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Abstract. Geometric variations of objects, which do not modify the object class,

pose a major challenge for object recognition. These variations could be rigid as well as

non-rigid transformations. In this paper, we design a framework for training deformable

classifiers, where latent transformation variables are introduced, and a transformation of

the object image to a reference instantiation is computed in terms of the classifier output,

separately for each class. The classifier outputs for each class, after transformation, are

compared to yield the final decision. As a by-product of the classification this yields a

transformation of the input object to a reference pose, which can be used for downstream

tasks such as the computation of object support. We apply a two-step training mechanism

for our framework, which alternates between optimizing over the latent transformation

variables and the classifier parameters to minimize the loss function. We show that

multilayer perceptrons, also known as deep networks, are well suited for this approach

and achieve state of the art results on the rotated MNIST and the Google Earth dataset,

and produce competitive results on MNIST and CIFAR-10 when training on smaller

subsets of training data.

1. Introduction. Ulf Grenander pioneered the idea of handling the challenge pre-

sented by the geometric variability of objects in images using a generative framework

based on deformable templates [GCK91,AGP91,Gre93,GM98]. The variability in a pop-

ulation of images is modeled via deformations applied to a prototype or template. The

deformations are explicitly parameterized and represented by latent unobserved random

variables. The statistical framework yields a cost function that measures the distance

between the deformed template and the data. This typically has the form of a sum of

squares or other likelihood based measure, usually assuming conditional independence

of the pixel observations given the latent variable. There are then two interrelated chal-

lenges: given a template compute the deformation conditional on an image and estimate
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208 JIAJUN SHEN AND YALI AMIT

a template from a sample of images. The first problem has been studied very extensively

in a wide variety of contexts; see for example [MTY06,You10]. The problem of template

estimation has received some attention; see [AT07,AAT07].

In this paper we extend these ideas from the domain of generative models to that of

discriminative models. Given a classifier one can try to compute for each class and image

the deformation yielding the optimal output for that class, and then label the image as

the class with the highest output. In other words, instead of the distance between the

template of the class and an image, our framework uses a cost function based on the class

scores computed by the classifier. Furthermore, given samples of images from the different

classes one can train a classifier by iterating the following two steps: first find the optimal

deformation of each image to the different classes given the current parameters of the

classifier and then update the parameters of the classifier given the optimal deformations

of the training images to each class. Since this is most easily formulated using gradient

descent-type optimization, we need classifiers that are both deformable with respect to

their parameters and with respect to their input. Multilayer perceptrons also known as

deep networks are then a natural choice.

Deep networks have been very successful in recent years in a wide range of classifi-

cation and detection tasks. The expressiveness of these networks allows the models to

explore possible variations in the data and learn visual representations that are robust

to task-irrelevant variations. However, such variations need to be observed in the data

when training the networks, without special design the networks do not generalize to

unobserved variations in the data. The standard solution for improving the transforma-

tion invariance of the classifiers is data augmentation, where transformed versions of the

original data are generated and added to the original data [FGP06, DWD15, LSBP16,

DDFK16, vNP17]. This approach works well but we believe it is of interest to explore

the alternative where an explicit computation of the latent deformations is performed

during classification. In theory this means that the classifier does not need to be as

flexible since it is not directly trying to discriminate between different instantiations of

the classes, rather it only needs to learn to discriminate between images of the objects

at reference instantiation. Furthermore, obtaining the reference pose of the object as

part of the output of classification can assist in additional visual tasks. One such task is

determining the support of the object in the image.

Spatial transformer networks (STN) [JSZ+15] also transform the image as part of the

classification process. They try to remove extraneous transformation variability a priori

by introducing a spatial transformation module before the classification network. The

image data is first transformed to a reference instantiation, independent of the class, and

then passed on to be classified. The information the network uses to first transform the

image is independent of the class and therefore is necessarily generic. We believe it is

essentially computed based on the first and second order statistics of the pixel data, and

as we show it is very sensitive to clutter. It is, however, of interest that the transformation

network and the subsequent classification network are trained together end to end using

gradient descent.

Other approaches to transformation invariance explicitly transform the network filters

so that the feature maps are invariant to the selected types of transformations [WHK15,
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Fig. 1. A rotated image of digit five can be further rotated to look
like instantiations from digit classes four, five, six, and nine.

TH16,MVKT16,ZYQJ17]. Another family of approaches tries to generalize convolutional

architectures by either extending the feature space to a group space of transformations

[GD14,CW16a], or warping the input so that the transformation equivariance is implicitly

encoded [HV16]. These approaches are either limited to a small set of transformations, or

they need to keep the models shallow because of the high computational burden required

to consider additional transformations in the feature map.

In our framework, latent variables are introduced, separately for each class, to capture

the transformations of the data and we apply a two-step training mechanism to alter-

natively optimize over the latent variables and the neural network model parameters to

minimize a designed loss function. We emphasize that the latent variables are optimized

for each class separately. Consequently, unlike STN that produces a single transformed

version of the original input, here for each class we produce a different transformed ver-

sion of a given image. The transformation is not predicted directly from the data, rather,

for each class it is estimated to optimize the output of the output unit representing that

class.

We show that this framework can be applied to any existing neural network archi-

tecture and offers flexibility in the types of transformation considered by the model.

We apply our framework to the training of convolutional neural networks (CNN), and

present competitive results on MNIST, MNIST-rot, CIFAR-10, and the Google Earth

dataset. In addition to improved classification rates, we show that the estimated latent

transformations indeed align the images very well, and allow us to estimate very precise

object supports in the case of MNIST, and the correct object rotation in the case of

Google Earth.

In Section 2 we describe related work on latent variables in the machine learning

literature. In Section 3 we layout the deformable classifier algorithm. In Section 4

we describe a modification of the spatial transformer network (STN) that regresses the

parameters of the transformation on the image as the STN but separately for each class.

In Section 5 we describe the experiments and in Section 6 we show how these types of

networks can be used to handle clutter in the case of handwritten digits.

2. Related work. Two approaches most relevant to our proposed method are spatial

transformer networks and latent SVM models.

2.1. Spatial transformer network (STN ). The model of [JSZ+15] consists of a spatial

transformer module that contains a localization network and a grid generator together

with a classification network that can be trained end to end using stochastic gradient

descent. The localization network predicts the transformation parameters based on the

input image. These could be the six parameters of an affine map or a more general
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210 JIAJUN SHEN AND YALI AMIT

smooth deformation described for example through a thin plate spline. The grid gen-

erator transforms the image and the resulting transformed image is passed through the

classifier. The transformation of the image is defined in a “weak” sense as follows. Con-

sider the image domain D as a continuum where the image is defined as x(s), s ∈ D.

Given a parameterized family of smooth deformation functions φ(s, z), mapping D to D

the deformed image associated with φ can be expressed as Tzx(s) = x(φ(s, z)). This is

the original formulation in [AGP91]. Now take a smooth kernel function K(t, u) defined

on D ×D, which approximates the Dirac delta function and write

Tzx(s) ∼
∫
u∈D

x(u)K(φ(s, z), u) du. (1)

The derivative with respect to z becomes:

∂Tzx(s)
∂z

=

∫
u∈D

x(u)
∂K

∂t
(φ(s, z), u) du

∂φ(s, z)

∂z
. (2)

This formulation allows one to push the application of the deformation and the compu-

tation of derivatives onto the smooth kernel (which can be done analytically) and avoids

the need to deal with explicit deformations or derivatives of the image, which is defined

on a discrete pixel grid. Denote the network predicting the transformation parameters z

as Ψ(x, η) and the subsequent classification neural network Φ(·, θ). The entire system is

defined as Φ(TΨ(x,η)x(s), θ). The gradients with respect to θ and η are easily propagated

backwards through this network provided a module is defined to compute φ(s, z). Once

the network is trained, i.e., η̂ and θ̂ are estimated, an image F is passed through Ψ

to obtain the predicted transformation z = Ψ(x, η̂). Then φ(s, z) is computed yielding

Tzx(s) and Φ(Tzx(s), θ̂) gives the classification.

In STN [JSZ+15], the authors use the bilinear sampling kernel

K(t, u) = max(0, 1− |t0 − u0|)max(0, 1− |t1 − u1|),

and equation (1) is approximated as follows:

Tzx(s) =
∑
u∈D

x(u)max(0, 1− |φ(s, z)0 − u0|)max(0, 1− |φ(s, z)1 − u1|)

=
∑

|u−φ(s,z)|<1

x(u)(1− |φ(s, z)0 − u0|) · (1− |φ(s, z)1 − u1|), s ∈ D. (3)

In recent work [SDFH18] proposes an architecture where the spatial transformer layer in

the STN estimates a diffeomorphic transformation by integrating local affine transforma-

tions, showing significant improvement. Note, however, that in all these architectures the

spatial transformation is computed directly from the image without knowing its class.

This can create ambiguities such as in Figure 1 where we show an image of rotated digit

five and how it can be rotated to look like instantiations of different digit classes. In-

tuitively, the spatial transformer module should recognize the class label of the image,

and then extract the transformation parameters taking the class label into account. We

argue that an accurate estimate of the transformation is not possible unless the image

label is captured, and even given the class, one expects that some external information is

needed to guide the transformation. In STN the class labels of the images are not fully

Licensed to Univ of Chicago. Prepared on Wed Apr  3 16:53:14 EDT 2019 for download from IP 128.135.44.22.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



DEFORMABLE CLASSIFIERS 211

captured by the spatial transformer module Ψ (otherwise we would not need a down-

stream network to handle the classification task) and the spatial transformer module

cannot produce accurate spatial transformation for the input.

In recent work [RAS17, YKSN17] have shown that deep networks with customized

architectures are able to estimate the diffeomorphism to match a pair of images. Training

is performed with pairs of images where one is a training image and the second is produced

by simulating a diffeomorphism of the first. In this context the transformation parameter

is observed and the network can learn optimal features to predict the transformation

between the two images. This is still an “easier” task than that of the STN which tries

to estimate the transformation to reference pose directly from the input image—without

access to a target image, or some other representation of the quality of the transformation.

2.2. Discriminative latent variable models. Latent variables in discriminative models

have been studied in the framework of multiple instance learning (MIL), where the latent

variables are used to capture the variations of instances within the same labeled bag. The

MI-SVM formulation of multiple instance learning was initially proposed in [ATH03], and

later reformulated as latent SVM in [FGMR10]. That work focuses on detecting objects

of a given class, and a binary classifier is run across the image scoring each window x as

follows:

fβ(x) = max
z

β · Φ(x, z). (4)

Here β is a vector of model parameters, Φ(x) is the feature extraction function for x,

and z are latent values. In this model the only classifier parameters are β, and a hinge

loss is used to train the model:

L(β) =
1

2
‖β‖2 + C

n∑
i=1

max(0, 1− yifβ(x)), (5)

where yi = 1,−1 for object and non-object examples, respectively. Since fβ is a maximum

of linear functions it is convex in β and so for negative examples for which yi = −1 the

summand in the cost function is convex in β. For positive examples it is not convex and

the authors propose a two-step iteration. For each positive example find the optimal z∗i
given the current value of β and then optimize the convex function

L̃(β) =
1

2
‖β‖2+C

∑
yi=1

max(0, 1−β ·Φ(xi, z
∗
i ))+C

∑
yi=−1

max(0, 1+max
z

β ·Φ(xi, z)). (6)

In a similar vein, in this paper we incorporate latent variables into deep neural net-

works to capture the transformations of the input. The input image is warped for each

class separately based on the latent values that optimize its output on that class. In

training, this is done for the entire batch using the old network parameter values, and

then one or more gradient steps are taken to update the network parameters after the

input images are warped. In our setting the classifier is not linear in its parameters and

we will have no choice but to compute the optimal latent variable for each class for all

examples.
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212 JIAJUN SHEN AND YALI AMIT

3. Deformable classifiers. We consider a multiclass classifier on C classes that

scores an example x for each class as follows:

fβj
(x) = max

z
βj · Φθ(Tz(x)), j = 1, . . . , C. (7)

Here βj is a vector of model parameters for class j and Φθ is a feature mapping function

parametrized by θ, which in our setting is a multilayer convolutional neural network.

The paramters θ are common to all classes and the final classification depends on the

last layer of the network that is parameterized with the β’s. The latent variable z is

introduced to parametrize the deformations of the data and Tz(·) transforms the input

according to the value of z. The label ĉ of each example is then determined by

ĉ = argmax
j

fβj
(x). (8)

For a test example, the model finds a separate optimal latent value for each class in terms

of the output corresponding to that class. The class output with highest value yields

the final classification. Together with that classification, we also obtain an optimal

transformation of the image into reference pose.

Intuitively, in order to make the correct prediction, we want the score of the target

class to be larger than the scores of the non-target classes. To achieve this, for an

example x with label y we maximize the margin between fβy
(x) and fβj

(x) for j �= y.

Suppose we have a set of observations x = {x1, . . . ,xN} and the corresponding data

labels y = {y1, . . . ,yN}. We use the multiclass hinge loss as follows:

L(Θ) =
∑
i

max(0, 1 + max
j�=yi

fβj
(xi)− fβyi

(xi)) + λ(‖θ‖2 +
∑
j

‖βj‖2), (9)

where Θ = {θ, β1, . . . , βC} are the model parameters and C is the number of classes. λ

is the parameter that controls the regularization term ‖θ‖2 +
∑

j ‖βj‖2.
The key step in our method is to find the optimal instantiation of each example for

each class. At first glance, it might seem that it would be simpler to forego the non-target

classes and only focus on finding the optimal instantiation of the example for the target

class. We note, however, that such an approach is often insufficient. Recall that an image

can be transformed to look like instantiations from a non-target class, like the examples

we show in Figure 1. Without competing with optimal instantiations of the data from

non-target classes, the model might not be learning from the most competitive negative

examples.

In order to minimize the hinge loss in equation (9), we design a two-step training

mechanism. For each example, the algorithm finds the highest scoring latent values for

each class based on the current model parameters. Then the algorithm optimizes over

the model parameters while fixing the latent values. We outline the procedure for the

two-step training algorithm in Algorithm 1 for deformable classifiers (DC).

When the latent variables form a discrete set, for example a finite set of rotations,

optimization is obtained with exhaustive search (DC-ES). For continuous latent variables,
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Algorithm 1 Two-Step Algorithm For Learning a Deformable Classifier (DC)

1: procedure
2: Choose an initial setting for the parameters Θold = {θold, βold

1 , . . . , βold
C }.

3: Optimize Over z:
4: fβj

(xi) = maxz β
old
j · Φθold (Tz (xi)) , j = 1, . . . , C.

5: L(Θ) =
∑

i max(0, 1 + maxj�=yi
fβj

(xi)− fβyi
(xi)) + λ(‖θ‖2 +

∑
j ‖βj‖2)

6: Optimize Over Model Parameters Θ:
7: θ, β1, . . . , βC = argminθ,β1,...,βC

L(Θ)
8: If the convergence criterion is not satisfied, then
9: θold ← θnew, βold

1 ← βnew
1 , . . . , βold

C ← βnew
C

10: and return to line 3.
11: Stop

we optimize fβj
(x, z) from equation (7) with respect to z by gradient descent (DC-GD).

We regularize the magnitude of z during optimization by penalizing its distance from

the identity. When the range of the continuous variable is very large, such as the 360

degree range of rotations, we initialize the gradient descent at a small set of discrete

initial rotations and take the optimal value over all initializations (DC-ESGD).

In this paper, we use 2D affine transformations and thin plate spline transformations

[Boo89] as the two parameterizations for φ. The gradient of φ(s, z) with respect to z for

these two types of transformations has been implemented efficiently in the deep learning

package Lasagne which we employ for our experiments.

4. Class based spatial transformer network. A different approach, which is a

direct generalization of the original spatial transformer model, is to use class based spa-

tial transformer modules (CSTN), one for each class, to directly predict values of z for

each class during training and testing. Instead of optimizing over z based on the gra-

dient of the classifier output, during training this approach optimizes over the neural

network parameters that predict the class-specific transformation. Each transforma-

tion of the image is then passed through the same feature extraction network, and the

classifier calculates the class scores based on the features extracted from different class-

specific transformations of the image; see Figure 2. To be precise let Ψc(x, θc) denote the

Fig. 2. Model architecture for CSTN.
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214 JIAJUN SHEN AND YALI AMIT

network computing the transformation for each class c. Let Φ(·, η) be the common feature

extraction network; then the full CSTN computes

argmax
c

βc · Φ(TΨc(x,θc)x, η). (10)

In training, as in the previous section, we alternate between updating the parameters

η, βc, c = 1, . . . , C of the classification network with the θ parameters fixed, and then

keeping the classification network parameters fixed and updating the θ parameters of

the transformation networks θc, c = 1, . . . , C. When θ is fixed the loss for example xi is

given by

L(xi, yi, η, β) = S
(
yi,

[
βc · Φ(TΨc(xi,θc)xi, η)

]C
c=1

)
,

where S could be the softmax loss or the hinge loss described above. When η and β are

fixed, we want to optimize the spatial transformer modules Ψc(x, θc) separately for each

class c, i.e., we maximize

L(xi, c, θc) = βc · Φ(TΨc(xi,θc)xi, η).

For a given class c we compute the optimal instantiation θc for each example (whether

from that class or not) to make it look as close as possible to an “ideal” image of

class c. As a result, the spatial transformer modules not only learn to find the optimal

instantiation of each example for the target class, but also learn to compute competitive

negative examples for the non-target classes.

In testing there is no need for optimization as the transformation for each class is

predicted directly through Ψc. Again, unlike STN where only one spatial transformer

module is trained for the network, this approach constructs a different spatial trans-

former module for each class, providing a different latent value for each class. The

downstream networks from each transformer module are all tied until the final layer,

where each one feeds into the corresponding class output unit. The methods DC-GD,

DC-ESGD and CSTN require us to parametrize the transformation function in a form

that is differentiable with respect to the latent variable so that we can use the gradient to

either directly update the latent variable or update the model parameters in the spatial

transformer modules.

5. Experiments. We implement our model and perform experiments on the MNIST-

rot dataset, the CIFAR-10 dataset, and the rotation angle estimation task for the Google

Earth dataset.

5.1. The MNIST-rot dataset. The MNIST-rot dataset is a variant of the MNIST

dataset [LEC+07] that consists of images from the original MNIST rotated by a ran-

dom angle from 0◦ to 360◦. The dataset contains 12000 training images and 50000

testing images.

We set the angle of rotation as the latent variable. We choose a CNN architecture

which can be trained to achieve a competitive result on the MNIST dataset. The CNN

architecture consists of two consecutive convolutional blocks, where each block is com-

posed of a convolutional layer with 32 filters of size 5× 5 and a maxpooling layer of size

2 × 2. The output of the convolutional blocks is passed to a fully connected layer with

256 units before being fed to the final layer with 10 units. We initialize the weights of the
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DEFORMABLE CLASSIFIERS 215

Fig. 3. Image rotations are corrected using the latent rotation angles
estimated by the three optimization approaches.

CNN model by training it on a subset of the original MNIST dataset (first one hundred

training images of each class). Then we train the DC model with optimal instantia-

tions on the MNIST-rot training data. We experiment with two different approaches to

optimizing over the latent variable: DC-ES and DC-ESGD and the class-based spatial

transformer network CSTN. In DC-ESGD z is initialized at eight different rotations, and

each is optimized for ten iterations using gradient descent. We choose the value of z that

produces the highest score.

In Figure 3, we show some example images of rotated digits and their unrotated

versions corrected using the latent rotation angles estimated by the three approaches.

Compared to CSTN, the DC-ES, and DC-ESGD achieve better estimates of the rotated

angles. The exhaustive search approach is more constrained since it can only search for a

limited amount of rotations (in this case every 45 degrees). The gradient descent approach

can adjust the rotation with an arbitrary angle, creating better rotation-corrected images.

In Table 1, we show the error rate achieved by different models. When using CSTN to

identify the latent variables, we are able to achieve an error rate of 2.64%, significantly

improved from 5.71% achieved by the conventional STN. Our best result is achieved with

DC-ESGD, reaching an error rate of 1.25%. The state-of-the-art result 1.2% is achieved

by TI-Pooling [LSBP16], where 24 explicitly rotated versions of the images are presented

to the model for training and testing.

Table 1. Results on the MNIST-rot dataset.

Model Error (%)

TIRBM [SL12] 4.2

original CNN Model 4.1

STN 5.71

TI-POOLING (24 rotations) [LSBP16] 1.2

CSTN 2.64

DC-ES (8 rotations) 2.31

DC-ESGD (8 initial rotations) 1.25
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216 JIAJUN SHEN AND YALI AMIT

Fig. 4. Examples of rotation-corrected images for ten separate
classes using a conventional CNN trained on upright digits (bot-
tom) and a CNN trained on rotated digits using DC-ESGD (top).
For each rotation-corrected image we show all ten class scores on
the right, but the classifier only uses the score from the class that
determined the rotation.

Our training framework allows the model to compare optimal instantiations of the

image under different classes and expand the margin between the score of the target

class and the highest score of non-target classes. To show why this is important, we

conduct the following experiment: We first train a traditional CNN model on 60000

training images of upright digits from the original MNIST dataset with the multiclass

hinge loss. The trained model can then be plugged into our framework, and, without

additional training, we can use it to find the latent rotation angles of the rotated digits

under each class. We compare this approach with the DC model trained with optimal

instantiations. In Figure 4, we show all ten class scores for each transformed image. Note

that the classifier only uses class score oc from the image transformed based on the output

for class c. We see that although the optimal latent rotation angles under the correct class

labels captured by the two approaches are similar, the CNN trained using our framework

effectively suppresses non-target class scores. While in the examples generated by the

conventional CNN, we observe many undesired spikes of scores for non-target classes,

which will lead to incorrect classifications. For DC-ESGD the example rotated 9 has a

strong output for class 9 in the last display and very low outputs for any of the other

classes it has been transformed to. Using the standard CNN the output for class 6 when

rotated for class 6 is higher than the output for class 9 when rotated for class 9. A

similar problem occurs with the rotated 8. Using the standard CNN to rotate the images

achieves an error rate of 11.04%, which is far worse than any result we show in Table 1.

5.2. MNIST. We train our model on the original MNIST dataset [LCB98]. In order

to limit the transformation invariance that can be learned from the data, we only use the

first 100 images of each class from the training dataset (called MNIST1000). In order to

capture the local deformations of the data, we use the thin plate spline transformation

as the latent variables. A 4x4 grid of control points is used for the thin plate spline

transformation, resulting in 32 parameters modeling the image deformations. As before,

we first initialize the CNN model by training it on the MNIST1000 dataset and then

train the model using our framework. In this experiment, we only use gradient descent

(GD) to optimize over the latent variables.
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Table 2. Results on MNIST-1000.

Model Error (%)

CNN 3.17

STN 4.9

DC-GD (Thin Plate Spline) 2.00

In Figure 5, we show the optimal transformed image by thin plate splines for each of

the ten classes. As shown in Table 2, we are able to achieve an error rate of 2.0% using

our framework, which is a major improvement compared to results with the original CNN

or with STN.

Fig. 5. Examples of optimal images deformed by the thin plate
spline transformation for different classes. The original images are
shown in the first column.

5.3. CIFAR-10. We apply our model on the CIFAR-10 dataset [KH09]. We train

our model using the first 400 images of each class from the training dataset (called

CIFAR-10(400)) and test on the original CIFAR-10 test dataset. A five-layer CNN

model can achieve 28.43% test error after 4000 epochs of training on the full dataset with

5000 training images per class. We choose a CNN with the same architecture for our

framework. We initialize the network by first training the CNN model on CIFAR-10(400)

and then train it with the deformable classifier, again using only 400 images per class. We

explore two settings: one with the angle of rotation as the latent variable for the model

and the other with translation and scale as the latent variables. In Figure 6, we show

the optimal transformation via translation and scaling for objects of CIFAR-10 images.

We show a 2.9% increase of model performance using a CNN with latent translation and

scaling, which is even comparable with some of the semi-supervised approaches reported

in the literature that use a large complementary unlabeled training set.
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Fig. 6. Top: Example images from the CIFAR-10 dataset; Bottom:
Images translated and scaled by our model.

Table 3. Experiment Result on CIFAR-10(400)

Model Description Architecture Error (%)

DCGAN (semi-supervised approach) [RMC15] 26.2(±0.4)

Exemplar-CNN (semi-supervised approach)

[DSRB14]
64c5-128c5-256c5-512f 24.6(±0.2)

Exemplar-CNN (semi-supervised approach)

[DSRB14]
92c5-256c5-512c5-1024f 23.4(±0.2)

Steerable-CNN [CW16b] 14 layers, 4.4M params 24.56

CNN Baseline
64c3-64c3-128c3-128c3-

28.43
256c3-256f, 1.6M params

CNN with DC-ESGD (Rotation)
64c3-64c3-128c3-128c3-

27.9
256c3-256f, 1.6M params

CNN with DC-GD (Translation, Scale)
64c3-64c3-128c3-128c3-

25.53
256c3-256f, 1.6M params

5.4. Google Earth dataset. We train our model on the Google Earth dataset [HK08],

which contains aerial photos of streets with bounding boxes around the vehicles. Hen-

riques et al. [HMCB14] also add angle annotation for each vehicle as a supplement to

the dataset. The dataset contains 697 vehicles in 15 large images, where the first ten

(a) (b) (c)

Fig. 7. (a): An example of training images from the Google Earth
dataset. (b) and (c) are examples of car images (car front point to
the right) and background images we use for training a detection
model for horizontal cars.
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Fig. 8. Histogram of rotation errors when estimating the rotation
angles between −180◦ to 180◦.

images are used for training and the rest for testing. The task here is to estimate the

rotation parameter for each vehicle in the image. We first learn a horizontal car detection

model by training a classical CNN model to discriminate between horizontal car images

and background images. In Figure 7, we show some image examples for training this

base detection model. We use this model to initialize the DC-ESGD training algorithm,

which is applied to images of rotated vehicles cropped from the training images. Note

that we do not make use of the provided angle annotation as input to this algorithm.

We then use the trained latent variable model to estimate the rotation angles of the

vehicles by finding the latent rotation parameters that give the maximal values for the

score function.

We also build a baseline 3-layer CNN model following the description in [HV16], where

the last layer of the network contains one node to regress the target rotation angles of

the vehicles (in radians). The results are shown in Table 4. We find that the CNN model

with optimal instantiations outperforms the baseline model by a large margin, and most

of the rotation errors are contributed by the cases where the car fronts are mistaken for

the car rears. More specifically, as we show in Figure 8, 77% of the data are predicted

with less than 15◦ of rotation error while 22% are predicted with more than 150◦ of

rotation error. If we ignore the difference between the front and the rear of the car and

relax our problem by estimating the rotation angles between −90◦ to 90◦, we achieve an

average test rotation error of 4.87◦.

Note that the CNN for regressing the rotation angle result from [HV16] shown in

Table 4 uses a different approach to calculate the rotation errors. Let us denote by

αi, α̂i ∈ (−π, π) the ground truth and the predicted value of the angle, respectively, for

example i. Henriques et al. [HV16] define the rotation error as ei =
π
2 −

∣∣∣|αi mod π
2 −

α̂i mod π
2 | −

π
2

∣∣∣. We believe a better metric would be ei = π −
∣∣∣|αi − α̂i| mod 2π − π

∣∣∣ if
αi, α̂i ∈ (−π, π), and ei =

π
2 −

∣∣∣|αi − α̂i| mod π− π
2

∣∣∣ if αi, α̂i ∈ (−π/2, π/2). We provide

the error result of the CNN for regression based on our calculation.
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Table 4. The average rotation errors of different models.

Model Description Average rotation error (degree)

CNN for regression [HV16] 28.87

Warped-CNN [HV16] 26.44

CNN for regression (−180◦ to 180◦) 63.7

CNN for regression (−90◦ to 90◦) 43.1

CNN with DC-ESGD (−180◦ to 180◦) 37.8

CNN with DC-ESGD (−90◦ to 90◦) 4.87

6. Robustness to clutter. Handling clutter in an image is of paramount impor-

tance, as clutter can lead to significant degradation of classifier performance if not ob-

served during training. We thus investigate the sensitivity of the DC approach to different

types of clutter, which are not observed in the training data. We employ two types of

clutter models.

Flanking digits: We put two digits on the two sides of the original digit and

crop the image, so we have parts of the flanking digits as clutter. This kind of

clutter is very common when dealing with digit sequence recognition.

Random clutter: We randomly select small image patches from digit images

and place them randomly around the original digits. These patches contain digit

parts such as strokes and curvatures.

In Figure 9 we show some examples of images with the two different clutter types.

Note that nearby clutter will not touch or overlap with the original digit in the center.

In the first two rows of Figure 10 are the reference poses recovered by our approach for

images with flanking digit clutter. Only the reference poses of the images under the

correct class labels are shown here. The model is able to adjust the center digits to

obtain the preferred poses. It is worth noting that the digits in our training data have

the same size as the digits in the test data.

In the first two rows of Figure 11 we show the reference poses recovered by our approach

for images with random clutter surrounding the target objects. Similarly, the model

can adjust the pose of the target object in the center regardless of the surrounding

random clutter. It is worth noting that the reference poses estimated for the objects

with surrounding random clutter are different from those captured for the objects with

flanking digits.

Fig. 9. Sample images of two different types of clutters: flanking
digits (top) and random clutter (bottom).
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6.1. Declutter images with object class support maps. After the reference poses are

estimated, the surrounding clutter still exists and can affect the outcome of the classifier.

The DC framework is then used to estimate support masks for the objects, which are

used to eliminate the clutter.

In Figure 12, we show the comparison between the mean images of the original hand-

written digits in the training set and the pose-adjusted handwritten digits recovered by

the thin plate splines (TPS). As nuisance transformations in the data are removed to ob-

tain the reference pose of the object, it is clear that the mean images of the pose-adjusted

digits are much sharper than the mean images of the original digits and can be used to

determine an object support map.

In the presence of clutter, if the object label of the image is known, we can apply the

support maps of the correct class to the pose-aligned image with clutter and obtain the

decluttered image, as shown in Figures 10 and 11. Note that this decluttering step is

naturally achieved with the pre-trained model. This is very useful when dealing with

tasks where the objects in the training images have clean background while the objects

in the testing images are surrounded by clutter.

Note that in Figure 11, we observe that some parts of the objects are cut out by the

support masks (for example, digit 9 in the seventh column and digit 7 in the eighth

column). The shapes of the recovered reference poses cannot completely match the

support masks of the corresponding class, indicating that the surrounding clutter is

affecting the classification result.

6.2. Classifying with clutter using object support maps. The results shown in Fig-

ures 10 and 11 assume knowledge of the correct class. This is not known in the actual

classification setting. Since in our approach we estimate the reference pose for each class

separately we can apply the support map of that class before passing it to the down-

stream network to get the output score for that class. The class output with highest

value yields the final classification. When trained on the MNIST1000 dataset with a

clear background and tested on the test dataset with flanking digit clutter, our approach

improves the classification accuracy rate from 89.82% to 91.07% when we remove the

Fig. 10. Examples of the original images with flanking digit clutter
are shown in the first row. The corresponding recovered reference
poses under the correct class labels are shown in the second row.
The decluttered images extracted by applying object class support
are shown in the third row using a decluttering approach described
in Section 6.1.
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Fig. 11. Examples of the original images with random clutter are
shown in the first row. The corresponding recovered reference poses
under the correct class labels are shown in the second row. The
decluttered images extracted by applying object class support of the
correct class are shown in the third row using a decluttering approach
described in Section 6.1.

Fig. 12. Mean images of handwritten digits (bottom) and pose-
adjusted handwritten digits (top).

clutter from test images using the support maps. However, when performing the same

experiment with random surrounding clutter, the classification accuracy rate drops from

88.59% to 86.91%. Our approach is less robust to random surrounding clutter.

Fig. 13. We show examples of misclassified digits and the corre-
sponding optimal images captured for the corresponding images for
different classes (in the middle). On the right, we show the corre-
sponding decluttered images that we feed to the downstream network
to produce class scores for classification.
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The mistakes made by the decluttering approach are shown in Figure 13. There are

two types of issues:

• The subset problem: one class, say c, after transformation, can look like a subset

of another class d. On an image of class d, once the support map for c is applied

only the subset is visible and the image gets a high score for class c. For instance,

in the second row of Figure 13, a digit 9 can look like digit 0, digit 4 and digit

7 after we deform it and apply the support maps. Note that our classification

model will produce a class score for each class separately and label the test

example with the class that has the highest score. Therefore, having decluttered

images look like images from a different class other than the target class during

the classification stage would confuse the classifier.

• Some mistakes are caused by some undesired deformations. For instance, in the

examples we show in the first row of Figure 13, we observe in the sixth column

that clutter from the nearby region gets pulled to the digit in the center to form a

new object that looks like a digit 5. After we apply the support map to the image

and remove the clutter, this image looks exactly like a digit 5. This is caused by

too much flexibility of the deformation allowed in the thin-plate spline, which we

can alleviate by regularizing on the degree of deformation.

As explained above, for each image, we directly feed the decluttered images for different

classes to the downstream classifier for classification. The class scores are produced for

each decluttered image separately, and the class that produces the highest score will be

picked to determine the label of the example. Since the classification model only observes

the decluttered image for a certain class, without being aware of the decluttered images

for other classes or what got masked out in the original image, the model simply does

not have the information on whether a certain object class can best explain the scene in

the original image.

To resolve this, we apply a two-step mechanism for training and testing the images,

with no clutter observed in training. We train a regular deformable classifier f and

estimate a support map for each class. Then for each training image the optimal instan-

tiation for each class is computed using f and the corresponding support map applied

yielding ten transformed and cropped images, as show in Figure 14. For each training

image we stack these ten transformed and cropped images and train a regular CNN to

classify the label of the example based on the stack of input images. This time, since

the model is able to observe the optimal deformed and decluttered images from all the

classes, it has richer information on what gets masked out by the support maps, and it

can better resolve the subset problem. By applying this two-step mechanism to classify-

ing images with clutter, we achieve a classification accuracy of 93.47% on the test images

with flanking digit clutter and a classification accuracy of 91.86% on the test images with

random surrounding clutter. These are, respectively, 2.3% and 4.95% higher than the

approach without the two-step mechanism.
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Fig. 14. The stack of ten images produced from each training image,
after the optimal instantiation is computed for each class and the
corresponding class support mask is applied. The leftmost column
is the original training image.

7. Discussion. In this work, we propose a framework for training deep neural net-

works with optimal instantiations of the data. By introducing latent variables to pa-

rameterize the transformation of the data for each class, our approach is able to obtain

the reference pose for the object that is being classified, and consequently can achieve

better classification rates with smaller training sets. We show that such an approach can

be applied to any existing neural network architecture and is compatible with general

types of transformations including rotation, translation, scaling, and local deformations.

This presents a non-generative approach to estimating latent transformations, but can be

used to estimate templates for the different classes by averaging over the pose-corrected

images. When generative methods are used for classification the templates are needed in

order to compute the likelihood of each class for a given test image. Here the templates

are not needed for classification but can be used to estimate the object support and to

identify object parts. Furthermore, by introducing discrete latent variables we believe

it should be possible to estimate clusters or mixture components for the different object

classes, thus refining the estimated templates. One clear advantage of generative model-

ing is that for each class only examples of that class are needed to estimate the template

and the distribution over the latent variables. The disadvantage of such modeling is the

inadequacy of the noise models, which typically need to assume conditional independence

in order for the model to be computationally tractable. In our setting all class labels

need to be known in order to update the parameters of the network. This is essentially

determined by the particular multiclass hinge loss we use. We note that it is also possible

to use ‘one-against-the-rest’ hinge losses, where for each class we are estimating a two

class classifier. In that case we would be learning the deformable classifier for each class

separately, and implicitly a template for that class and even a distribution over defor-

mations, avoiding the need to provide a generative model for the images. To summarize,
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much of the important information about the distribution of samples in each class that

is obtained from generative modeling can be obtained in the framework proposed here,

provided there is a classification cost and data available to evaluate this cost.
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