ(x), k(x, v, w)) ∈ Hs(X)× C(X × V × V ); ‖σ‖Hs ≤ Σ, ‖k‖L∞ ≤ ε
}
.

Then for s > 1 and Σ > 0, there is ε = ε(s,Σ) > 0 such that for any (σ, k) ∈ V and

(σ̃, k̃) ∈ V and 0 < µ < 1− 1
s
, there is C > 0 such that

‖σ − σ̃‖L∞ ≤ Cδ
1− 1

s
−µ

1 , ‖k − k̃‖L∞ ≤ C(δ
1− 1

s
−µ

1 + δ2). (90)
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The above stability estimates are of a slightly different nature than the ones presented

above as the definition of δ1 and δ2 directly involves the kernels α and α̃ rather than

the operators A and Ã. The stability results that we obtain in the following section

are of a similar type. Because single scattering can no longer be separated from

multiple scattering by the analysis of singularities, the operator norm in L(L1) is no

longer adapted. Note that the above stability results still show that σ and k may be

reconstructed stably (with Hölder stability) from knowledge of the kernel of the albedo

operator.

4.5. Time independent averaged measurements with angularly resolved sources

Still for time independent measurements, we now consider the case of angularly averaged

measurements of the form (52) but for sources g(x, v) that are angularly resolved. The

problem was addressed in [75]. We are in an intermediate situation between the full

measurement operator A defined in (40) and the fully averaged measurement operator

B defined in (55), which will be treated in section 4.7 below. We define

C : g(x, v) ∈ L1(Γ−) 7→ Cg(x) = Jw(x) ∈ L1(∂X). (91)

The kernel γ(x, y, w) of C is related to that of A in the sense that

γm(x, y, w) =

∫
Vx,+

αm(x, v, y, w)w(x, v)dv, m = 0, 1, 2. (92)

This shows that

γ0(x, y, w) = exp
(
−
∫ τ−(x,v)

0

σ(x− sv, v)ds
)
w(x,w)δ{x−τ−(x,v)v}(y),

while it may be seen that γ1 and γ2 are functions. The ballistic part of C is therefore

more singular than the scattering part. This allows us to reconstruct the X-ray

transform of σ, whence σ = σ(x), uniquely from knowledge of C. The single scattering

component is however a function, like the multiple scattering component. Proofs of

unique reconstruction of k then hinge on the fact that k is sufficiently small. This is of a

similar nature to the reconstruction seen in the preceding section. The main difference

is that the angular average in V no longer allows for point-wise estimates of k from the

single scattering kernel as in (84). What we obtain instead is

γ1(x, y, w) =

∫ τ+(y,w)

0

(E+k)(y + sw, v(s), w)

|x− y − sw|d−1
|w · ν(y)|w(x, v(s))ds, (93)

with v(s) = x−y−sw
|x−y−sw| . In other words, γ1 provides a weighted integral of k on the line

passing through y with direction w. The weight depends on x ∈ ∂X. Yet, it is apparent

that x 7→ γ1(x, y, w) is a smooth function, provided that ∂X is smooth, independent

of the smoothness of k. In other words, the information obtained by varying x ∈ ∂X

cannot be used to reconstruct information about k in a stable manner. For a fixed
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x, varying (y, w) ∈ Γ− however provides all weighted line integrals of k. An arbitrary

function k(x, v, w) cannot be reconstructed from line integrals and we therefore assume

that k(x, v, w) = k(x)φ(x, v, w), where φ(x, v, w) is a known phase function.

At a fixed value of x ∈ ∂X, γ1(x, y, w) may then be seen as a weighted X-ray

transform of k(x). Injectivity for such weighted X-ray transforms was established in

[56] under generic assumptions. These assumptions impose that the weight in (93) be

close to real analytic. Because of the singular behavior of |x− y − sw|1−d as y − sw is

close to the boundary, we assume that k(x) is supported away from ∂X. Then, provided

that σ(x) and φ(x, v, w) are analytic, or close to being analytic, then the result in [56]

ensures injectivity of the weighted X-ray transform k(·) 7→ α1(x, ·) at x ∈ ∂X fixed.

This allows us to uniquely reconstruct k = k(x) from single scattering measurements.

Provided that k(x) is sufficiently small, an analysis of multiple scattering similar

to that performed in the preceding paragraph also leads to (88) so that k(x) may

be uniquely reconstructed provided that it is sufficiently small. The method is also

amenable to Hölder stability estimates. Let us assume that absorption is known to

simplify. Then we have:

Theorem 4.5 ([75]) Assume that (σ, φ,w) are known real analytic functions, that

‖k‖L∞ , ‖k̃‖L∞ ≤ ε for ε sufficiently small and k and k̃ vanish in the D−vicinity of

∂X for some D > 0. Let x ∈ ∂X fixed. Then there is a constant C such that

‖k − k̃‖L2(X) ≤ C
∥∥∥((α1 + α2)− (α̃1 + α̃2))(x, y, w)

|ν(y) · w|

∥∥∥
H1(Γ−)

. (94)

4.6. Time dependent angularly averaged measurements

We return to the problem of the reconstruction of σ(x) and the spatial structure of

scattering k(x) from angularly averaged time dependent measurements. Uniqueness

was established in Theorem 3.4. Under the hypotheses stated in that theorem, we want

to obtain stability estimates for σ − σ̃ and k − k̃ in terms of the distribution kernel of

B − B̃. Unlike the previous cases, the estimates no longer necessarily involve operator

norms of B − B̃.

The stability estimate for the absorption term σ is similar to the case of angularly

resolved measurements. We use the fact that a source term concentrated in the vicinity

of y0 ∈ ∂X and time s = 0 has a ballistic part in the vicinity of x ∈ ∂X concentrated

in the vicinity of time t = |y0 − x|. We construct a source term gε(s, y) concentrating

in the vicinity of s = 0 and y = y0. We now construct a bounded function φε(t, x)

defined for all x ∈ ∂X and with a support in time concentrated in the vicinity of the

time t = |y0 − x|. Because β1 and β2 are functions, we find [20] that (60) holds. Once

φε is properly normalized, we find that for each y0 ∈ ∂X, we have∫
∂X

|E − Ẽ|(x, y0)

|x− y0|d−1

[
w(x, v0)h(y0, v0)|ν(y0) · v0|

]
|v0=

x−y0
|x−y0|

dµ(x) ≤ ‖B − B̃‖L(L1), (95)

where here L(L1) = L(L1((0, η) × ∂X);L1((0,T) × ∂X)). We assume that T >

η + diam(X) in order to define the test function φε(t, x). This provides us with a
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stability estimate for the attenuation coefficient σ. The result is however weaker than

for angularly resolved measurements as the above stability involves a weighted integral

of the X-ray transform over ∂X.

As we have seen in (64) and (63), the non-ballistic contributions βm(t, x, y),

m = 1, 2, to the Schwartz kernel of the albedo operator are functions. They may be

separated in a stable manner only via their behavior in the vicinity of the ballistic time

t = |x − y|. We still construct gε(s, y) as above. In the limit ε → 0, gε is concentrated

at s = 0 and y = y0. We thus need φε(t, x) to concentrate in time in the vicinity of

t = |x − y|+ while it is equal to 0 on the surface t = |x − y|. Such a function φε(t, x)

ensures that 〈〈β0, φε ⊗ gε〉〉 = 0, where the duality product is defined in (61). We need

to ensure that 〈〈β1, φε ⊗ gε〉〉 = 0(1) while |〈〈β2, φε ⊗ gε〉〉| � 1. The function φε thus

cannot be bounded and have arbitrary small support at the same time since β1 is an

integrable function.

The optimal choice of φε depends on the behavior of β1 in the vicinity of t = |x−y|+.

We need to ensure that β1(t, x, y)φε(t, x) converges to a delta function at t = |x − y|+
in the time variable for fixed x, y on the boundary ∂X. Since the time of singularity

τ := |x− y| depends on both “entrance” point y and the “exit” point x, it is difficult to

obtain estimates that depend on functional norms of B−B̃ of the form L(Y1, Y2). Rather,

the estimates for the scattering coefficient involve estimates directly on the coefficients

βm − β̃m. Note however that these estimates are obtained as limits of expressions of

the form 〈〈β, φε ⊗ gε〉〉 and as such may be obtained as limits of physically realizable

experiments with well-defined source term gε and measurement moment φε.

We thus obtain the following result:

Theorem 4.6 ([20]) Under the hypotheses of Theorem 3.4, we find that (95) above

holds as a stability result for the attenuation coefficient. Under the simplifying

assumptions that w(x, v0) ≥ w0 > 0 and h(y, v) ≥ h0 > 0 and recalling the definition of

the half sphere Vy,− in (53), we obtain that there exists a constant C1 such that∫
Vy,−

∣∣(E − Ẽ)(y, y + τ+(y, w)w)
∣∣|ν(y) · w|dw ≤ C1‖B − B̃‖L(L1). (96)

For the scattering coefficient, we obtain the following dimension-dependent stability

results for each fixed points x0, y0 ∈ ∂X with v0 = x0−y0

|x0−y0| ,∫ |x0−y0|

0

|E+k − Ẽ+k̃|(x0 − sv0, v0, v0)

s
d−1
2 (|x0 − y0| − s)

d−1
2

ds

≤ C2

∥∥∥ 2∑
m=1

(τ − |z − z′|)
3−d
2 (βm(τ, z, z′)− β̃m(τ, z, z′))

∥∥∥
L∞((0,T)×∂X×∂X)

.

(97)

The total absorption coefficient along broken geodesics E+ is defined in (73).

The result in (96), which is equivalent to (95), shows that a weighted average over

the half sphere Vy,− of the difference of X-ray transforms is bounded by the error in

the measurements. In other words, a weighted L1 norm of the X-ray transform of σ
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is stably determined by the measurement operator in the L(L1) norm. The result in

(97) shows that the measurements uniquely determine scattering. However, stability is

with respect to the kernel β1 + β2 and not with respect to B as we discussed earlier. In

dimension d = 3, the result may be reformulated as follows. Let B0 be the operator with

kernel β0 and Bs = B −B0 the operator with kernel β1 + β2. Then (97) is equivalent to∫ |x0−y0|

0

|E+k − Ẽ+k̃|(x0 − sv0, v0, v0)

s(|x0 − y0| − s)
ds ≤ C‖Bs − B̃s‖L(L1;L∞). (98)

In other words, the scattering contribution maps L1 functions into L∞ functions, which

is not true for the ballistic term. It is in this stronger norm that we can separate the

single scattering contribution from the multiple scattering contribution and obtain the

stability estimate (98). Because of the weight on the right-hand-side of (97), we are not

able to write the latter estimate in terms of a norm for the operator Bs in dimension

d 6= 3. The above estimates combined with regularity assumptions on σ and k then

yield Hölder estimates similar to those obtained in Theorem 4.3; we refer the reader to

[20] for precise expressions.

4.7. Time independent angularly averaged measurements

We come back to the angularly averaged, time independent, measurements defined in

(55) in the simplified setting where h(y, w) = 1 on Γ− and w(x, v) = ν(x) · v on Γ+. We

then have the measurements

B : g(x) ∈ L1(∂X) 7→ Bg(x) = J(x) ∈ L1(∂X)

J(x) =

∫
Vx,+

ν(x) · v u|Γ+(x, v)dv,
(99)

where u solves the transport equation (18) with S = 0 and u|Γ−(x, v) = g(x). There

is no proof of unique reconstruction of σ and k from knowledge of B in this restricted

setting. The analogy with the diffusion approximation tends to indicate that only one

of the coefficients may be reconstructed provided that σ = σ(x) and k = k(x) [7].

We summarize here results obtained in [21] and follow the presentation in [16],

which consider the case of a known, sufficiently small absorption coefficient σ(x) and

an unknown, sufficiently small, scattering coefficient k(x). Because k(x) is small, the

mapping from k to B may be linearized, which is equivalent to considering only the

single scattering B1 in B. The linearized problem may then be inverted to give a first

approximation of k(x). It turns out that the mapping k 7→ B1 is infinitely smoothing

in the sense that the inverse operator mapping B1 to k exponentially increases high

frequency Fourier modes of k.

The reconstructions are based on the following decomposition of the measurement

operator:

M(g, f) = 〈g ⊗ f, T0〉L2((∂X)2) +
∞∑

m=1

〈g ⊗ f, Tm(k)〉L2((∂X)2), (100)
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with the notation 〈g ⊗ f, T 〉 =
∫

(∂X)2
T̄ (x, y)g(x)f(y)dµ(x)dµ(y), where T̄ is complex

conjugation of T . Here, T0 corresponds to the ballistic part of the measurements

obtained by setting k = 0 in (18). The kernels Tm(k) are then multilinear of order

m in k(x) so that T1(k) corresponds to single scattering, T2(k) double scattering, and

so on.

We recall that E(x, y) is defined in (48) and define by induction

E(x1, . . . , xn−1, xn) = E(x1, . . . , xn−1)E(xn−1, xn), (101)

the total attenuation on the broken path [x1, . . . , xn]. Then we have

T0(x0, x) =
E(x0, x)|νx · v||νx0 · v|

|x0 − x|d−1

∣∣∣
v=

x0−x
|x0−x|

,

Tm(k)(x0, x) =

∫
Xm

k(x1) · · · k(xm)
E(x0, . . . , xm, x)

|x0 − x1|d−1 · · · |xm − x|d−1

×|νx0 · x0−x1

|x0−x1| ||νx · xm−x
|xm−x| |dx1 . . . dxm.

(102)

Note that T0 and Tm(k), taken at points x and x0, are the measurements given source

g = δ{x0}, and weight f = δ{x}, where we recall that δ{x} is the surface delta function

such that
∫

∂X
δ{x}(y)φ(y)dµ(y) = φ(x). In other words

∑∞
m=0 Tm(k)(x0, x) is formally

the Schwartz kernel of the operator B:

Bg(x) =

∫
∂X

(
T0(x0, x)g(x0) +

∞∑
m=1

Tm(k)(x0, x)g(x0)
)
dx0. (103)

We refer the reader to [21] for the derivation of (100).

Because σ(x) is known, then so is 〈g ⊗ f, T0〉 in (100). For k sufficiently small,

M(g, f)−〈g⊗ f, T0〉 is then equal to 〈g⊗ f, T1(k)〉 up to a small term that is quadratic

in k. The first objective is therefore to reconstruct k from the linearized measurements

〈g ⊗ f, T1(k)〉. This may be done explicitly when σ vanishes. Specifically, we have that

〈g ⊗ f, T1(k)〉L2((∂X)2) = 〈Ag Af, k〉L2(X),

where the so-called half-adjoint operator A is defined as

Af(y) = ωd

∫
∂X

f(x)E(x, y)∂νxN(x, y) dµ(x). (104)

Here ωd is the measure of the unit sphere Sd−1 and N(x, y) = N(x − y) is the Newton

potential

N(x, y) :=
1

cd|x− y|d−2
(d > 2);

1

c2
log |x− y| (d = 2),

where cd = (2− d)ωd and c2 = 2π. Indeed, we verify that ∂νxN(x, y) = νx·(x−y)
ωd|x−y|d . Let A0

be the operator defined as A in (104) with σ = 0 so that E(x, y) ≡ 1. We thus draw

the following conclusion: A0f(y) is a harmonic function on D because y 7→ N(x, y) is.
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Moreover, each sufficiently smooth harmonic function v on D may be constructed as

v = A0fv for some function fv on ∂X, which we assume is of class C2. The implicit

construction goes as follows. Let us define

Ã0f(y) = ωd

∫
∂X

f(x)∂νxN(x, y) dµ(x),

the classical double layer potential for y ∈ ∂X. It is a classical result that 1
2
I + ω−1

n Ã0

is an isomorphism on L2(∂X). We may then define the operator

A†
0u := (

1

2
I + ω−1

d Ã0)
−1(ω−1

d u|∂X), (105)

and verify that A0A
†
0u = u|X for all harmonic function u ∈ H 1

2 (X).

We are now ready to use the same Complex Geometrical Optics (CGO) solutions

as in the Calderón problem [34]. Let Cd 3 ρ = 1
2
(ξ + iη), where ξ, η ∈ Rd,

ξ · η =
∑d

i=1 ξiηi = 0, and |ξ| = |η|. Then the functions eiρ·x, and eiρ̄·x are harmonic,

and eiρ·xeiρ̄·x = eiξ·x. Define the boundary conditions

gξ(x) := A†
0e
−iρ·x and fξ(x) := A†

0e
−iρ̄·x, x ∈ ∂X. (106)

Then we find that

〈gξ ⊗ fξ, T
0
1 (k)〉L2((∂X)2) = 〈A0gξ A0fξ, k〉L2(X) = 〈e−i(ξ,·), k〉L2(X) := k̂(ξ), (107)

where T 0
1 (k) is defined as T1(k) with σ = 0, whence E ≡ 1.

In other words, we obtain an explicit reconstruction of k̂(ξ) from the single

scattering measurements provided that absorption σ ≡ 0. We have thus two sources

of error: one is from the higher scattering contributions Tm(k) for m ≥ 2, and one

is from the error coming from the non-zero absorption T σ
1 (k) := T1(k) − T 0

1 (k). The

approximation k̂l(ξ) (l for low-frequency) of k̂(ξ) obtained by this linearization algorithm

is thus given by

k̂l(ξ) = M(gξ, fξ) = k̂(ξ) + 〈gξ ⊗ fξ, T
σ
1 (k)〉+

∞∑
m=2

〈gξ ⊗ fξ, Tm(k)〉. (108)

The error made by the linearization is given by

|k̂l(ξ)− k̂(ξ)| ≤
(
‖T σ

1 (k)‖L2 +
∑
m≥2

‖Tm(k)‖L2

)
‖fξ‖L2‖gξ‖L2 . (109)

Under smallness assumptions on k and σ, we obtain that

‖T σ
1 (k)‖L2 ≤ C‖σ‖∞‖k‖∞,

∑
m≥2

‖Tm(k)‖L2 ≤ C‖k‖2
∞.

The bound on ‖fξ‖L2 and ‖gξ‖L2 is however exponentially large as ξ increases:

‖fξ‖L2(∂X), ‖gξ‖L2(∂X) ≤ Ceα|ξ|, α =
1

2
diam(X). (110)
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for some constant C independent of ξ. This shows that

|k̂l(ξ)− k̂(ξ)| ≤ C‖k‖∞(‖σ‖∞ + ‖k‖∞)e2α|ξ|. (111)

Errors on the reconstructions of the Fourier modes of k(x) grow exponentially with

wavenumber ξ. The reconstruction of k(x) is severely ill-posed.

Because the operator T 0
1 is highly smoothing, which is responsible for the above

severe ill-posedness, we introduce the following approximate inverse. Let χ(ξ) be a

compactly supported (to simplify) function in Rn. Typically χ(ξ) = 1 for |ξ| < M and

χ(ξ) = 0 for |ξ| > M if one wants to reconstruct all frequencies |ξ| < M of k(x). Let

then Pχk be the operator

Pχk :=

∫
Rd

k̂(ξ)χ(ξ)eiξ·x dξ

(2π)d
,

and let kχ = Pχk. We define

T χh(x) :=

∫
Rd

〈gξ ⊗ fξ, h〉L2((∂X)2)χ(ξ)eiξ·x dξ

(2π)d
, (112)

as the regularized inverse of T 0
1 (since T χT 0

1 = Pχ). We find that

‖T χ‖L2→L∞ ≤ C‖χ(ξ)e2α|ξ|‖L1(Rd),

so that eventually,

‖kχ(x)− Pχkl(x)‖∞ ≤ C‖k‖∞(‖σ‖∞ + ‖k‖∞)‖χ(ξ)e2α|ξ|‖L1(Rd), (113)

where Pχkl(x) is the regularized inverse Fourier transform of k̂l(ξ) defined in (108).

We have obtained an error estimate for the low-frequency component of k(x). Note

however that the estimate is very large, even for small values of ξ, unless σ and k are

extremely small. Such an estimate may be improved by using an iterative scheme. Once

Pχkl(x) has been obtained, it may be used to estimate the error term in (108), which

may be used to modify the measured data M(g, f) and use the linearized inverse one

more time to obtain a better estimate of kχ(x). More precisely, let us define iteratively:

k0
χ = T χ

∞∑
m=1

Tm(k)

kν+1
χ = T χ

(
∞∑

m=1

Tm(k)

)
− T χ

(
T σ

1 (kν
χ) +

∞∑
m=2

Tm(kν
χ)

)
.

(114)

Here, Tm(k) are seen as integral operators with Schwartz kernel Tm(k)(x, y). Note that

k0
χ = Pχkl, the linearized reconstruction. Under appropriate smallness conditions on σ

and k, which are given explicitly in [21], a Picard fixed-point theorem shows that the

above iterative scheme converges to k∞χ and that

‖kχ − k∞χ ‖∞ ≤ C‖k − kχ‖∞. (115)
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In other words, the smooth part of kχ is well reconstructed provided that the non-smooth

part k − kχ of k is small. The result is not very satisfactory because the smallness

hypotheses on k and σ depend on the norm of T χ. The smallness constraints on k and

σ become exponentially stronger as the maximal wavenumber we want to reconstruct

increases. Nonetheless, the result shows that some reconstructions of optical parameters

are indeed theoretically feasible from diffusion type measurements, but that problems

are severely ill-posed.

We may formally write the stability results obtained in [21] as follows:

Theorem 4.7 ([21]) Assume that σ(x) is known, continuous, and sufficiently small in

the uniform norm and that k(x) is continuous, compactly supported in X, and sufficiently

small in the uniform norm.

Then B determines an approximation kl(x) of k(x) obtained by linearization of B
and we have in the Fourier domain that

|k̂l(ξ)− k̂(ξ)| ≤ C‖k‖∞(‖σ‖∞ + ‖k‖∞)ediam(X)|ξ|. (116)

Let kχ = Pχk be a smooth approximation of k such that k̂χ(ξ) = 0 for |ξ| > M .

Then, for σ and k sufficiently small (and the smallness depends on M), B determines

an approximation k∞χ of kχ and we have that

‖kχ − k∞χ ‖∞ ≤ C‖k − kχ‖∞, (117)

for some constant that depends on M .

The linear approximation of the time independent inverse transport problem with

angularly averaged measurements is of a similar nature to the inverse conductivity

problem and is thus equally ill-posed. How the inverse of the linearized approximation

applies to the nonlinear part of B is not understood and it is still unclear whether

B uniquely determines k(x). The above result however shows that the reconstruction

of k from knowledge of B is a severely ill-posed problem, unlike the reconstruction

of the optical parameters from angularly resolved measurements or time dependent

measurements.

5. Approximate Stability Estimates

Let F be the functional mapping the optical parameters (σ, k) to A = F(σ, k). Assume

that A is the “true”, noise-free, measurement, and that Ã is the available, noise-

corrupted, measurement. Then the stability estimates seen in the last section give

an upper bound for the error in the reconstruction of (σ, k) since ideally (σ̃, k̃) can

be reconstructed from the available Ã. The main drawback of such estimates is that

they assume that the noisy measurements are in the range of F . When the available

measurement Ã is not in the range of F , then ‖Ã−A‖ for an appropriate metric on the

albedo operators may still make sense, but may often provide an extremely pessimistic,

thus useless, upper bound for the error in the reconstruction.
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Let us assume that the measurements have a limiting scale η, for instance

because the detectors have finite resolution, and that Ã may be seen as a smoothing

approximation of identity Rη applied to A, i.e., Ã = RηA. A reconstruction based on

the measurements Ã is feasible as we saw: the optical parameters may be explicitly

reconstructed from measurements of the form 〈φ, Ãfε〉 in expressions such as (48) and

(49). Yet, independent of η � 1, we easily find that ‖A − Ã‖L(L1) = O(1) when Rη is

smoothing at the scale η. It suffices for this to consider functions φ that concentrate

on domains that are small compared to η in an angular, temporal, or spatial variable.

To understand this, we may consider the following simplified example. Let A = I be

the identity operator and Aη be the convolution by η−dφ(x
η
) for a smooth, compactly

supported, function φ(x) ≥ 0 such that
∫

Rd φ(x)dx = 1. Then Aη converges to A

strongly but not uniformly and it is straightforward to obtain that ‖A−Aη‖L(L1(Rd)) = 2

independent of η. That ‖A − Ã‖L(L1) = O(1) renders estimates of the type (75),(79)

useless in some practical situations.

Other estimates, which we call here approximate stability estimates, need to be

developed to understand the role of a smoothing operator on the reconstructions. Such

estimates are still based on the decomposition of the albedo operator and are refined

versions of the estimates presented thus far. The goal of such estimates is to help us

understand which blurred version of the optical parameters may be stably reconstructed,

and which error is made by neglecting higher orders of scattering in the reconstruction.

We follow the presentation in [18] and consider the time independent case only to

simplify the presentation. We refer the reader to [18] for generalizations to the time

dependent case.

We are interested in two types of noise generated by limits in the resolution of

the source term and of the detectors. The source resolution is quantified by the scale

ε = (ε1, ε2), where ε1 measures the minimal spatial extension of the source and ε2 the

minimal angular extension. In other words, the source term may be written as a function

of the form (ε1ε2)
1−dφ(x−x0

ε1
)ψ(v−v0

ε2
). The detector resolution is quantified by the scale

η = (η1, η2), where again η1 is related to spatial resolution and η2 to angular resolution.

The smoothing of the detectors is quantified by a kernel φη ∈ C1(Γ+×Γ+,R) such

that

φη ≥ 0, (118)

suppφη ⊂ {(x, v, y, w) ∈ Γ+ × Γ+ | |x− y| < η1 and |v − w| < η2}, (119)∫
Γ+

φη(x, v, y, w)dξ(y, w) = 1 for all (x, v) ∈ Γ+, (120)∫
Γ+

φη(x, v, y, w)dξ(x, v) ≤ C for all (y, w) ∈ Γ+, (121)

where C is a constant. We denote by Rη the bounded operator from L1(Γ+, dξ) to

L1(Γ+, dξ) defined by

Rηg(x, v) =

∫
Γ+

φη(x, v, y, w)g(y, w)dξ(y, w), (122)
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for a.e. (x, v) ∈ Γ+ and for g ∈ L1(Γ+, dξ). Note that Rη is a smoothing operator at

the spatial scale η1 and the angular scale η2. The details of the optical coefficients at

scales smaller than η are thus not recoverable in a stable manner.

We now model some limitations of the source term. Let (x′0, v
′
0) ∈ Γ−. The point

(x′0, v
′
0) ∈ Γ− models the incoming condition and is fixed in the analysis that follows.

For ε := (ε1, ε2) ∈ (0,+∞)2, let fε ∈ C1
0(Γ−) such that

‖fε‖L1(Γ−,dξ) = 1, fε ≥ 0 (123)

suppfε ⊂ {(x′, v′) ∈ Γ− | |x′ + τ+(x′, v′)v′ − x′0 − τ+(x′0, v
′
0)v

′
0| < ε1 and |v′ − v′0| < ε2}.

(124)

The condition for ε1 is written as a constraint on Γ+ rather than a constraint on Γ−. Yet

fε above is easily seen as a smooth approximation of the delta function on Γ− at (x′0, v
′
0)

as ε1 → 0+ and ε2 → 0+ and is thus an admissible incoming condition in L1(Γ−, dξ).

Now that the source term has resolution limited by ε and the measurements are

convolved measurements at the scale η, we need to select measurements that capture the

singularities of the albedo operator while eliminating multiple scattering as efficiently

as possible. Since the source term and detector resolution is limited, the separation

between different orders of scattering based on the singularities of the albedo operator

is no longer feasible exactly. The role of approximate stability estimates is to show what

may still be reconstructed stably and with which error. The selection is performed by

means of a function ψ whose support indicates which measurements are selected or not.

Such a function is different for the selection of the ballistic and the single scattering

components as we shall see.

Assume that (k, k̃) ∈ L∞(X × V × V )2. Let ψ ∈ L∞(Γ+) such that ‖ψ‖L∞(Γ+) ≤ 1.

Then using the decomposition of the albedo operator (40) and (122), we obtain that∫
Γ+

ψ(x, v)Rη(A− Ã)fε(x, v)dξ(x, v) = I0(ψ, η, ε) + I1(ψ, η, ε) + I2(ψ, η, ε), (125)

where, thanks to the estimate on the multiple scattering contribution given in (46), we

have

I0(ψ, η, ε) =

∫
Γ+

ψ(x, v)

∫
Γ+

φη(x, v, y, w)
(
e−

∫ τ−(y,w)

0 σ(y−sw,w)ds (126)

−e−
∫ τ−(y,w)

0 σ̃(y−sw,w)ds
)
fε(y − τ−(y, w)w,w)dξ(y, w)dξ(x, v),

I1(ψ, η, ε) =

∫
Γ+

ψ(x, v)

∫
V×Γ+

φη(x, v, y, w) (127)∫ τ−(y,w)

0

(
(kE+)(y − tw, w′, w)− (k̃Ẽ+)(y − tw, w′, w)

)
fε(y − tw − τ−(y − tw, w′)w′, w′)dtdξ(y, w)dw′dξ(x, v),

I2(ψ, η, ε) ≤ C

∫
V

(∫
y∈∂X

ν(y)·w>0

∣∣∣ ∫
Γ+

φη(x, v, y, w)ψ(x, v)dξ(x, v)
∣∣∣ν(y) · wdy) 1

p′
dw, (128)
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and C = C(p,X, V, σ, k, σ̃, k̃) for 1 < p < d
d−1

and p−1 + p′−1 = 1. Here, I0 corresponds

to the ballistic part we aim at selecting while I1 and I2 correspond to the single and

multiple scattering components. The objective is to find some stability for I0.

The theorems in this paper have been presented so far for V = Sd−1 the unit sphere

although they generalize to other velocity spaces. Because the approximate stability

estimates depend on the dimension on V , we define dimV as

dimV :=

{
d− 1, when V := Sd−1,

d, when V is an open subset of Rd.
(129)

The main approximate stability result is as follows.

Theorem 5.1 ([18]) Assume that (k, k̃) ∈ L∞(X × V × V )2. Let 1 < p < d
d−1

and let

p′ = p
p−1

> d. Then the following statements are valid:

i. There exists a constant C1 = C1(X,V, p, σ, k, σ̃, k̃) such that

|I0(ψ, η, ε)| ≤ ‖Rη(A− Ã)fε‖L1(Γ+,dξ) + C1(η2 + ρ)dim(V ), (130)

for (ρ, ε1, ε2, η1, η2) ∈ (0,+∞)5 and for ψ ∈ L∞(Γ+), ‖ψ‖L∞(Γ+) ≤ 1,

suppψ ⊂ {(x, v) ∈ Γ+ | |v − v′0| < ρ}. (131)

ii. There exists a constant C2 = C2(X,V, p, σ, k, σ̃, k̃) such that

|I1(ψ, η, ε)| ≤ ‖Rη(A− Ã)fε‖L1(Γ+,dξ) + C2

(
ρ1 + η1 +

2diam(X)η̌2√
1− η̌2

) d−2
p′

,

η̌2 =
2η2

v0(1− ρ2
2)

1
2

, (132)

for (ρ1, ρ2, ε1, ε2, η1, η2) ∈ (0,+∞)6, η̌2 < 1, and for ψ ∈ L∞(Γ+), ‖ψ‖L∞(Γ+) ≤ 1,

suppψ ⊂ {(x, v) ∈ Γ+ | |x−x′0−τ+(x′0, v
′
0)v

′
0| > η1+ε1 or |v−v′0| > η2+ε2}, (133)

suppψ ⊂ {(x, v) ∈ Γ+ | inf
(s,s′)∈R2

|x− sv − x′0 + s′v′0| < ρ1}, (134)

suppψ ⊂ {(x, v) ∈ Γ+ | |v̂ · v̂′0| < ρ2}. (135)

Similar though slightly different estimates may also be obtained in the time dependent

setting; see [18, Theorem 3.2].

The first result (130) applies to all functions ψ supported in the velocity variable

in the ρ-vicinity of v0 as indicated in (131). Not all such test functions are of interest.

When ρ is much smaller than ε2 or η2, then I0(ψ, η, ε) does not capture the whole

ballistic part. This renders the estimate (130) useless. The support of ψ thus needs to

be sufficiently large so that it captures the ballistic part. With our assumptions on fε

and φη, this means that ψ should have a support of size ε1 + η1 in the vicinity of x0 and

of size ε2 + η2 in the vicinity of v0.
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Once the support of ψ is sufficiently large as indicated above, then I0(ψ, η, ε)

captures the ballistic part of the signal up to an error caused by single and multiple

scattering as indicated in Theorem 5.1. This is the error made on the X-ray transform

of σ averaged over the support of ψ. We then have to invert the X-ray transform from

these smoothed out measurements at the scale of the support of ψ. This is a task that

needs to be performed carefully and whose analysis will be carried out elsewhere. At a

qualitative level, we expect to reconstruct σ = σ(x) at the scale limited by the support

of ψ. The latter should therefore be sufficiently large in order to capture the ballistic

front and yet sufficiently small so as to guarantee the best available resolution for the

reconstruction of σ. All spatial scales in σ smaller than ε and η cannot be reconstructed

stably. What our results says is that all scales larger than these numbers can indeed be

reconstructed stably from transport measurements.

The second result (132) in Theorem 5.1 addresses the reconstruction of the

scattering coefficient. The test function ψ should be supported away from the ballistic

part, have a support that is sufficiently large so that it captures all of the single scattering

contribution, and yet not too large so that the multiple scattering contribution is small

over the support and so that resolution is not compromised in the reconstruction of

k(x, v′, v). Note the role of η̌2 as a combination of η2 and ρ2. The term involving η̌2

shows that the reconstruction of k(x, v0, v) involves an error of order η̌2 ∼ η2 when v0

and v are not close to being parallel (i.e., when v0 · v bounded away from 1). When v0

and v become parallel, it becomes harder to separate the ballistic part from the single

scattering part and η̌2 � η2 when ρ2 approaches 1.

6. Varying indices of refraction and non-Euclidean geometries

Many of the results presented above have been extended to the case of spatially

varying indices of refraction and more general non-Euclidean metric. Let us return

to the transport problem with H(x, v) = c(x)|v|. The trajectories (bi-characteristics)

corresponding to this Hamiltonian, solving Hamilton’s equations

ẋ = ∇vH(x, v) = c(x)
v

|v|
, v̇ = −∇xH(x, v) = −∇c(x)|v|,

are seen to the geodesics for the metric gij = c2(x)δij propagating with speed c(x).

By fixing the Hamiltonian of the trajectories to H2(x, v) = 1, we observe that the

particles propagate with normalized speed in the metric gij since gijv
ivj = c2(x)δijv

ivj =

c2(x)|v|2 = 1. Since the metric g = g(x) is independent of direction v, only Hamiltonians

that may be written (up to a nonlinear transform H 7→ ϕ ◦ H since H, whence

ϕ ◦ H is preserved along bi-characteristics) in the form H(x, v) = gij(x)v
ivj have bi-

characteristics whose projections in the physical domain are geodesics for a Riemannian

metric. More general Hamiltonians, for instance of the form H(x, v) = 1
2
|v|2 + V (x),

are not treated by the Riemannian case and would require generalizations of the results

presented below to a more general framework involving e.g. Finslerian metrics [25].
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When scattering is elastic so that the Hamiltonian H(x, v) is preserved through

scattering events as in e.g. (29), then the stationary transport equation may be

generalized as

Du(x, v) + σ(x)u(x, v)−
∫

ΩxM

k(x, v′, v)u(x, v′)dv′ = 0, (136)

where D is the geodesic vector field associated to the metric g defined on a Riemannian

manifold (M, g) and where ΩxM is the unit tangent sphere at x ∈ M . The metric g is

assumed to be simple, in the sense that M is strictly convex and for x ∈ M̄ , the closure

of M , the exponential map expx : exp−1
x (M̄) → M̄ is a diffeomorphism. The hypotheses

of simplicity of the metric prevents e.g. the crossing of several geodesics starting at a

same point x with different directions.

The incoming and outgoing boundary conditions are defined as

Γ± = {(x, v)|x ∈ ∂M, ±g(v, νx) > 0},

where νx is the outer normal toM at x ∈ ∂M . As a generalization of the results obtained

in section 2, the transport equation with incoming boundary conditions u|Γ− = g admits

a unique solution [91] under appropriate generalizations of the subcriticality conditions

in (27) and we may define the albedo operator A : u|Γ− 7→ AuΓ− = uΓ+ .

We assume here that (M, g) is known. For reconstructions of the metric g from

various boundary measurements, we refer the reader to e.g. [98, 107, 123, 130]. For a

reconstruction of the whole Riemannian manifold (M, g) from knowledge of the length

of all broken geodesics, we refer the reader to [74]. It is also shown in the latter reference

that the albedo operator A defined above uniquely determines the length of all broken

geodesics under appropriate smoothness and positivity constraints on the scattering

coefficient k. We refer the reader to [74] for the details. Assuming the manifold (M, g)

known, uniqueness of the reconstruction of the optical parameters from full or partial

knowledge of the albedo operatorA in the Riemannian setting was studied in [76, 91, 92].

We briefly mention these results and refer the reader to the recent review paper [93] for

more details.

The generalization of Theorem 3.1 is as follows:

Theorem 6.1 ([91]) Let M ⊂ Rd, d ≥ 2 be a bounded domain with smooth boundary

and g be a known simple Riemannian metric on M . Let 0 ≤ σ(x) ∈ L∞(M) and

0 ≤ k ∈ L∞(M,ΩxM,ΩxM) such that the subcriticality condition (27) holds. Then A
uniquely determines σ. When d ≥ 3, then A uniquely determines k.

The proof is also based on the decomposition of the albedo operator (40) as

in the Euclidean case. In dimension d = 2, the scattering coefficient may be

stably reconstructed under appropriate smallness conditions on k and some geometric

assumptions. More precisely, let κ0 be the maximal sectional curvature of (M, g). We

assume that 2
√
κ0diam(M, g) < π. Also, for every Jacobi field J(t) define on t ∈ [a, b]

along a geodesic γ with J(a) = 0, we assume that ‖J(t)‖g is strictly increasing on [a, b].

Then we have:
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Theorem 6.2 ([92]) Define V = {(σ(x), k(x, v, w)); ‖σ‖L∞ ≤ Σ, ‖k‖L∞ ≤ ε}. Under

the above hypotheses and for a given Σ, there exists ε > 0 such that any pair

(σ(x), k(x, v′, v)) ∈ V is uniquely determined by knowledge of the albedo operator A.

We conclude this section with a result extending Theorem 4.5 to the Riemannian

setting. We define the angularly averaged measurements with angularly resolved source

as

C : g(x, v) ∈ L1(Γ−) 7→ Cg(x) = Jw(x) :=

∫
Ωx,+M

u|Γ+(x, v)w(x, v)dµ(v) ∈ L1(∂X), (137)

where Ωx,+M = {v ∈ ΩxM ; g(v, ν(x)) > 0}. Then we have the following result:

Theorem 6.3 ([76]) Let ‖k‖L∞ be sufficiently small. Then the attenuation coefficient

σ is uniquely determined by C.
Suppose in addition that k(x, v, w) = k(x)φ(x, v, w) with (g,w, σ, φ) known and

real analytic. Suppose that k̃(x, v, w) = k̃(x)φ(x, v, w), that ‖k‖L∞ , ‖k̃‖L∞ ≤ ε for ε

sufficiently small and k and k̃ vanish in the D−vicinity (for the metric g) of ∂M for

some D > 0. Then k(x) is uniquely determined by C.

7. Inverse source problem

We now consider the stationary source problem (18) with u|Γ−(x, v) = g(x, v) = 0. We

assume that the optical coefficients σ(x, v) and k(x, v′, v) are known. The simultaneous

reconstruction of optical parameters and source terms is difficult to justify theoretically,

although some positive results in this direction were obtained numerically [99]. The

inverse problem consists of reconstructing the source term S(x) from knowledge of

u|Γ+ . Note that an arbitrary source S(x, v) is unlikely to be uniquely determined from

u|Γ+(x, v) since Γ+ is a manifold of dimension smaller than that of X × V by one.

Note that angularly averaged measurements such as those considered in (54) would also

generate data on a manifold ∂X whose dimension is smaller than that of X by one

again. Angularly resolved measurements are therefore required to reconstruct general,

spatially dependent, sources S(x).

We present here two different results. The first result is based on an extension of

the inversion of the attenuated Radon transform in [104] (see also [5, 33]) to the case

of weak scattering as it is presented in [24]. The second result is based on extension

of injectivity results for generic X-ray transforms [56] to the setting of scattering media

[133]. The first result applies to spatially dependent attenuation coefficients σ = σ(x)

and assumes a smallness constraint on the anisotropy of the scattering coefficient. The

second result removes the smallness constraint on scattering and works “generically”,

i.e., for a dense set of general optical parameters σ(x, v) and k(x, v′, v).

Other important contributions in the theory of the inverse transport source problem

include [77, 106, 126]. For related works on the attenuated Radon transform in Euclidean

and non-Euclidean geometries, we refer the reader to [3, 12, 14, 30, 73, 100, 103, 106,

118, 124].
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Let us first consider the case d = 2 with isotropic scattering and the equation

v · ∇u+ σ(x)u = f(x) := k(x)

∫
V

u(x, v′)dv′ + S(x), (138)

with u|Γ− = 0. Then u|Γ+(x, v) = Lf(x, v) with L defined in (22) may be identified with

the attenuated Radon transform of f(x). Under mild regularity assumptions on σ, the

attenuated Radon transform was shown in [5, 104] to be injective and in [104] (see also

[33]) to admit an explicit inversion formula. In other words, there exists an operator N

such that formally, NL = I, the identity operator in L2(X).

This shows that Lf(x, v) uniquely determines f(x). Upon solving (138), u(x, v) is

thus known so that S(x) = f(x) − k(x)
∫

V
u(x, v′)f(v′)dv′ is also uniquely determined

from Lf(x, v) on Γ+ [134]. The result generalizes to dimension d = 3 (and higher

dimensions) by assuming that two-dimensional measurements are available in each plane

orthogonal to a fixed vector e3 in R3.

In the presence of anisotropic scattering, the inversion operator may still be applied

to the measurements u|Γ+(x, v) and yields an equation of the form

Nu|Γ+(x) = (I −NK)S(x), (139)

where NK is an operator that is linear in the scattering coefficient k(x, v′, v). Under

appropriate smallness assumptions on a scattering coefficient of the form k(x, v′, v) =

k(x, v′ · v), it is shown in [24] that NK is a contraction in L(L2(X)). More precisely, in

dimension d = 2, we define k̃(x, θ) = k(x, µ), kn(x) =
∫ 2π

0
k̃(x, θ)e−inθdθ and k̃n(ξ) the

Fourier transform of kn(x). In dimension d = 3, we define k(x, t) =
∑

n≥0 kn(x)Pn(t),

where Pn(t) is the n−th Legendre polynomial on (−1, 1). Then k̂n(ξ, t) is the Fourier

transform of kn(x′, x3) with respect to the first two variables. Let Ymn(v) be the spherical

harmonics on S2. Then we have the following result:

Theorem 7.1 ([24]) Let S(x) ∈ L2(Rd) be of compact support in X and a(x) ∈ C2
0(X)

an absorption of compact support. In dimension d = 2, there is ε = ε(X, a) > 0 such

that when

max
n∈Z

nα‖k̂n‖2
L1(R2) ≤ ε

for some α > 1, then the measurement u|Γ+(x, v) uniquely determine S and from (139),

there exists a constant C such that

‖S‖L2(X) ≤ C‖NuΓ+‖L2(X). (140)

In dimension d = 3, the same result of uniqueness and stability holds provided that

max
n∈N∗

(
nα−1 max

|m|≤n
max
θ·e3=0

|Ynm(θ)|2
∫

R
‖k̂n(·, z)‖2

L1(R2)dz
)
≤ ε.

Remark that NK in (139) is a compact operator as results in e.g. [96] show. The

equation (139) is therefore invertible so long as 1 is not an eigenvalue of the compact
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operator NK . When NK is sufficiently small in operator norm, then (139) may be solved

by Neumann series expansion S(x) =
∑∞

m=0N
m
KNu|Γ+ .

We now revisit the inverse source problem following the presentation in [133]. The

forward transport equation is of the form

v · ∇u+ σ(x, v)u−
∫

V

k(x, v′, v)u(x, v′)dv′ = S(x, v) (x, v) ∈ X × V, (141)

with u|Γ− = 0 and V = Sd−1. We may formally recast the above problem as

(I −K)u = LS

Solving for u is therefore equivalent to showing that I − K is invertible. When K is a

compact operator, this is equivalent to 1 not being an eigenvalue of K. It turns out that

the L1 setting used in Theorem 2.2 is not the most convenient to obtain compactness

results because K is only weakly compact; see [96]. It is more convenient to work in

the L2 setting though the results presented below also generalize to the L1 setting; see

e.g. [131], where it is shown that K4 is compact in L(L1(X × V )) when the optical

parameters are continuous. That K is compact as an operator in L(L2(X × V )) has

been known under some restrictions on the optical parameters since the work in [139];

see [96] for a comprehensive presentation. It is shown in [133] that K2 is compact in

L(L2(X × V )) when the optical coefficients are continuous functions. The transport

equation may then be recast as

(I −K2)u = (I +K)LS,

and a solution u exists when 1 is not an eigenvalue of K2. This is always the case by

replacing k by λk if necessary and this allows [133] to show that (141) admits a unique

solution u ∈ L2(X × V ). Moreover, a classical trace estimate shows in this setting that

u|Γ+ ∈ L2(Γ+, dξ).

As in the proof of Theorem 7.1, the strategy followed in [133] to solve the inverse

source problem is based on seeing M := (I −K)−1L as a (compact) perturbation of L.

We have seen that L was injective when σ = σ(x) as L is identified with the attenuated

Radon transform. The injectivity of L for more general, velocity dependent, attenuation

coefficients σ(x, v) may be obtained using the tools developed in [56]. We now recall

these results in their full generality although they are only necessary here for integrations

along straight lines. Let M be a compact manifold with boundary and Γ an open family

of smooth curves on M with end points on ∂M and extended outside of M into a larger

manifold M1 with end points in M int
1 , the interior of M1. The curves are parameterized

locally by γx,ξ(t) with γx,ξ(0) = x and γ̇x,ξ(0) = µξ with µ > 0 for (x, ξ) ∈ TM , the

tangent bundle of M . Only one curve in Γ passes through (x, ξ) ∈ TM and γx,ξ is

assumed to be smooth in (x, ξ). Let us define the generator G(x, ξ) = γ̈x,ξ(0), which

uniquely determines Γ. Additional structure on the curves make Γ a smooth manifold.

The family of curves Γ is said to be analytic when G(x, ξ) and µ(x, ξ) are analytic.
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Finally, define the exponential map expx(t, ξ) := γx,ξ(t). Then x = γ(0) and y = γ(t0)

are called conjugate along γ if Dt,ξexpx(t, ξ) does not have full rank at (t0, γ̇(0)).

Γ is defined in [56] as a regular family of curves if for any (x, ζ) ∈ T ∗M , the

cotangent bundle of M , there exists γ ∈ Γ through x normal to ζ without conjugate

points. Then the authors in [56] prove the following result:

Theorem 7.2 ([56]) Let Γ be an analytic regular family of curves in M1 and let w(x, ξ)

be analytic and non-vanishing in M1. Then

LΓ,wS(γ) :=

∫
w(γ(t), γ̇(t))S(γ(t))dt, γ ∈ Γ, (142)

is injective in L1(M). Moreover let (G0, w0, µ0) be such a example of curves and weights.

Then LΓ,w is still injective for all (G,w, µ) such that (G, µ) is in the C2 vicinity of

(G0, µ0) and w is in the C1 vicinity of w0. (The vicinity is (G0, w0, µ0)−dependent.)

Moreover, the regularization properties of LΓ,w are established in [56]. Let α be an

appropriate weight function and define LΓ,w,α = αLΓ,w. Then it is proved in [56] that

‖L∗Γ,w,αLΓ,w,α‖H1(M1) ∼ ‖f‖L2(M), (143)

where a ∼ b means C−1a ≤ b ≤ Ca for some C > 0. In other words, LΓ,w,α is a

smoothing operator by 1
2

a derivative as for the X-ray transform.

The above result is used in [133] to solve the inverse source problem as follows. Let

us first assume that f is compactly supported in X2 with X̄2 ⊂ X. Then we have the

result:

Theorem 7.3 ([133]) There exists a dense set of pairs

(σ, k) ∈ C2(X̄ × V )× C2(X̄ × Vv′ ;C
d+1(Vv)),

such that M = (I −K)−1L is injective in L2(X2) with the estimate

‖f‖L2(X2) ≤ C‖M∗Mf‖H1(X). (144)

The result is based on showing that L is injective using Theorem 7.2 and on showing

that M∗M = L∗L+N , where N is shown to be compact from H1(X) to L2(X).

8. Practical and numerical aspects of forward and inverse transport

Solving the stationary or evolution transport equations numerically is not an easy task.

Numerical methods have to deal with a large number of dimensions (typically three

spatial dimensions plus at least two velocity dimensions) and the fact that solving

hyperbolic equations, in which singularities are allowed to propagate without damping,

is notoriously difficult on grids. For a brief illustration of the main numerical methods,

including the discrete ordinate method and the spherical harmonics method, and their
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analysis, we refer the reader to e.g. [39, 61, 62, 64, 82, 86, 105, 108]. For a catastrophic

effect of the spurious modes that develop in a discrete transport equation, see also [11].

Many techniques have been devised to solve the inverse transport problem.

These techniques typically do not provide uniqueness or stability results but they are

amenable to numerical simulations and provide practical reconstructions for the optical

parameters. We briefly review such methods.

Energy balance techniques and transport equations in divergence form. One

such method uses clever integrations by parts involving the direct and adjoint transport

equations to obtain specific constraints on the optical parameters involving the available

boundary measurements. Such methods typically deal with spatially independent

optical parameters. Following [78], let u and w̃ be solutions of

v · ∇u+ σ(u− ū) = 0, X × V,

where ū = |V |−1
∫

V
u(x, v)dv is the velocity average of u and σ is constant. Let

w(x, v) = w̃(x,−v), which we verify is solution of the adjoint equation

−v · ∇w + σ(w − w̄) = 0, X × V.

Let us multiply the first equation by ∇w, the second equation by ∇u, and sum the two

equalities to obtain

v · ∇(u∇w)−∇(uv · ∇w) + σ∇(uw)− σ(ū∇v + v̄∇u) = 0.

We integrate the above equality over X × V and obtain∫
∂X×V

((
v · νu∇w − (uv · w)ν) + σ(uw − ūw̄)ν

)
dµ(x)dv = 0.

In other words,

σ =

h ·
∫

∂X×V

u(v · ν∇‖w − v‖ · ∇‖wν)dµ(x)dv

h ·
∫

∂X×V

(uw − ūw̄)νdµ(x)dv
, (145)

where Z‖ = Z − Z · νν for Z = ∇ and Z = v and h is an arbitrary vector in Rd. This

provides an expression for σ by using two measurements (or one measurement with

w(x, v) = u(x,−v)) provided that the above denominator does not vanish. The method

generalizes to scattering coefficients k = k(v′ · v) and provides systems of equations to

solve for appropriate discretizations of k(µ). The main drawback of such methods is

that they cannot handle spatially varying optical coefficients. For more details on the

method and its applications in nuclear engineering and radiative transfer in the ocean,

we refer the reader to [78, 90, 121, 143] and the references there.

Least square formulations and the adjoint method. Generalized least square

formulations are ubiquitous in the numerical simulation of inverse problems. Such
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methods have been implemented in radiative transfer in e.g. [42, 48, 49, 71, 112] in

the medical imaging context of optical tomography. The method is very similar to the

inverse problem for the diffusion equation (34) (with c(x) = c constant) as it is used in

optical tomography [6].

The methodology for such methods is as follows. Let (gq)1≤q≤Q be Q sources on

Γ− and let e.g. Cgq be the unperturbed measurements on ∂X, where C is defined in

(91) as measurements are typically angularly averaged in practice. The sources gq are

also typically functions of x only. Let (zq)1≤q≤Q be the corresponding perturbed (noisy)

measurements. The least square error is therefore given by

F(σ, k) =
1

2

Q∑
q=1

‖Cgq − zq‖2
L2(∂X). (146)

The objective is to minimize the above functional to retrieve σ and k from available

measurements. Because the inverse problem is ill-posed, the parameters we want to

reconstruct need to be regularized to avoid over-fitting of the data [53]. An example of

regularization used in [112] is

Fβ(σ, k) = F(σ, k) + βI(σ, k), I(σ, k) = ‖σ − σ0‖Hm(X) + ε‖k − k0‖Hm(X×V×V ),

(147)

where m ≥ 0, ε > 0 and σ0 and k0 are reasonable guesses for σ and k.

The minimization of Fβ(σ, k) is computationally intensive and fraught with

difficulties, the major one being the possibility of a large number of local minimizers.

Minimizations are typically performed by using a Gauss-Newton type algorithm [102],

which requires that one compute Fréchet derivatives of Fβ. The adjoint (co-state)

method is computationally efficient to do so; see e.g. [140] and references there. Let δσ

a variation in the parameter σ. We then verify that

F ′
β · δσ =

Q∑
q=1

(
ϕq, δσuq

)
L2(X×V )

+ β
(
σ − σ0, δσ

)
H1(X)

,

where uq is the solution of the equation Tuq = 0 in (18) with source term uq = gq on

Γ− and ϕq is the solution of the adjoint equation T ∗ϕq = 0 with boundary condition

ϕq = −C∗(Cfq − zq) on Γ+. In other words, the calculation of the Fréchet derivative

of Fβ in a particular direction δσ (with a similar expression for variations δk) involves

the calculation of (only) one forward and one adjoint transport equations. This, in

combination with Gauss-Newton type algorithms (such as the BFGS) algorithm allows

one to obtain reasonable reconstructions of the optical parameters from a limited

(though still relatively large) number of measurements.

Other theoretical results. We briefly mention several other noteworthy results in the

theory of inverse transport. For the one-dimensional inverse transport problem, where

optical parameters should be reconstructed from angularly resolved and possibly time

resolved measurements, we refer the reader to [9, 10, 50] for inversions based on the
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invariant embedding technique and the derivation of Riccati equations for the reflection

and transmission operators.

Most of the results presented here rely on multiple measurements. In some specific

situations, one time-dependent measurement may be sufficient to obtain information

about the optical coefficient. For such results based on the use of Carleman estimates,

we refer the reader to [69, 70].

The inverse source problem mentioned above corresponds to the case of an active

optical source as it arises in bioluminescence. The closely problem of fluorescence

requires an external excitation of the optical (passive) source. For theoretical and

numerical results on the fluorescence problem, we refer the reader to [40, 67, 72].

Finally, let us mention recent results on the linearization of the inverse transport

problem about spatially homogeneous optical coefficients and the use of explicit

expressions, written in term of infinite series, for the fundamental solutions to the

radiative transfer equation. Such methods have been used to efficiently recover large-

contrast small-volume or large-volume low-contrast inclusions in the optical tomography

setting. We refer the reader to [87] for the details.

Inversions with limited data. The reconstructions presented so far require that

the measurement operator be available with sufficient accuracy. In many practical

situations, the amount of information is much smaller than what explicit reconstruction

algorithms require. In such situations, prior information needs to be added into the

problem in order to select among all the possible parameters that equally fit the

unresolved available measurements. Adding a priori information may be performed by

e.g. modifying the constraints in the least square method (147), for instance by replacing

the regularization functional I(σ, k) by other functionals that favor minimization of

the total variation or other sparsity constraints. A fairly versatile methodology to

handle such prior constraints is the Bayesian framework. We refer the reader to e.g.

[8, 54, 63, 94] for a few, very incomplete, references on this active research area.

9. Perspectives and open problems

The theory presented in this paper analyzes the singularities of the albedo operator in

several practical settings of application of inverse transport. Several other singularities

have not been analyzed in detail, for instance those emanating from scattering

contributions in the time-dependent setting with angularly averaged measurements when

the scattering coefficient does not vanish in the vicinity of the boundary; see e.g. [20],

where such singularities are partially analyzed. We also refer the reader to [129] for

additional open problems in this direction. The singularities of the albedo operator

are the main tools used in the derivation of stability estimates. Stability estimates

have not yet been obtained in several frameworks, such as in non-Euclidean geometry

or in the setting of non-uniqueness results stated in section 3.4. Several groups are

pursuing research in this direction. As we mentioned in section 6, many Hamiltonian

dynamics may not be accounted for in the Riemannian setting. The unique and stable
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reconstruction of the optical parameters in a sufficiently general setting to account for

such practical Hamiltonians is still an open problem.

The inverse problems considered in this paper decouple the reconstruction of the

optical parameters and that of the source terms. This corresponds to the practical

setting in most applications in medical imaging. This is also the practical setting in

active remote sensing in the Earth atmosphere. However, this is not the practical

setting in passive remote sensing in the atmosphere. The latter problem is typically

concerned with the reconstruction of gas concentrations in the atmosphere from satellite

or terrestrial measurements. The inverse problem then takes the form of the time

independent source problem (18) with V an open subset of Rd. Frequency measurements

(for a large number of values of |v|) are crucial in remote sensing and are an important

difference with respect to most applications in medical imaging. The major difference

mathematically, however, is that both the source term S and the attenuation coefficient

σ are unknown and that they are coupled. Indeed, the source term is essentially

generated by black-body radiation, which is itself very much dependent on the absorbing

properties of the gas. The resulting inverse transport problem, which may be seen as

a nonlinear inverse source problem, is still mostly open mathematically. We refer the

reader to [83] for a presentation of the passive remote sensing problem and to [23] for

a related theoretical study in the extremely simplified one-dimensional, scattering-free,

setting.

In the above presentation, polarization effects have been neglected and polarized

light has been replaced by a scalar description. Yet polarization measurements are

known to greatly enhance the reconstruction of optical parameters in many practical

settings of inverse transport; see e.g. [22, 41, 47, 95, 97, 138, 144]. The mathematical

theory of matrix-valued inverse transport (see e.g. [13, 120]) as it accounts for

polarization effects has not been done to-date.

Finally, the analysis of the singularities of the albedo operator has primarily

remained a theoretical tool so far. The method has rarely been tested numerically,

with the exception of the work in [4], and in practical inversions, with the exception

of the analysis of scattering corrections in several areas of applied sciences; see e.g.

[51, 119] and references there. The theory of inverse transport presented in this paper

applies in specific cases: scattering has to be significant to allow for the reconstruction

of the scattering coefficient, and yet not too large so that multiple scattering does not

overwhelm measurements. In other words, we are concerned with transport setting

that are not well approximated by the diffusion of Fokker-Planck regimes mentioned

in section 2. The transport regime described in this paper is an accurate model in

remote sensing in the presence of thin clouds and in medical imaging of optically thin

domains such as e.g. small animals [29] or finger joints [58]. A careful analysis of the

reconstruction of the optical properties using the singularities of the albedo operator

with practical noise models remains to be done.
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