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Abstract

We describe an architecture for invariant visual detection and recognition. Learning is performed in a single central module. The

architecture makes use of a replica module consisting of copies of retinotopic layers of local features, with a particular design of

inputs and outputs, that allows them to be primed either to attend to a particular location, or to attend to a particular object

representation. In the former case the data at a selected location can be classified in the central module. In the latter case all instances

of the selected object are detected in the field of view. The architecture is used to explain a number of psychophysical and physi-

ological observations: object based attention, the different response time slopes of target detection among distractors, and observed

attentional modulation of neuronal responses. We hypothesize that the organization of visual cortex in columns of neurons re-

sponding to the same feature at the same location may provide the copying architecture needed for translation invariance.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The visual system performs complex detection and

recognition tasks prior to any eye movement, in the first

several hundred milliseconds after stimulus presenta-
tion. These include rapid object recognition using covert

attention to extrafoveal areas (Cheal & Marcus, 1997;

Duncan, 1980; Eriksen & St. James, 1986; Henderson,

1991), and efficient target detection among distractors

(Humphreys & Heinke, 1998; Treisman & Sharon, 1990;

Wolfe, 2001).

A common characteristic of these phenomena is

translation invariance. By translation invariant object
recognition we mean the ability to direct covert attention

to a particular extrafoveal location and classify the ob-

ject at that location without eye movement. By trans-

lation invariant object detection we mean the ability to

detect complex objects among very similar distractors,

again without eye movement, at rates faster than im-

plied by random serial processing (using covert atten-

tion) of all object locations. Indeed, some experiments
on detection of a target among distractors show very
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little dependence on the number of distractors even for

complex objects and distractors that are very similar

(Horowitz & Wolfe, 1998; Wolfe, 2001). Extensive re-

views can be found in Desimone and Duncan (1995),

Kanwisher and Wojciulik (2000) and Chum and Wolfe
(2000, Chap. 9).

Our goal is to provide a computational model for

invariant detection and recognition starting from a

simple conceptual constraint: object representations and

object classifiers are learned and stored in one central

module. Consequently training examples of objects need

only be presented at one location in the field of view.

Furthermore, assuming learning takes the form of syn-
aptic modification, these modifications only occur in the

central module, and need not be translated or trans-

ferred to different locations in the visual system that

respond to different locations in the visual scene. In

short, we are proposing a model able to reconcile

translation invariant detection, recognition and learn-

ing, with the existence of a central module where clas-

sifiers and object representations are learned and stored.
The key ingredient in the model is a replica module

with multiple copies of the local feature inputs. The

particular design of the inputs and outputs from this

layer, which are described in detail below, enables lo-

cation based and object based selection, and hence
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translation invariant detection and recognition. It is of

particular interest that the organization of visual cortex

with columns of neurons responding to the same feature

at the same location can be used as such a copying

mechanism.

The use of multiple copies for location based atten-

tion has been proposed in the literature in several ver-

sions (see Humphreys & Heinke, 1998; Olshausen,
Anderson, & Van Essen, 1993; Salinas & Abbott, 1997).

We show that the same copying mechanism can provide

the basis for object based attention as well, provided

object representations have a very simple form: a list of

feature–location pairs. Each pair determines a feature

that is present with high probability on the object at a

prescribed location given that the object is at approxi-

mately the reference scale. If a sufficient number of such
features is present at the correct location relative to a

hypothesized center, this center becomes a candidate

location for the object.

Using relatively simple features consistent with those

known to be computed in the retinotopic layers V1, V2

and V4, we can actually produce such object represen-

tations, for a wide family of objects, yielding robust

detectors on real gray level images. Furthermore using
the same features we are able to produce classifiers with

competitive performance. Training the models requires

a very simple form of local Hebbian learning. Thus the

proposed model not only provides a conceptual frame-

work for dealing with translation invariance, but leads

to a real working algorithm for computational vision. In

this context we emphasize that the way the detector and

classifier are constructed from local features takes into
account not only translation invariance but also in-

variance to a range of linear and non-linear variations in

the object populations, and is robust to occlusion and

clutter. The same scheme can be extended to account for

rotation and invariance over large scale ranges, al-

though this is beyond the scope of the paper.

The proposed architecture offers a simple framework

for interpreting the above mentioned psychophysical
experiments on object detection and recognition with

covert attention (Eriksen & St. James, 1986; Henderson,

1991; Horowitz & Wolfe, 1998; Wolfe, 2001) as well as a

number of electrophysiological studies on modulation of

neural responses as a function of attention (Chelazzi,

Miller, Duncan, & Desimone, 1993; Connor, Gallant,

Preddie, & Van Essen, 1996; McAdams & Maunsell,

2000; Moran & Desimone, 1985; Treue & Martinez,
1999). In particular location based and object based

attention emerge as very similar processes, whereby

different sections or slices of the replica module are

primed.

Some predictions emerge as well. For example we

expect that neurons in a single vertical column in area

V4 and perhaps V2 and V1, corresponding to the same

location and feature, would have differential responses
to the preferred stimulus in their common receptive

field. The factor determining this differentiation will ei-

ther be the attended location, or the model of the target

object that is to be detected. Furthermore, when object

based attention is in effect, we expect increased activity

among neurons throughout a retinotopic layer such as

V4, even in the absence of the stimulus. This activity

corresponds to the priming of the object model at all
possible shifts. This is discussed in further detail in

Section 6.5.

1.1. Relation to other work

In Olshausen et al. (1993) a shifting mechanism is

proposed as a means for location based attention.

Shifting is achieved through direct control of synaptic

connections between the input layer and the central

module. Such control mechanisms do not appear very

plausible biologically. Our model makes use of multiple

copies of the input features yielding a simple shifting

mechanism similar to that proposed in Humphreys and
Heinke (1998). Similar ideas can also be found in Salinas

and Abbott (1997) who use a multiplicative gain that is a

function of the distance between the preferred atten-

tional locus of a neuron and the attended location. The

limitation of their model is that learning of the object

needs to be performed everywhere in the scene. We

overcome this problem using a summation layer that

integrates all the activities in the replica module. The
data in this summation layer is subsequently classified.

Our approach differs from models of the type presented

in Deco (2000), where a retinotopic array of recognition

neurons is required to deal with translation invariance.

This would imply again that learning has to occur at

each location, and that classification modules are pre-

sent at each location.

As in Riesenhuber and Poggio (1999) we make use of
maximization or �spreading� (similar to that of the
complex cell) as a mechanism to achieve some degree of

robustness to geometric variability. This idea can also be

found in Fukushima and Miyake (1982). However in

Riesenhuber and Poggio (1999) the underlying premise

is that each unit in the central module corresponds to a

particular feature and is activated if any unit in a reti-

notopic array of detectors for this feature is activated.
Thus any information on spatial organization is lost.

One of the motivations for such spatially coarse models

is to overcome the �spatial binding� problem of different
features at different locations. However in real complex

scenes with multiple objects sharing many of the same

features this form of processing is possible only if suf-

ficiently complex features are employed. One would es-

sentially need features at the level of complexity of the
objects themselves, detected in retinotopic arrays, lead-

ing to a combinatorial explosion of the number of units

required. Indeed the need to preserve spatial informa-
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tion in the data being processed is the motivation behind

the shifter mechanisms used in Olshausen et al. (1993),

Salinas and Abbott (1997) and Humphreys and Heinke

(1998). In the model below the spatial binding problem

is resolved using the replica module.

In Olshausen et al. (1993) the subimage to be shifted

into the central module is selected using a bottom-up

mechanism identifying salient regions in the image. This
idea of bottom-up selection using saliency maps has

been further developed in Itti, Koch, and Niebur (1998).

The form of selection studied below is primarily guided

by top-down flow of information in the form of simple

object representations. However clearly both mecha-

nisms are useful and can be integrated into the archi-

tecture.

1.2. Paper organization

In Section 2 we describe the entire architecture of the

model allowing for translation invariant detection and

recognition. In Section 3 we discuss which features could

be used as the basic retinotopic input into the system, in

particular the payoff between feature complexity which

yields more power, combinatorics, and spatial accuracy.

In Section 4 we outline the learning mechanisms used for
creating the classifiers and object representations, in

Section 5 we provide an illustration on synthetic scenes

produced from randomly deformed and randomly

placed characters as well as on real images where the

task is to detect faces. In Section 6 we try to explain a

variety of experimental results reported in the literature

in the framework of the proposed architecture, and

outline some predictions.
2. Modeling translation invariance

We introduce the notion a reference grid G of limited
size, say 20� 20, and a family of binary local image
features f ¼ 1; . . . ;N . The central module, where object
representations and classifiers are learned and stored,

receives inputs through a system W of units Wf ;z corre-

sponding to all feature–location pairs ðz; f Þ, z 2 G,
f ¼ 1; . . . ;N . Object representations and classifiers are
defined in terms of these feature–location pairs, as de-

scribed next. The entire image grid corresponding to the

full field of view is denoted L, with width and height of
several hundred pixels.

2.1. Translation invariant object recognition

It is a well accepted fact that the visual system can

direct covert attention to extrafoveal areas, enabling
what amounts to translation invariant object recogni-

tion. Given that learning occurs only in the central

module, there must be a mechanism for shifting the data
in the attended area into this module for processing.

This is the rationale behind the shifter circuits proposed

in Olshausen et al. (1993). The authors suggest an im-

plementation using short term modifications of synaptic

connections between the retinotopic layer of features

and a reference grid of features. This requires a complex

mechanism for providing direct input to synapses as

opposed to neurons. A simple alternative is to produce a
physical copy of each shifted window. To simplify the

description of the computation this is first described as a

rather artificial stack of copies. Then in Section 2.3 we

show how this stack can be arranged in a more plausible

manner.

A retinotopic layer F detects instances of each feature
f everywhere in the field of view. For each f let Ff ;x
denote the unit responding to feature f at location
x 2 L. For each x define a copy layer (the size of the
reference grid) Ux of units Ux

f ;z, f ¼ 1; . . . ;N , z 2 G. The
number of copies is given by the number of locations in

L. A unit Ux
f ;z receives input from Ff ;xþz, so that Ux is a

copy of the data in the shifted window xþ G. For a
given pair ðf ; zÞ, all units Ux

f ;z, x 2 L, feed into Wf ;z (the

input units of the central module) which is activated if

any of the units Ux
f ;z, x 2 L, is on.

A retinotopic layer S codes for selected locations. If
Sx0 is activated, attention is focused on location x0 by
enhancing the overall input to the units in Ux0 and in-

hibiting the input to all units in other Ux layers. Each

unit Wf ;z then �sees� only the activity in Ux0
f ;z. This is

summarized as

Wf ;z ¼
X

x2L
Sx � Ux

f ;z: ð1Þ

The input to the central module is thus restricted to

the data copied from the window x0 þ G. It is classified
using connections between W to a system of units A in
which random subpopulations code for each class (see

Section 4). Training of the classifier thus requires only

the modification of the synaptic connections between W
and A.
The idea is illustrated in Fig. 1. Note that overlapping

regions get copied so that the configuration of features

within each region is preserved. In the figure we use only

one local feature––indicated by the darker points––as

opposed to the real model where many types of local

features are computed at each location.

2.2. Translation invariant object detection

Experiments on detection of a target among multiple

distractors as described in Horowitz and Wolfe (1998)

and Wolfe (2001) demonstrate that in certain situations

the response time for detection of complex objects
among complex targets is virtually flat as a function of

the number of distractors. The rich family of objects and

distractors employed in these experiments suggests that



Fig. 1. Location based attention. A location x selected in the S layer
primes the copy layer Ux and suppresses the input to all other U layers.
All activity in the U layers is summed into W (see Eq. (1)), and sub-
sequently classified through the W ! A connections.
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detection is not based solely on one local feature hard

wired retinotopically in one of the layers of the visual

system. It would be hard to reduce the efficient search

for upside-down animals among upright ones (Wolfe,

2001), or for complex shapes among similar distractors,
to the detection of a single pre-existing feature that flags

the target against the distractor. An alternative expla-

nation is that mechanisms exist whereby models are

conveyed top-down and prime the system to respond to

particular configurations, defined in terms of the hard

wired features in F , independently at each location.
Priming simply involves enhancing the input to partic-

ular neurons in a manner similar to the location based
priming described above. Conceptually we need a dual

shifting mechanism: shifting of a model to each location,

together with a mechanism for comparing the model to

the data.

The mechanism for comparing an object model to

data must be very simple in nature, since it occurs at all

locations simultaneously. Moreover it occurs very fast

(response times can be on the order of several hundred
milliseconds), and is not too accurate. After all mistakes

are often made in detection tasks. As we will see in

Sections 5.1 and 6.1, the false positive rate of the de-

tector, which depends on how well the target model fits

the distractors, can be used to explain the response time

in detection tasks. In natural scenes in addition to spe-

cific distractors there is generic background clutter, and

the false positive rate there is largely determined by the
statistics of the individual features used to construct the

models.
We assume the object models are represented in terms

of a collection of feature location pairs in W . Given the
object is present at reference scale in the reference grid, a

collection ðfj; zjÞ, j ¼ 1; . . . ; n, of feature–location pairs
is found in training to be of high probability. Assume

first that all object models have the same number of

features. Define x as a candidate location of the object if

Xn

j¼1
Ffj;xþzj P q ð2Þ

for some fixed threshold q. This is a simple thresholded
template match. The template consists of the list ðfj; zjÞ,
j ¼ 1; . . . ; n, and is compared with the input data
around location x.
Connections from W to the system of U layers are

defined as follows. Each unit ðf ; zÞ in W feeds into every
unit Ux

f ;z for all x 2 L. When the object model ðfj; zjÞ,
j ¼ 1; . . . ; n, is evoked in W all units Ux

fj;zj
, x 2 L, receive

input, i.e. are primed, from their counterparts in W , and
all other units are suppressed. Only those units in Ux

that are both primed and receive input from the F layer
are activated. Finally each unit x in the retinotopic layer
S sums the input from all units in Ux, and is activated

only if the sum is above q. Thus the input to a unit Sx in
S is defined as

IðSxÞ ¼
X

f ;z

Ux
f ;z � Wf ;z ¼

Xn

j¼1
Ffj;xþzj ; ð3Þ

and Sx is on if IðSxÞ > q. Those units active in S will
correspond to candidate locations of the object defined

by Eq. (2). If more than one unit is activated a compe-

tition using inhibitory connections can yield one selected

location.

Models for different objects may have different
numbers of features so that q needs to change as a
function of n. This would require some mechanism for
modulating the baseline activity in S depending on the
number of features activated in W . Note that the S layer
could also serve to flag those locations selected for at-

tention using a bottom-up saliency map as proposed in

Itti et al. (1998), for example in the absence of a top-

down guided detection task.
The architecture is shown in Fig. 2, where for illus-

tration purposes, the overlap between data and model is

exact. In Section 3.1 we describe how to obtain a much

greater degree of flexibility using a spreading operation,

so that the detection process is robust to a wide range of

deformations of the object.

2.3. The full architecture

The full architecture including the direction of the
synaptic connections is summarized in Fig. 3. The ab-

stract representations of the different classes are located

in A, in terms of a distributed population code. For



Fig. 2. Object based attention. When an object class (face) is evoked in

A the feature–location pairs of the object model are turned on in W and
prime the corresponding feature–location pairs in all the U layers (dim
copies of the face). Only in a Ux layer where this top-down input is

reinforced by a similar bottom-up input from F is there output to the
corresponding unit x in S (see Eq. (3)).

Fig. 3. A summary of the architecture. The arrows indicate the di-

rections of the synaptic connections. Dashed arrows are represent

connections involved in priming.

Fig. 4. The replica module: producing the U layers with copies of F .
Multiple retinotopic copies of F layers are shown indexed by z 2 G. A
diagonal line passing through x at F 0 corresponds to the layer Ux, and

all units F z
f ;xþz, z 2 G, f ¼ 1; . . . ;N , along this line have connections

feeding into and out of the unit x 2 S. For fixed ðf ; zÞ all units F z
f ;x,

x 2 L, have connections to and from the corresponding unit Wf ;z 2 W .
Assuming 40 types of features, a 20� 20 reference grid, and a
100� 100 image grid, the total number of units in the replica module is
400� 40� 10,000 ¼ 1.6� 108.
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recognition, the selected location is determined in S ei-
ther through top-down selection or through bottom-up

selection using a saliency map. This primes a particular

Ux layer. Only the data from Ux arrives at W and is then
classified using connections from W to A, causing the
appropriate subpopulation to be activated. For detec-

tion the desired class is excited in A evoking the feature
representation in W , subsequently priming copies of the
features in each of the U layers for comparison to the
incoming data. Those U layers with sufficient activity
activate the corresponding location in S.
For expository purposes we have distinguished be-

tween the F layer where the features are extracted and
the U layers where they are copied. This copying

mechanism can also be implemented using multiple

copies of retinotopic F layers, one for each z 2 G, which
we denote the replica module. This is illustrated in Fig. 4.

For each location z 2 G define a retinotopic layer F z

detecting all the features everywhere in L. A unit Wf ;z

feeds into and receives input from all units in F z
f ;x, x 2 L.

On the other hand each unit x 2 S receives input and
feeds into all units F z

f ;xþz, z 2 G, f ¼ 1; . . . ;N (diagonal
lines). It is not hard to see that this produces the exact

same connections as the architecture of the U layers.
However now units responding to the same feature at

the same location are placed in a vertical column. The
receptive fields are the same as well as their preferred

feature, as observed in numerous electrophysiological

recordings. We return to this point in Section 6.2.1 in

the context of the experiments reported in Connor et al.

(1996). Note that the number of required copies of the

basic retinotopic input layer F is only the size of the
reference grid (400 in our model).
2.3.1. Interaction between detection and recognition

This simple architecture implements translation in-

variant recognition and detection as processes involving

priming of certain sections of the retinotopic F layers
and summation on other sections. The two processes

can easily interact. A particular detection task initiated
by activating a subpopulation in the A layer leads to the
selection of a particular location in x 2 S where the data
has a sufficiently good match to the primed object
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model. The activation in S can in turn initiate the se-
lection of the input data corresponding to that location.

The W layer then sees only the data around x which is
classified through the connections with the A layer. This
can be used not only to verify the correctness of the

selected location but to provide the class of the object at

that location.

In the following section we deal with invariance to
scale and other deformations and the combinatorics

involved in the proposed system of replicates.
Fig. 5. Complex features: flexible pairwise edge conjunctions. The

second edge can be anywhere in the designated region relative to the

first.
3. Invariance, accuracy and combinatorics

Object detection and recognition are both highly ro-

bust to a range of linear and non-linear deformations of

the objects. It is therefore important to incorporate such
invariance in the architecture. On the other hand in real

scenes there are plenty of distractors in the form of other

objects or parts of objects that the biological system is

able to ignore. Statistically speaking invariance is in-

tended to reduce false negatives (increase sensitivity),

but this must not come at the expense of too many false

positives (loss in specificity).

Here we propose using models and classifiers based
on complex local features, with a degree of slack in their

prescribed position on the reference grid. The greater the

slack the greater the sensitivity, the higher the com-

plexity the greater the specificity. However the cost that

accrues with increased complexity is in the number of

feature types required to model all objects, leading to a

tradeoff between accuracy and combinatorics.

3.1. ORing––a mechanism for invariance

The feature–location pairs used in the object models

are supposed to have a high probability given that the
object is present in the reference grid at the reference

scale. There are significant variations within an object

class even at a fixed scale, moreover instances of the

object will never be present at precisely the same scale,

even during training. High probability local features

over the entire object class will be found only if the

features themselves are robust to local variations in the

object.
Assume that the initial input into the system are the

elementary oriented edges known to characterize the

responses of simple neurons in V1. A �simple� edge de-
tected at a particular location on an object will not be

detected at the same location if the object is slightly

scaled, or deformed in that area. The solution is to

perform an �ORing� operation at each location. Specifi-
cally we define a new layer of neurons, analogous to
�complex� neurons in V1, that respond if there is an edge
of a particular orientation anywhere in the neighborhood

of a location i.e. anywhere in the neuron�s receptive
field. The ORing can also be viewed as a �spreading�
operation in which each detected edge is spread to a

neighborhood of the original location. Such units were

used in Fukushima and Wake (1991) and Amit and

Geman (1999). The analogue for continuous valued re-

sponses is the �MAX� operation proposed in Riesenhu-
ber and Poggio (1999). It is important to note that even

when spread edges are used the object models and the
classifiers are based on the spatial layout of these new

features in the reference grid.

3.2. Complexity––a mechanism for specificity

In principle the �spread� edges could constitute the
local features feeding into the recognition and detection

system. They allow for a degree of local invariance, and

would yield high probability local features on the object.

However from our experiments with real gray level im-

ages, edges with sufficient contrast invariance are quite

common, and their density only increases after spread-

ing. They will have very little discriminating power

against the background, and the resulting detector ex-
pressed through Eq. (2) would yield numerous false

positives. The only way to avoid false positives is to

ensure that the background density of the features is

low.

The solution we propose, and which appears to be

chosen by the biological system as well, is to define more

complex features. The term complex here refers to the

structure of the feature. The features are defined as
functions of the original edges, specifically local con-

junctions. The simplest form is a pairwise conjunction of

two edges of particular orientation, where the second is

a �spread� edge constrained to lie at some angle relative
to the first. Using a �spread� edge in the conjunction
introduces some robustness in the definition of the fea-

ture. In Fig. 5 we illustrate 15 of the 40 such pairs that

can be thought of as coarse curvature detectors. The
density of such features in real images is much lower

than that of edges. On the other hand it is still possible

to find high probability features on a given object. Thus

each feature has more discriminating power between
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object and background (see Amit, 2002; Amit & Geman,

1999). Such local features are also consistent with ex-

perimental findings on responses of neurons in V2 (see

Hedg�ee & Van Essen, 2000). These 40 features are em-
ployed in the experiments below.
Fig. 6. From retinal image, to edges, to edge conjunctions. These are

spread and subsampled to produce the data in F .
3.3. Accuracy vs. combinatorics tradeoff

More complex features can be defined using more

edges in the conjunctions. Typically the density on

background falls much faster than the probability of

the best features on object. The result is that more
complex features provide better inputs in terms of the

detection algorithm. Invariance obtained through

spreading is achieved with a relatively low price in false

positives. On the other hand the number of features

needed to represent all objects increases rapidly with

their complexity. If the features are hard wired in

multiple copies of retinotopic arrays this poses a com-

binatoric problem.
One remedy is to use lower spatial resolution. Indeed

after a feature is spread, there is significant loss in lo-

cation accuracy, and there is little loss of information if

the original grid on which the features are detected is

subsampled. The more complex the features, the more

they can be spread and still yield high ratios of object to

background probabilities. The more the features are

spread, the greater the reduction in spatial resolution. In
V2 features are more complex than in V1, but the spatial

resolution is reduced, and V4 is an additional step in

that direction.

In the specific model described here there are 40

features, and we assume the field of view at the lower

resolution used for the complex features is 100� 100.
Thus L contains 10,000 points and the reference grid
contains 400 points. The replica module will then con-
tain 400� 40� 10,000 ¼ 1.6� 108 units. Downsam-
pling by a factor of 2 for even more complex features

would save a factor of 4. On the other hand increasing

the feature complexity by adding an additional edge to

each pairwise conjunction, could multiply the number of

features by several orders of magnitude. It would be

impossible to counter this increase in the number of

features with an equivalent decrease in spatial resolu-
tion.

In the architecture presented here the F layers rep-
resent the locations of the edge-conjunctions after

�spreading� and subsampling. The processing prior to the
F layers involves detection of the edges and of the edge
conjunctions at the original resolution. This is illustrated

in Fig. 6.

The tradeoff between feature complexity, invariance,
accuracy and combinatorics is of great importance and

little is understood apart from some empirical findings,

see for example Amit (2002).
3.4. Why binary features?

Typically, orientation selective units in V1 are mod-

eled as Gabor filters with continuous output (see Deco,

2000; Riesenhuber & Poggio, 1999; Wilkinson, Wilson,

& Habak, 1998; Wiskott, Fellous, Kruger, & von der

Marlsburg, 1997). However, the visual system is highly

robust to contrast variations even in rather small
neighborhoods of the same scene. It is plausible that the

initial fast processing needs only coarse output of the

form: is the response higher or lower than some rather

conservative threshold? Hence our use of binary ori-

ented edges. Furthermore the definition of more com-

plex features (conjunctions) in terms of the binary edges

is very simple, as well as the ORing operation used to

obtain invariance. A final advantage of binary features
is the simplicity of parameter estimation. For continu-

ous features it is necessary to model the continuous

distribution and estimate the relevant parameters. As we

will see below estimation of simple probabilities is

achieved using the simplest forms of Hebbian learning.

Despite the significant reduction in information

caused by binarization, we find that the resulting rec-

ognition and detection algorithms perform well on real
data. It is possible that the continuous valued data is

only needed after foveation, when more intense pro-

cessing is performed in the foveal region.
4. Training

All units in this architecture are binary computing the

weighted sum of their inputs and comparing it to a fixed

threshold (the same for all neurons). Each synapse has

an internal state variable Y that is allowed to vary be-
tween two reflecting barriers. The actual efficacy is
J ¼ HðY Þ where H is a ramp like function varying be-
tween 0 and some maximal value Jmax. Learning affects
the internal state of the synapse, in a Hebbian fashion
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DYuv ¼ auv	 buð1	 vÞ; ð4Þ

where Yuv is the state of the synapse that connects units u
(presynaptic) and v (postsynaptic). The units u and v can
only assume the values 0 and 1 so that synaptic modi-

fication occurs only when the presynaptic unit is active.

The result is an increase by amount a (potentiation) if
the postsynaptic unit is also active and a decrease by

amount b (depression) if not.
The system of units A, introduced above, is composed

of a large number of neurons with randomly selected

subpopulations coding for each object class. The sub-

populations denoted Ac are selected before learning. It is

assumed that each unit in W receives input from a

random subset of the units in A. The inputs are ran-
domly distributed among the subpopulations Ac. Simi-

larly each unit in A receives inputs from a randomly
selected subset of W . During training, when an image
from class c is presented to the network, the detected
features activate the corresponding units in W . At the
same time the entire subpopulation Ac is activated in A.
Subsequently, both synaptic connections from A to W
and those from W to A are modified.

4.1. Learning object models

For object models the A ! W synapses are modified.
All synapses for which a presynaptic unit belongs to Ac

will be modified. A positive change (potentiation) of

magnitude a occurs if the postsynaptic unit in W is acti-
vated by the example. Otherwise a negative change
(depression) of magnitude b occurs. Let pðf ;zÞ;c be the
probability that the feature f is present in an example
drawn from class c at location z on the reference grid.
Then all synapses that connect a unit in Ac to the unit Wf ;z

will undergo, on average, Npðf ;zÞ;c potentiations and
Nð1	 pðf ;zÞ;cÞ depressions after N examples of class c are
shown. On average the net change in the internal synaptic

state will thus be hDY i ¼ Nðapðf ;zÞ;c 	 bð1	 pðf ;zÞ;cÞÞ. If N
is large the synapse will be active only if

apðf ;zÞ;c 	 bð1	 pðf ;zÞ;cÞ > 0! pf ;c >
b

a þ b
:

This leads to the selection of those feature–location

pairs with on object probability above a given level.

4.2. Learning to recognize

For classification we modify the W ! A synapses. We
emphasize that each neuron in A receives input from a
random subset of the neurons in W . The problem now is
more complicated, since the units in A are postsynaptic
and are required to identify the class of the object reg-
istered in W , by activating the correct subpopulation Ac.

This problem has been studied in detail in Amit and

Mascaro (2001), where it was shown that even a simple
layer of perceptrons, when aggregated in populations,

can achieve good results on rather difficult problems.

The simple Hebbian learning rule of Eq. (4) is in-

sufficient if objects have variable feature statistics, as do

real objects. The modification suggested in Amit and

Mascaro (2001), in its simplest version, has the coeffi-

cient a turn to 0 if the total current input to the unit,
which is a function of the current training sample and
the state of all afferent synapses, is above some thresh-

old, greater than that unit�s firing threshold. This may be
viewed as modulating potentiation by the firing rate of

the post-synaptic neuron. This solution has proved to be

stable and enables the use of fixed thresholds for all

neurons in A. There is no need to adjust these thresholds
or to perform a global normalization of synaptic

weights. We observe that the potentiated synapses typ-
ically come from units Wf ;z with the highest ratio

pðf ;zÞ;c
qðf ;zÞ;c

; ð5Þ

where qðz;f Þ;c is the probability of ðf ; zÞ on the population
of training samples not from class c. These are the most
informative features for discriminating between class c
and the rest of the world.

At the end of training, each of the units in the set Ac is

a perceptron classifying class c against the rest of the
world, in terms of input from a random subset of fea-

ture–location pairs. Classification is then obtained by a

�vote� among the different Ac populations. The vote is

implemented through attractor dynamics, resulting from
recurrent connections within A. This will tend to en-
hance the activity in the subset Ac with highest input and

suppress the activity in the other subsets. Since each

neuron in A receives input from a different subset of W ,
the final classifier is an aggregation of multiple ran-

domized perceptrons, and can produce complex decision

boundaries, despite the simple linear form of each of the

individual perceptrons.
5. Computational experiments

5.1. Synthetic data

We present a simple example aimed at showing the
effectiveness of the proposed architecture on synthetic

scenes with multiple characters randomly placed and

perturbed. Some results on classifying handwritten

characters with the recognition architecture are de-

scribed in Amit and Mascaro (2001). We use a set of 26

characters, shown in the left panel of Fig. 7.

Natural variability has been implemented by adding

some degree of deformation as shown in the right panel
of Fig. 7. We sample uniformly from a range of rota-

tions of �15�, and in log-scale independently in the two
coordinates, between logð0:8Þ and logð1:2Þ.



Fig. 7. Left: The 26 prototypes used in the experiment. Right: The

training set used for the E. An analogous set was used for each of the

26 symbols.
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The reference grid is 20� 20. Using the 40 edge
conjunctions defined in Section 3.1, the W layer contains
40� 20� 20¼ 16,000 units. The feature extraction pro-
cess is illustrated in Fig. 6.

Layer A is divided in subpopulations, one for each of
the 26 classes. Twenty units are allocated for each class,
and for simplicity they are taken to be non-overlapping.

Thirty two examples for every one of the 26 classes are

presented to the system. We train both the connections

leading from W to A for classification, and the connec-
tions from A to W for object representations. The fea-
ture–location pairs evoked in W by class E are shown in
Fig. 8. The features are shown in the location they are

expected on the reference grid. This is the representation
of class E used for detection.
Fig. 8. The collection of edge conjunctions identified as having high

probability on the E at their expected location on the reference grid.

These feature–location pairs turn on in W when the class E is evoked
in A.

Fig. 9. Examples of detections and classifications. All detections of the E mo

The final classification of each detection is shown as the character above the

added.
After learning, the system is tested in a visual detec-

tion and recognition task on a scene containing the E
and 20 randomly placed distractors of some other class.

In these scenes, in addition to the random affine per-

turbations used in training, random Fourier coefficients

at very low frequencies are used to define smooth non-

linear deformations, to further deform the objects. We

also add random background clutter composed of small
parts of characters.

The system locates candidate locations, using the

top-down priming mechanism described in Section 2.2.

On a serial computer this amounts to detecting all 40

types of edge conjunctions features in the image,

spreading, recording their location on a coarse grid,

and finally matching the model at every location on the

coarse grid. The locations above some threshold are
flagged. One can then process the location with highest

match to the template or simply select a detected

candidate location at random. Only the data in the

window around the candidate location is �seen� by W
for further classification. The final part consists in

updating the state of the A layer based on the input
from W . A vote among the units in the subsets Ac

determines the class label. If this is different from the
target class E the location is discarded. For illustration
purposes we also show the classified false positives in

the image.

Three types of distractors are shown in Fig. 9. The

first, N, is very different in shape from E, hardly any
false positives are detected by the top-down detection

mechanism, and it remains to verify that the unique

candidate location is indeed an E through the classifi-
cation mechanism. The second distractor is B where
about half the distractors are detected, and subsequently

need to be classified in order to be discarded. Finally the

third distractor is the S where almost all distractors are
detected as candidate locations and all must be pro-

cessed through the classifier. Note that the response time

curve in the first case would be flat, the response time

curve in the third case would be steep––the single item
classification time multiplied by the number of distractors.
del, for three types of distractors, are marked with black square dots.

dot. In addition to random distractors some random clutter has been
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The second case would be intermediate. We discuss this

further in Section 6.1. Robustness to clutter is quite

evident from these scenes. Both the detection and the

classification are at times performed with objects very

close to or occluding the target, in addition small frag-

ments of characters have been added as background

clutter.
5.2. Faces

Face detection has been a relative success in compu-

tational vision. Recent successful and very efficient al-
gorithms are found in Fleuret and Geman (2001) and

Viola and Jones (2002). In both cases detection involves

a sequence of simple perceptron type classifiers for ob-

ject vs. background, defined in terms of a family of local

binary features. Certain aspects of these algorithms

could be implemented using the architecture described

here. In the present context face detection is of interest

because we are dealing with real objects in real scenes.
The background is typically complex, including other

objects, object parts, textures, etc. The proposed model

does produce false positives but their numbers are not

very large, and a subsequent classification of face vs.

non-face reduces them even further.

The training procedure for the face detector is iden-

tical to that of the character detectors above, using the

same family of 40 features, and a 20� 20 reference grid.
This is very similar to the detector described in Amit

(2000). Here however the detected region is passed on to

a classifier, which decides face or non-face. In other

words the face model is evoked in A, the appropriate
units in the replica module are primed and the detected

locations are computed in S. These locations are then
visited sequentially, each one serving as a selected lo-

cation. Through priming in the replica layer (this time
for location) the feature data around the selected loca-

tion is transfered to W for classification through the

W ! A connections.
The A layer contains 100 neurons, 50 for face and 50

for non-face. The detector is trained only on 300 positive

examples of faces from the Olivetti data base, identify-

ing high probability features on this population. The

classifier is trained on examples of faces and examples of
non-faces, 300 of each, and serves as a second step to

prune out false positives from the detection. In Fig. 10

we show some results. The squares surround a detection

that passes the classification test. The black dots show

detected locations that were rejected by the classifier.

A more sophisticated implementation would train

faces against false positives of the face detector. Indeed

it would be of interest to see how such a classifier could
emerge from the dynamics of the proposed architec-

ture. This however is beyond the scope of the current

work.
6. Analysis of experimental findings

6.1. Object based attention

The concept of object based attention is becoming

widely used as a model for many visual phenomena, see

for example Desimone and Duncan (1995), Kanwisher

and Wojciulik (2000) and references therein. The ex-
periment reported in O�Craven, Downing, and Kanw-
isher (1999) involves attention to overlapping objects

more or less centrally located. It would be hard to

imagine that a single hardwired and retinotopically or-

ganized feature can account for such phenomena. On

the other hand the architecture proposed here does ac-

count for such phenomena, since the priming produced

by the evoked model enhances the response to that class
everywhere in the scene.

We note that feature based attention as observed in

Treue and Martinez (1999) and McAdams and Maunsell

(2000) can be viewed as a very simple form of object

based detection. The �model� contains only one feature.

6.1.1. Response time in target detection tasks

Object based attention can also be used to interpret

various experimental findings regarding target detection

among distractors (see Eriksen & St. James, 1986; Ho-

rowitz & Wolfe, 1998; Wolfe, 2000, 2001), where a range

of response time slopes is observed. This is explained by

the model above in terms of false positive rates. A similar
explanation is suggested in Eriksen and St. James

(1986). Depending on the distractor population there

will be a certain probability P of false positives per
distractor; The probability that an element from the

distractor population will contain more than q of the
feature location pairs of the target class model. This

probability is hard to predict but is easy to measure

empirically given a model and a sample of the distractor
class (see for example experiments in Fig. 9). Note that

the object model is quite coarse and may hit other object

classes quite frequently. For example the Emodel, at the
level of detail used in the reported experiment hits the

population of S�s with very high probability. However
on the population ofN distractors P is much lower.
The initial processing using the top-down priming

will produce a number of locations above threshold. On
average this will be PN , if N is the number of distractors
and P the false positive probability. If these are serially
processed using covert attention, and the visual system

is able to avoid repetitions (i.e. revisiting a previously

processed candidate location), this can be viewed as

sampling without replacement from PN þ 1 objects only
one of which is the desired one. A straightforward

computation shows that the expected search time would
then be ðP � N � SÞ=2, where S is the time required to shift
covert attention to a location and process the data there

through the W layer and the recognition layer A. If there



Fig. 10. Example of face detection and classification against non-face. The black dots denote all detections found in the image. The squares denote

those detections that were classified as face.
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is no memory for previously visited locations, as pro-

posed in Horowitz and Wolfe (1998), then this corre-

sponds to sampling with replacement. In this case there is

no difference between a static image where candidate

locations are repeatedly reproduced and one is chosen at

random from among the candidates, and images that

change every 20 ms. The expected search time in both
cases would be P � N � S. In both search paradigms the
slope depends on P and one can therefore expect a
continuous range of slopes.
6.1.2. Efficient detection of unfamiliar shapes

The experiments reported in Wolfe (2001) have a very

small response time slope for detecting a complex and

relatively unfamiliar shape from among familiar di-

stractors. For example detecting an upside-down ele-

phant among upright ones, or an inverted 5 among

regular 5�s. In the current architecture this could be
accommodated if the model evoked in W is that of the
distractor, which is familiar––it has been learned. In-

stead of priming for the model in the replica module the
opposite effect of suppression occurs. This will reduce

activity in the U layers where data corresponding to the
familiar distractor is present, leaving higher activity only

in those layers where the data is different from the dis-

tractor. There will be many such layers, for example any

layer corresponding to a blank window or only partially

intersecting one of the objects. We can assume those are
still rejected due to the low activity. In that respect there

is probably very little dependence on the nature of the

target itself. When the distractors are unfamiliar, this

strategy will not work since their model is not yet

learned, and the system would revert to using the target

model.
6.2. Attentional modulation of neuronal responses

6.2.1. Lower levels: V4 and the F layers
In all retinotopic regions one finds neurons selective

to the same feature with more or less the same receptive

field stacked in columns. In terms of the copies of F
layers used as input to the system (see Fig. 4), a column
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corresponding to location y and feature f is simply
fF z

f ;y ; z 2 Gg. One possibility is that these copies are
used to implement location based and object based at-

tention. The only difference between units in the same

column is in their connections to and from higher areas

in cortex, i.e. W and S. Such differences would not be
observed by simple recordings of preferred stimuli.

Some evidence for such phenomena has been found
in V4 (Connor et al., 1996). The authors report finding a

large number of orientation selective neurons in V4 that

change their response level to a stimulus in their classical

receptive field, as a function of the location of attention.

Attention was directed using other stimuli outside the

receptive field of the neuron. In our model, if a stimulus

of type f is shown at y and if the attended location x is
selected in S, then the units fF z

f ;xþz; z 2 Gg (the diagonal
slice in Fig. 4) are primed and all others are suppressed.

In this case the only unit in the column fF z
f ;y ; z 2 Gg,

expected to respond (the intersection of the two sets)

would be F z0
f ;y , where z

0 ¼ y 	 x. In other words, when a
location for attention is selected, the response of units in

a column of F would depend on the relative displace-
ment z0 between the selected location x and the receptive
field location y, as observed in Connor et al. (1996).
Equating F with V4 is a possibility. We note that in

our system the image array L is 100� 100, with 40 fea-
tures and 400 locations on the reference grid, yielding on

the order of 108 units. This is definitely compatible with

the number of units in area V4. Probably the dimensions

of the array in V4 are smaller whereas there is a larger

number of more complex features. It may however be

possible that the same organization is present in V2 and
even V1. In other words all three retinotopic areas

compose the replica layer. The lower level areas pro-

viding higher resolution with simpler features and the

higher level areas lower resolution with more complex

features. After all it may be more economical to create

models combining complex features at low spatial ac-

curacy with simple features at higher accuracy.

Evidence for the priming required for location based
attention is reported even in the absence of the expected

stimulus in Luck, Chelazzi, Hillyard, and Desimone

(1993) and Kastner, Pinsk, De Weerd, Desimone, and

Ungerleider (1999). For single feature based attention,

priming has been reported in MT (Treue & Martinez,

1999) and in V4 (McAdams & Maunsell, 2000).

6.2.2. Posterior IT and the W layer

The W layer could correspond to the posterior part of
IT, also denoted TEO in Tanaka, Saito, Fukada, and

Moriya (1991). This region exhibits neurons with re-

sponses to relatively simple features but with very large

receptive fields. This is consistent with the properties of
the W neurons. A unit ðf ; zÞ in W is summing the input
from F z

ðf ;xÞ for all x (see Fig. 4), and would thus appear to
have a receptive field as big as the visual field. This
implies in fact that without a choice of attended loca-

tion, the responses of these neurons convey very little

information apart from the feature type. When a loca-

tion is selected most of the input to the neuron is sup-

pressed and only data in the selected location passes

through. The receptive field appears to shrink around

the selected location and the neurons seem to ignore

their preferred stimulus outside this location. This phe-
nomenon has been observed in IT cells in Sato (1988).

Indirect evidence for this can be found Chelazzi et al.

(1993). Neurons selective for two different targets are

found in IT. The monkey is presented with one target

and required to detect it in a display with both targets

present. After the presentation of the test display, ac-

tivity of both neurons increases, however some 100–150

later the activity of the neuron selective for the wrong
target decreases. In terms of our model the two neurons

are in W , each one corresponding to a feature location
pair found on one object and not on the other. Before a

location is selected these neurons see all the activity in

the replica module and hence are both activated upon

presentation of the display. Once the detection process

has located the correct target, that location is selected

and the neuron selective for the wrong target no longer
sees its preferred stimulus.

6.2.3. Is W also in V4?

Similar �shrinking� of the receptive field has been
observed in V4 cells in Moran and Desimone (1985).
Furthermore the response of these cells is not affected

when attention is directed outside their receptive fields.

By contrast, in Motter (1993), McAdams and Maunsell

(2000) and Connor et al. (1996) V4 cells are found that

do modulate their response when the location of atten-

tion is outside their receptive fields. These findings could

possibly be reconciled using a slight modification of the

architecture described above. Instead of having W in-
teract directly with the replica module, which admittedly

requires a large number of long range connections, one

could have intermediate W modules covering only parts
of the field of view.

Assume for simplicity just two modules W 1 and W 2

both with the full array of units assigned to W in the
architecture (see Fig. 11). The field of view L is divided
in two L1, L2. Each W 1

f ;z unit of W
1 receives input and

provides input to the F z
f ;x, x 2 L1, and each W 2

f ;z unit of

W 2 is similarly connected to the L2 section of F z
f . Fur-

thermore the L1 units of S feed into all units of W 1 and

the L2 units of S feed into the units of W 2. The original

unit Wf ;z in W provides input to both W 1
f ;z and W

2
f ;z. Top-

down model priming in W is directly mediated by W 1

and W 2. Wf ;z also receives input from these two units if

no location has been selected. A simple screening
mechanism is introduced so that if a location is selected

in L1ðL2Þ only input from W 1
f ;zðW 2

f ;zÞ passes through to
Wf ;z. The screening can easily be implemented with an



Fig. 11. Splitting W . Intermediate W 1, W 2 layers mediate location

selection determined in S. A location is selected in L1 (dark circle).
Units in W 1

f ;z, W
2
f ;z sum all activity in their corresponding part of F

z
f . A

screening mechanism passes on only input from W 1 into W (bold arrow
vs. dashed arrow). Top-down information for object based attention is

passed from W to W 1 and W 2, which subsequently prime their re-

spective parts of the replica module.
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extra layer and we omit the details. This architecture is

described in Fig. 11.

The receptive fields of W 1, W 2 are half the size of

those of W (half the field of view). When a location is
primed in L1 it has no effect on the input into a unit in
W 2, whereas the units in W 1 behave as if their receptive

field has shrunk. Since the selected location is in L1 the
final W layer only receives the input from W 1. This is the

data that ultimately gets processed through the con-

nections between W and A.
The intermediate level could contain a larger number

of W i�s with smaller and overlapping receptive fields. In
terms of this formalism it may well be that these inter-

mediate W i layers are actually a subset of V4, corre-

sponding to the type of neurons observed in Moran and
Desimone (1985). By contrast other neurons in V4, with

smaller receptive fields, may correspond to the simpler

type of units F z
f ;x that respond to the presence of a

particular feature in a particular subregion of the field of

view. These units would not show changes in receptive

field size, rather they would show higher or lower acti-

vation depending on the attentional task as discussed

above in Section 6.2.1.
6.2.4. Anterior IT and the A layer
The A layer contains neurons that would only re-

spond to a more global arrangement of features, because

they sum the input on a sample of neurons from W .
Since the sample of neurons feeding into a unit of layer

A is random, it is not easy to predict what are the par-
ticular shape characteristics it responds to. There is ex-

tensive literature on neurons in anterior IT responding

to particular object classes, with significant invariance to

translation, scale, occlusion, etc. Efforts have been made

to identify the simplest shape such neurons would re-

spond to (see Fujita, Tanaka, Ito, & Cheng, 1992; Ito,
Tamura, Fujita, & Tanaka, 1995; Kobatake & Tanaka,

1994; Tanaka, 1996). However if indeed these neurons

behave like the A layer neurons it would be difficult to
precisely characterize their responses. Furthermore re-

sponses of these units may be modified by training.

For example in Sigala and Logothetis (2002) neurons

in anterior IT are found that, after training, respond

selectively to features that are discriminating between

two categories of cartoon faces. They did not find neu-

rons that respond selectively to uninformative features.

A possible explanation is that these are indeed �abstract�
A type units. Each of the four features fi, i ¼ 1; . . . ; 4, in
that experiment had three states. We represent this as 12

binary variables fi;j, i ¼ 1; . . . ; 4, j ¼ 1; 2; 3, and assume
they are represented in the W layer. Let a 2 A be a unit
assigned to class 1, and assume a has connections to all
12 units. If say f1;1 and f1;2 are on with higher proba-
bility in class 1 than in class 2, then the synapse con-

necting them to a will have high efficacy, after training
(see Section 4.2). If f1;3 is of low probability its efficacy
will remain more or less at the original state before

training. When stimuli are presented to the network,

those for which f1;1 ¼ 1 or f1;2 ¼ 1 will produce a higher
response in a than those for which f1;3 ¼ 1.
On the other hand if for example f2;1, f2;2 and f2;3

(corresponding to the three states of feature 2) have

more or less the same probability on the two different
classes, the synapses connecting them to a will all have
more or less the same efficacy, perhaps somewhat larger

than the original efficacy before training. Thus the re-

sponse of a to stimuli with different values of feature f2
will be the same. In Section 6.5 we discuss some related

predictions.

6.3. Invariant recognition without attention?

There is an interesting experiment reported in the

literature pointing to the possibility that recognition

may occur without attention (Li, VanRullen, Koch, &

Perona, 2002). They describe rapid classification be-
tween animal and non-animal photographs, presented in

the periphery, while performing a task requiring high

attentional load at the fixation point. (A related exper-

iment with two simultaneous displays is described in

Rousselet, Fabre-Thorpe, and Thorpe (2002).) Subjects

perform well on this task after extensive training, but are

unable to perform other peripheral tasks such as dis-

tinguishing between a T and an L. The same phenom-
enon is observed for vehicle non-vehicle classification.

The conclusion drawn by the authors of this paper is

that the system is able to perform a very high level task

very quickly and without attention. This indeed seems to

put in question much of what we have discussed here, as

well as the basic assumption repeated in the literature on

attention: there are limited resources and the visual

system must use attention to direct these resources in an
effective manner.

If the distinction between the two classes in this ex-

periment is done at the �object level� then a very complex
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analysis is required, taking into account the multiple

possible shapes with which animals (vehicles) can ap-

pear. This would seem then a much higher level task than

discriminating between T and L. On the whole it is

difficult to interpret these experiments because there is

no systematic control over the population of photo-

graphs employed, and it is unclear what characterizes

the errors in the discrimination tasks.
One explanation may have to do with the ability of

the system to deal with two loci of attention. Some ex-

periments seem to indicate such a possibility (Krammer

& Hahn, 1995). This may also explain the results in

Rousselet et al. (2002). Alternatively, the system may be

able to quickly shift the covert attention between dif-

ferent locations. This may be facilitated by the fact

that the peripheral photograph is presented some 60 ms
after the discrimination task at the fixation point. (Recall

also the experiment in Horowitz and Wolfe (1998) where

displays were randomly shuffled every 110 ms with no

major effect on performance.) The data then enters the

ventral stream and gets processed sequentially. After all

the response time in these experiments is quite long––

1000 ms.

An alternative explanation is that the visual system is
actually performing a very low level type of discrimi-

nation, such as center/surround for example. Typically

the animals or vehicles will be centered in the photo-

graph and will be in the foreground relative to the rest of

the image. This interpretation is suggested in Li et al.

(2002), and is tested by running a second experiment

where half the non-animal images are photos of a ve-

hicle. If performance does not decrease this would be an
indication that the center/surround explanation should

be rejected. It is difficult to judge the outcome of this

second experiment. The data shown is not in terms of

the actual percentage of correct answers, but rather us-

ing a rescaling relative to the rates without attending to

a task at the fixation point. It is unclear if performance

has remained the same in the second experiment. If the

visual system still uses the center/surround strategy (in
an ideal situation) this would still yield about 75% cor-

rect: the 50% animal displays, the 25% generic back-

ground displays. This is far higher than the random

choice 50% outcome.

6.4. Detection and recognition in image sequences

A large body of literature describes RSVP experi-

ments involving various detection and recognition tasks

in a sequence of rapid presentations of isolated objects,

see for example Potter and Chun (1995) and Biederman

(1995). Here the complicating factor is not location, the

objects are presented alone in the image. In our model,
since the data in the replica layer U is always summed
up into W (see Figs. 1 and 4), even without location

selection, there is no place for confusion or ambiguity if
only one object is present in the scene. The data ends up

in W and is classified in A. The challenge is to explain
how the system deals with the short time intervals be-

tween presentations (on the order of 100 ms), how the

sequence of images is channeled through the processing

stages without interference, and how attention affects

performance. These issues would require the introduc-

tion of more realistic time dynamics into the model and
are beyond the scope of this paper.

6.5. Predictions

6.5.1. Attention

The model described here leads to several rather

straightforward predictions. First in the context of lo-
cation based attention, essentially as an extension of the

experiment in Connor et al. (1996), we expect units in a

single vertical column in area V4 and perhaps V2 and

V1, corresponding to the same location and feature, to

have different responses to the preferred stimulus in their

common receptive field. Specifically, each neuron in the

column is expected to have a preferred locus of atten-

tion. When attention is directed to that location the unit
exhibits the strongest response to the preferred feature

present in its receptive field. This locus of attention

would probably change gradually over certain intervals

of a vertical probe into the column.

Second, in the context of object based attention,

when the task is to find a target in a cluttered scene, the

model employs top-down priming of units in F from W
(see Figs. 2 and 4). This implies that in the presence of
the preferred stimulus different units in a column would

exhibit different levels of activity, depending on whether

the object model has the preferred feature at their pre-

ferred object centered coordinate, i.e. the z index used in
Section 2.3. Alternatively the response of a given unit to

its preferred stimulus should change as the target object

is changed.

Furthermore, when object based attention is in effect,
we expect increased activity among neurons throughout

retinotopic layers such as V1, V2 or V4, even in the

absence of the stimulus. This activity corresponds to the

priming of the object model at all possible shifts.

6.5.2. Recognition

The discussion in Section 6.2.4 hypothesized that the

neurons observed in anterior IT correspond to the ab-

stract classification layer A. This implies that responses
of these neurons are shaped by training and can be

changed. For example in the experiment reported in

Sigala and Logothetis (2002) one could imagine creating

a new partition into two classes, where the old dis-

criminating features are no longer informative and new
ones are. We then expect that after training, the same

neuron that was selectively responsive to different values

of one feature would become selectively responsive to a
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new more informative feature. Such an experiment

would be of particular interest, since it would point to

the possibility that the preference of neurons in anterior

IT to particular objects or features is not a permanent

attribute, but rather one that can change with training.
7. Conclusion

We have presented an architecture for translation

invariant object detection and recognition using a rep-

lica module containing multiple copies of retinotopic

feature arrays properly wired to two higher level layers:

a location selection layer S, and a model layer W .
Priming either from S or from W are the mechanisms
whereby the appropriate data is selected to be passed on.
Learning is restricted to the synapses between W and an
�abstract� layer A that codes for the different classes in
terms of random subpopulations. This model can be

used to explain some psychophysical experiments and is

consistent with attentional modulated responses in V4

and IT neurons reported in the literature. Some relations

have been discussed to anterior IT neurons, which ex-

hibit trained class selectivity.
We hypothesize that the columnar organization in

visual cortex, where multiple units responding to the

same feature at the same location are arranged in a

column, could be precisely the copying mechanism

needed for the proposed implementation of top-down

object based and location based attention. This leads to

simple predictions on varied responses within such a

column depending on the selected location or the target
object. Furthermore we hypothesize that neurons in

anterior IT may change their selectivity as a function of

training, and as such do not have a particular hard wired

preferred stimulus.

The network described here is synthetic, the neurons

are simplified binary on–off units and there is no real

dynamics. Priming and competition are not obtained

through more realistic dynamic mechanisms. Introduc-
ing dynamic interactions between the two learning

processes described, between the detection and recog-

nition processes, and between bottom-up and top-down

location selection could very well give rise to interesting

phenomena.
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