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1 Measure Theory

1.1 Why Measure Theory?

There are two different views – not necessarily exclusive – on what “probability” means:
the subjectivist view and the frequentist view. To the subjectivist, probability is a system
of laws that should govern a rational person’s behavior in situations where a bet must
be placed (not necessarily just in a casino, but in situations where a decision must be
made about how to proceed when only imperfect information about the outcome of the
decision is available, for instance, should I allow Dr. Scissorhands to replace my arthritic
knee by a plastic joint?). To the frequentist, the laws of probability describe the long-
run relative frequencies of different events in “experiments” that can be repeated under
roughly identical conditions, for instance, rolling a pair of dice. For the frequentist inter-
pretation, it is imperative that probability spaces be large enough to allow a description
of an experiment, like dice-rolling, that is repeated infinitely many times, and that the
mathematical laws should permit easy handling of limits, so that one can make sense
of things like “the probability that the long-run fraction of dice rolls where the two dice
sum to 7 is 1/6”. But even for the subjectivist, the laws of probability should allow for
description of situations where there might be a continuum of possible outcomes, or pos-
sible actions to be taken. Once one is reconciled to the need for such flexibility, it soon
becomes apparent that measure theory (the theory of countably additive, as opposed to
merely finitely additive measures) is the only way to go.

1.2 Algebras and æ°algebras

Definition 1.1. An algebra of subsets of≠ is a collection of sets that contains the empty
set ; and is closed under complementation and finite unions. A æ°algebra is an algebra
that is closed under countable unions.

Exercise 1.2. Show that

(a) Every algebra is closed under finite intersections and set-theoretic differences.
(b) Every æ°algebra F is closed under countable monotone unions and intersections,

i.e.,

A1 Ω A2 Ω A3 Ω · · · and An 2F =)
[

n∏1
An 2F

A1 æ A2 æ A3 æ · · · and An 2F =)
\

n∏1
An 2F .

Observation 1.3. If {F∏}∏2§ is a (not necessarily countable) collection of æ°algebras on
a set≠, then the intersection \∏2§F∏ is also a æ°algebra. This is important, because it
implies that for any collection S of subsets of≠ there is a smallest æ°algebra contain-
ing S . This æ°algebra is denoted by æ(S ), and called the æ°algebra generated by S .
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The same argument shows that there is a smallest algebra containing S ; this must be
contained in æ(S ).

Definition 1.4. If (X ,d) is a metric space then the Borel æ°algebra on X , denoted by
BX , is the æ°algebra generated by the collection U of all open subsets of X .

Exercise 1.5. Show that if X =R then the Borelæ°algebra BR is theæ°algebra generated
by the collection of open half-lines (a,1) where a 2Q.

Example 1.6. Let≠= {0,1}N be the space of infinite sequences of 0s and 1s. Given a finite
sequence "= "1"2 · · ·"m define the cylinder set ß" to be the set of all sequences x 2≠ that
agree with " in the first m slots. Let B≠ be the æ°algebra generated by the cylinder sets.
The pair (≠,B≠) will be refereed to as sequence space.

Exercise 1.7. Define a metric on ≠ by setting d(x, y) = 2°n(x,y) where n(x, y) is defined
to be the maximum n such that xi = yi for all i ∑ n. (a) Show that this is in fact a metric.
(b) Show that the metric space (≠,d) is compact. (c) Show that the Borel æ°algebra on
the metric space (≠,d) is the æ°algebra generated by the cylinder sets.

1.3 Measures

Definition 1.8. A measure on an algebra A is a set function µ : A ! [0,1] satisfying
µ(;) = 0 that is countably additive, i.e., if An 2A and [n∏1 An 2A then

µ

µ [

n∏1
An

∂
=

X

n∏1
µ(An).

A probability measure is a measure with total mass 1, that is, µ(≠) = 1. Since we only
rarely will deal with measures on algebras, we will adopt the convention that unless
explicitly stated, measures are always defined on æ°algebras.

Properties of Measures. (1) If µ is a measure on an algebra A then

(a) µ is finitely additive.
(b) µ is monotone, i.e., A Ω B implies µ(A) ∑µ(B).

(2) If µ is a measure on a æ°algebra F then

(c) µ is countably subadditive, i.e., for any sequence An 2F ,

P
µ 1[

n=1
An

∂
∑

1X

n=1
P (An).

(d) If µ= P is a probability measure then P is continuous from above and below, i.e.,

A1 Ω A2 Ω A3 Ω · · · =) P
µ [

n∏1
An

∂
= lim

n!1
P (An),

A1 æ A2 æ A3 æ · · · =) P
µ \

n∏1
An

∂
= lim

n!1
P (An)
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Examples of Measures.

Example 1.9. If X is a countable set then counting measure on X is the measure on the
æ°algebra 2X defined by µ(A) = cardinality of A.

Example 1.10. If X is an uncountable set then the collection G consisting of all count-
able (including finite) and co-countable sets is a æ°algebra. The set function µ on G

such that µ(A) = 0 or 1 depending on whether A is countable or not is a measure. This
measure is not very interesting, but is sometimes useful as a counterexample.

Continuity from above and below lead directly to one of the most useful tools in
probability, the (easy half of the) Borel-Cantelli Lemma. It is often the case that an
interesting event can be expressed in the form {An i .o.}, where An is some sequence of
events and the notation An i .o. is shorthand for “infinitely many of the events An occur”,
formally,

{An i .o.} =
1\

m=1

1[

n=m
An .

If each of the events An is an element of someæ°algebra F , then so is the event {An i .o.}.
The Borel-Cantelli Lemma is a simple necessary condition for checking whether the
event An 2F has positive probability.

Proposition 1.11. (Borel-Cantelli Lemma) Let µ be a measure on a æ°algebra F . For any
sequence An 2F ,

1X

n=1
µ(An) <1 =) µ{An i .o.} = 0.

Proof. To show that µ{An i .o.} = 0 it is enough to show that µ{An i .o.} < " for every "> 0.
Since

P
µ(An) <1, for any "> 0 there exists m ∏ 1 such that

P1
n=mµ(An) < "; then

µ{An i .o.} ∑µ([n∏m An) ∑
1X

n=m
µ(An) < ".

Example 1.12. Diophantine Approximation. How closely can a real number be approx-
imated by a rational number? – Of course, this problem as stated has a trivial answer,
because the construction of the real number system guarantees that the rational num-
bers are dense in the reals. But what if we ask instead how closely can a real number be
approximated by a rational with denominator at most m, for some large m? Fix Æ > 0,
and for each integer m ∏ 1 define Gm to be the set of all x 2 [0,1] such that there is an
integer 0 ∑ k ∑ m for which ØØØx ° k

m

ØØØ∑
1

m2+Æ . (1.1)

Now define G(Æ) = {Gmi .o.}; this is the set of all x 2 [0,1] such that for infinitely many
m ∏ 1 there is a rational approximation to x with denominator m that is within distance
1/m2+Æ of x.
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Proposition 1.13. For every Æ> 0, the Lebesgue measure of the set G(Æ) is 0.

Proof. Exercise.

What if the exponent Æ in the inequality (1.1) is set to 0?

Proposition 1.14. (Dirichlet) For every irrational number x there is a sequence of rational
numbers pm/qm such that lim qm =1 and such that for every m = 1,2,3, . . . ,

ØØØx ° pm

qm

ØØØ∑
1

q2
m

. (1.2)

Proof. Exercise. Hint: Use the pigeonhole principle. (This has nothing to do with mea-
sure theory, but together with Proposition 1.13 provides a relatively complete picture of
the elementary theory of Diophantine approximation. See A. Y. Khintchine, Continued
fractions for more.)

1.4 Lebesgue Measure

Theorem 1.15. There is a unique measure∏ on the Borelæ°algebra BR such that for every
interval J Ω R the measure ∏(J) is the length of J . The measure ∏ is translation invariant
in the sense that for every x 2R) and every Borel set A 2BR,

∏(A+x) =∏(A).

The restriction of the measure ∏ to the Borel æ°algebra B[0,1] of subsets of [0,1] is
the uniform distribution on [0,1], also known as the Lebesgue measure on [0,1], and
also denoted (in these notes) by ∏. The uniform distribution on [0,1] has a related, but
slightly different, translation invariance property, stemming from the fact that the unit
interval [0,1) can be identified in a natural way with the unit circle in the plane, which is
a group (under rotation). To formulate this translation invariance property, we define a
new addition law on [0,1]: for any x, y 2 [0,1), set

x + y mod 1

to be the unique element of [0,1) that differs from x + y (the usual sum) by an integer
(which will be either 0 or 1). Then the uniform distribution on [0,1) has the property that
for every Borel subset A Ω [0,1) and every x 2 [0,1),

∏(A+x mod 1) =∏(A).

The translation (or rotation, if you prefer) invariance of the uniform distribution on
the circle seems perfectly natural. But there is a somewhat unexpected development.
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Proposition 1.16. Assume the Axiom of Choice. Then Lebsegue measure ∏ on [0,1) does
not admit a translation invariant extension to the æ°algebra consisting of all subsets of
[0,1].

The proof has nothing to do with probability theory, so I will omit it. But the proposi-
tion should serve as a caution that the existence of measures is a more delicate mathe-
matical issue than one might think. (At least if one believes the Axiom of Choice: Solovay
showed in around 1970 that Proposition 1.16 is in fact equivalent to the Axiom of Choice.)

Although the uniform distribution on [0,1) seems at first sight to be a very special
example, there is a sense in which every interesting random process can be constructed on
the probability space ([0,1],B[0,1],∏), which is sometimes referred to as Lebesgue space.
We will return to this when we discuss measurable transformations later. For now, ob-
serve that it is possible to construct an infinite sequence of independent, identically
distributed Bernoulli-1/2 random variables on Lebsegue space. To this end, set

Y1 = 1(.5,1],

Y2 = 1(.25,.5] +1(.75,1],

Y3 = 1(.125,.25] +1(.375,.5] +1(.675,.75] +1(.875,1],

· · ·

You should check that these are independent Bernoulli-1/2, and you should observe that
the functions Y1,Y2, . . . are the terms of the binary expansion:

x =
1X

n=1
Yn(x)/2n .

Theorem 1.15 will be deduced from a more general extension theorem of Carathéodory,
discussed in section 1.6 below. Carathéodory’s theorem states that any measure on an
algebra A extends in a unique way to a measure on the æ°algebra æ(A ) generated by A .
Thus, to prove Theorem 1.15 it suffices to show that there is a measure ∏ on the algebra
A generated by the intervals J Ω [0,1] such that ∏(J ) = length of J for every interval J .

Lemma 1.17. The algebra A generated by the intervals J Ω [0,1] consists of all subsets of
[0,1] that are finite unions of intervals.

Proof. Exercise.

Lemma 1.18. There is a unique measure ∏ on the algebra A generated by the intervals
J Ω [0,1] that satisfies ∏(J ) = |J | for every interval J .

Proof. It suffices to show that for any interval J = (a,b), if J =[1
i=1 Ji is a countable union

of pairwise disjoint intervals Ji then

|J | =
1X

n=1
|Jn |.
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The inequality ∏ is relatively routine, because for this it suffices to show that for any finite
m ∏ 1 we have |J |∏ Pm

n=1 |Jn |, and this follows because the intervals Ji = (ai ,bi ) can be
arranged so that

a ∑ a1 ∑ b1 ∑ a2 ∑ b2 ∑ · · ·∑ bn ∑ b.

The hard part is the reverse inequality ∑. Fix "> 0 small, and define J+n to be the interval
obtained by fattening Jn , i.e., if Jn = [an ,bn then J+n = (an°"/2n ,bn+"/2n ). The intervals J+n
form an open cover of [a +",b °"], so there is a finite subcover (J+n )1∑n∑m . Therefore (by
an easy argument)

b °a °2"∑
mX

n=1
(|Jn |+"/2n).

Since "> 0 is arbitrary, the desired inequality follows.

1.5 Monotone Class Theorem and Dynkin’s º°∏ Lemma

One of the most common chores in measure theory is to prove that some property G

holds for every set in aæ°algebra F . There are two tools designed for this: the monotone
class theorem and the º°∏ lemma. The strategy for using these tools is this: first, show
that property G holds for all sets F in a certain smaller collection (e.g., for intervals, or for
cylinder sets); second, show that the collection of all sets F for which property G holds is
a monotone class, or a ∏°system (depending on which tool you’ve bought); third, utter
the magic incantation “by the Monotone Class Theorem” (or “by the º°∏ Lemma”).

Definition 1.19. A monotone class on ≠ is a collection M of subsets of≠ that is closed
under monotone unions and monotone intersections, that is, for any sequence An 2M ,

(i) if A1 Ω A2 Ω · · · then [n∏1 An 2M , and

(ii) if A1 æ A2 æ · · · then \n∏1 An 2M .

Clearly, the intersection of any collection of monotone classes is again a monotone
class; consequently, by the same logic as in Observation 1.3, for any collection A of
subsets of a given space≠ there is a smallest monotone class M containing A .

Proposition 1.20. (Monotone Class Theorem) If A is an algebra, then the smallest mono-
tone class M containing A is æ(A ).

Proof. Every æ°algebra is a monotone class, so the smallest monotone class containing
A is contained in the smallestæ°algebra containing A . Consequently, it suffices to show
that M is a æ°algebra, that is, that M is closed under complementation and countable
unions.
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(1) Let M0 be the subset of M consisting of all F 2 M such that F c 2 M . Clearly,
A Ω M0, because algebras are closed under complementation. Furthermore, M0 is a
monotone class. (Exercise: check this.) Since M is the smallest monotone class contain-
ing A , it follows that M0 =M . This proves that M is closed under complementation.

(2) Let M1 be the subset of M consisting of all F 2M such that F \ A 2M for every
A 2 A . Once again it is obvious that A Ω M1, because algebras are closed under finite
intersections. Furthermore, M1 is a monotone class, by an easy argument. Hence, M1 =
M .

(3) Let M2 be the subset of M consisting of all F 2 M such that F \ M 2 M for
every M 2 M . By (2), the collection M2 contains A . Furthermore, M2 is a monotone
class (exercise). Consequently, M2 = M . This proves that M is closed under finite
intersections.

(4) By (1) and (3), the collection M is closed under complements and finite intersec-
tions, and hence also under finite unions. It is now easy to see that M is closed under
countable unions: if M1, M2, . . . 2M , then for each n ∏ 1,

[n
i=1Mi := Nn 2M ,

because M is closed under finite unions; now

Nn " [1
i=1Mi ,

so it follows that [i∏1Mi 2M .

Following is a typical application of the Monotone Class Theorem.

Proposition 1.21. If µ and ∫ are probability measures on æ(A ) that agree on A , where A

is an algebra of subsets of≠, then µ= ∫ on æ(A ).

Proof. Let H be the collection of all H 2 æ(A ) such that µ(B) = ∫(B). We must show
that H =æ(A ). Since H contains the algebra A , it will suffice, by the Monotone Class
Theorem, to show that H is a monotone class.

Suppose that H1 Ω H2 Ω · · · is a non-decreasing sequence of sets in H , that is, such
that µ(Hi ) = ∫(Hi ) for every i . Since probability measures are continuous from below,

µ

√
1[

i=1
Hi

!

= lim
i!1

µ(Hi ) and

∫

√
1[

i=1
Hi

!

= lim
i!1

∫(Hi );

consequently,

µ

√
1[

i=1
Hi

!

= ∫
√
1[

i=1
Hi

!

.
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This proves that H is closed under increasing unions. A similar argument, using the
continuity of probability measures from above, shows that H is closed under decreasing
unions.

This proposition implies that Lebesgue measure on [0,1] is unique, because any
measure µ such that µ(J ) = |J | for all intervals J is completely determined on the algebra
generated by intervals, by additivity, and this algebra generates the Borel æ°algebra.

Example 1.22. This example shows that uniqueness need not hold for infinite measures.
Let≠= [0,1] and B the collection of all Borel subsets of [0,1]. The algebra A consisting
of all finite unions of dyadic intervals (that is, intervals of positive length with endpoints
k/2n) generates B. Define measures µ,∫ on B as follows:

µ(B) = #B(= cardinality of B)

∫(B) =1 8 B 6=;, and ∫(;) = 0.

The measures µ and ∫ agree on A , because every non-empty set A 2 A has infinite
cardinality. On the other hand, they disagree on finite sets B , so they are not the same
set function on B.

To use the Monotone Class Theorem to show that a property G holds for all sets in
a æ°algebra F , one must start by showing that G holds for all sets in an algebra A that
generates F . This can sometimes be a bit of a slog; it is often easier to show that G holds
for all sets in a º°system.

Definition 1.23. Aº°system is a collection of subsets of a set≠ that is closed under finite
intersections. A ∏°system is a collection§ of subsets of≠ such that

(i) ≠ 2§;
(ii) A 2§ implies Ac 2§; and

(iii) An 2§ and An \ Am =; for n 6= m implies [1
n=1 An 2§.

Proposition 1.24. (Dynkin’s º°∏ Lemma) Any ∏°system that contains a º°system ¶
contains æ(¶). In particular, the smallest ∏°system that contains a º°system¶ is æ(¶).

The proof is another somewhat tedious exercise in set theory. See Billingsley sec. 1.3
for the gruesome details.

The º°∏ lemma is often easier to work with than the monotone class theorem,
because º°systems are often small and easily manageable: for instance, the set of all
intervals (a,b) is a º°system; so is the set of all rectangles (a,b)£ (c,d) in R2. Moreover,
it is often the case that if one can show that a property G holds for a set A then it holds
for Ac , and if it holds for pairwise disjoint sets A1, A2, . . . then it holds for [1

n=1 An ; thus
the collection of sets for which G holds is a ∏°system, provided it holds for≠.
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1.6 Carathéodory’s Extension Theorem

There are two important existence theorems for measures, the Carathéodory Extension
Theorem and the Riesz Representation Theorem. Neither is easy to prove. For the pur-
poses of probability theory, the more useful of the two is Carathéodory’s Theorem, and
so for now I will only state this one.

Theorem 1.25. (Carathéodory) Any finite measure µ on an algebra A extends in a unique
way to a measure on the æ°algebra æ(A ) generated by A .

See Billingsley sec. 1.3 for the proof. Observe that the existence of Lebesgue measure
is an immediate consequence, by Lemma 1.17. A similar argument can be used to estab-
lish the existence of Lebesgue measure in d ∏ 2 dimensions; the key step is the following
exercise.

Exercise 1.26. Define a d°dimensional rectangle to be a Cartesian product A1 £ A2 £
· · ·£ Ad , where each Ai is an interval of the real line. Let Ad be the algebra generated
by all rectangles. Prove that there is a unique measure ∏ = ∏d on Ad such that for any
rectangle,

∏(A1 £ A2 £ · · ·£ Ad ) =
dY

i=1
|Ai |,

where |Ai | is the length of the interval Ai . HINT: By Carathéodory’s theorem, what must
be proved is that ∏ is countably additive on the algebra consisting of finite unions of
rectangles.

1.7 Measurable Transformations and Random Variables

Definition 1.27. If F is a æ°algebra on a set X then the pair (X ,F ) is called a measur-
able space. If (X ,F ) and (Y ,G ) are two measurable spaces and T : X !Y is a function
with domain X and range Y then T is said to be a measurable transformation if for every
G 2 G the inverse image T °1(G) 2 F . In the special case where Y = R and G = BR, the
term real random variable, or simply random variable, is often used instead of measur-
able transformation. Similarly, when the range is Y =Rd and G =BRd , the term random
vector is often used.

Definition 1.27 should be somewhat reminiscent of the definition of a continuous
function (inverse images of open sets are open). Thus, measurable transformations are
in some sense the measure-theoretic analogue of continuous functions in topology. Like
continuous functions, measurable transformations respect composition: if T : X !Y

and S : Y !Z are measurable transformations (with respect to æ°algebras F , G , and
H ) then the composition S ±T : X !Z is a measurable transformation.
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To check that a given transformation T is measurable using Definition 1.27 directly
is, in many situations, impractical. The next (very easy) lemma gives a way of proving
measurability on the cheap.

Lemma 1.28. A transformation T : X ! Y is measurable if there is a collection K Ω G

such that G =æ(K ) such that for every K 2K ,

T °1(K ) 2F .

Consequently, a function X : ≠! R is a random variable if and only if for every open
interval U ,

{! : X (!) 2U } 2F .

Example 1.29. Let X = [0,1] and F =B[0,1], and take Y = {0,1}N with G = theæ°algebra
generated by the cylinder sets. Define T : [0,1] ! {0,1}N be the binary expansion map.
(For those x 2 [0,1] that have two binary expansions, let T (x) be the one that ends in
all 1s.) Then T is a measurable transformation, because for any cylinder set the inverse
image is an interval.

Example 1.30. Let X and Y be two metric spaces with Borel æ°algebras BX and BY ,
respectively. If T : X !Y is continuous, then it is measurable.

Corollary 1.31. Let X1, X2, . . . , Xm be random variables all defined on a measurable space
(≠,F ). Then every linear combination

Pm
i=1 ai Xi is also a random variable.

Proof. If X is a random variable and a 2 R is a scalar, then aX is a random variable,
because it is the composition of X with the mapping Ma :R!R defined by Ma(y) = ay .
(This mapping is continuous, hence measurable.) Thus, to prove the corollary, it suffices
to show that sums of random variables are random variables.

Suppose that X1, X2, . . . , Xm are random variables defined on (≠,F ), that is, that each
Xi :≠!R is a measurable transformation. I claim that the mapping X :≠!Rm defined
by X(!) = (X1(!), X2(!), . . . , Xm(!)) is measurable. To see this, observe that by Lemma
1.28 it suffices to show that for any m°dimensional rectangle A = A1 £ A2 £ · · ·£ Am ,

X°1(A) 2F .

But X°1(A) =\m
i=1X °1

i (Ai ); since each Xi is measurable, each set X °1
i (Ai ) is in F , and so

the intersection is also in F , as æ°algebras are closed under finite intersection. Thus, X
is measurable.

Now consider the mapping S :Rm !R defined by addition of coordinates, i.e.,

S(x1, x2, . . . , xm) =
mX

i=1
xi .

This mapping is continuous, and so it is measurable. Consequently, S(X) : ≠ ! R is
measurable.
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Example 1.32. Let (≠,F ) be a measurable space and let X1, X2, . . . be a sequence of real-
valued measurable transformations (random variables, if you prefer). Define a function
T :≠!R1 by

T (!) = (X1(!), X2(!), X3(!), . . . ).

Then T is a measurable transformation from (≠,F ) to (R1,B1), where B1 is the small-
est æ°algebra containing all measurable rectangles, that is, sets of the form

R = B1 £B2 £ · · ·£Bm £R£R£ · · · . (1.3)

Proof. Since the measurable rectangles generate theæ°algebra B1, it suffices, by Lemma 1.28,
to show that for every measurable rectangle R,

T °1(R) 2F .

Assume that R is given by equation (1.3). Then T °1(R) =\m
i=1X °1

i (Bi ); since each Xi is a
measurable transformation from (≠,F ) to (R,BR), it follows that each set X °1

i (Bi ) is an
element of F , and hence so is T °1(R).

Exercise 1.33. Let Xn be a sequence of random variables defined on a measurable space
(≠,F ). Prove that limsupn!1 Xn is a random variable.

The next proposition is nearly trivial, but it is of central importance, as it allows us
to define the distribution of a random variable or random vector. It also shows that
the existence of all sorts of interesting probability measures, on all sorts of different
probability spaces, follows from the existence of Lebesgue measure. Thus, in many
circumstances, the use of Caratheodory’s theorem can be avoided.

Proposition 1.34. Let (X ,F ) and (Y ,G ) be two measurable spaces and let T : X !Y be
a measurable transformation. If µ is a measure on F then ∫ :=µ±T °1 is a measure on G ,
called the induced measure. If µ is a probability measure, then so is the induced measure
∫; in this case ∫ is also called the distribution of T

Proof. This is routine: we must check that ∫ is countably additive and that if µ has total
mass 1 then so does ∫. The latter is immediate, because if µ is a probability measure then
∫(Y ) = µ ±T °1(Y ) = µ(X ) = 1. Next, countable additivity: Suppose that G1,G2, . . . are
pairwise disjoint elements of G ; then the sets T °1(Gi ) are pairwise disjoint elements of
F , so

∫([1
n=1Gn) =µ([1

n=1T °1(Gn))

=
1X

n=1
µ(T °1(Gn))

=
1X

n=1
∫(Gn).
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Example 1.35. Let T : (0,1) ! (0,1) be defined by T (x) = ° log x, and let ∏ be the uni-
form distribution (Lebesgue measure) on (the Borel subsets of) (0,1). Then the induced
measure Q =∏±T °1 is the unit exponential distribution:

Q(y,1) = e°y .

Example 1.36. Let T : [0,1] ! {0,1}N be the measurable transformation of Example 1.29
and let P =∏ be the uniform distribution on [0,1]. Then the induced measure P ±T °1 on
sequence space is the product Bernoulli- 1

2 measure, sometimes denoted P 1
2

.

Example 1.37. The preceding construction can be generalized to product Bernoulli-p
measure, denoted Pp . Fix 0 < p < 1 and set q = 1° p. Define random variables Xn :
(0,1) ! {0,1} as follows:

X1 = 1[q,1];

X2 = 1[q2,q] +1[q+pq,1];

etc.,

so that for any sequence e1,e2, . . . ,en of 0s and 1s

∏{Xi = ei for each 1 ∑ i ∑ n} = p
Pn

i=1 ei qn°Pn
i=1 ei . (1.4)

Then define a mapping from the unit interval to sequence space T : (0,1) ! {0,1}N

by T = (X1, X2, . . . ). The induced probability measure Pp = ∏ ± T °1 is called product
Bernoulli-p measure, because equation (1.4) implies that the random variables X1, X2, . . .
are independent, each with the Bernoulli-p distribution.

1.8 Lebesgue-Stieltjes Measure

Definition 1.38. A cumulative distribution function, or distribution function for short, is
a right-continuous, nondecreasing function F :R!R such that

lim
x!°1

F (x) = 0 and lim
x!+1

F (x) = 1.

If (≠,F ,P ) is a probability space and X is a real random variable defined on≠ then the
cumulative distribution function (c.d.f.) of X is the distribution function

FX (x) = P {X ∑ x}. (1.5)

That FX (x) is in fact a distribution function follows from the upper and lower continuity
of probability measures (Property (d), sec. 1.3).
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Proposition 1.39. For any cumulative distribution function F on R there is a random
variable X defined on Lebesgue space (the unit interval with Lebesgue measure) with
distribution function FX = F . Consequently, there is a unique probability measure PF on
(R,BR) (called the Lebesgue-Stieltjes measure with c.d.f. F ) such that for every interval
(a,b],

PF ((a,b]) = F (b)°F (a). (1.6)

Proof of Existence. The construction is the natural generalization of that in Example 7.9
above. It uses a trick known as the quantile transform: the idea, as in Example 7.9, is
to construct a monotone transformation T : [0,1] !R in such a way that T moves each
quantile of the uniform distribution to the corresponding quantile of the distribution
function F . This is accomplished as follows:

T (Æ) = inf{x : F (x) ∏Æ}.

It is easily checked (exercise!) that T is a non-decreasing function of Æ, and therefore
is measurable (why?). Hence, by Proposition 1.34, the distribution of T under ∏ is a
probability measure on (R,BR), which we now denote by PF :=∏±T °1. Finally, to prove
(1.6), observe that for any b 2R,

PF ((°1,b]) =∏(T °1(°1,b]) = F (b).

Proof of Uniqueness. The uniqueness of the measure PF in Proposition 1.39 is a conse-
quence of the uniqueness assertion in the Caratheodory Extension Theorem (see Propo-
sition 1.21). In particular, the equation (1.6) implies that there is only one extension to
the algebra of sets generated by the half-open intervals (a,b] (since this algebra consists
of all finite unions of half-open intervals), and so Proposition 1.21 implies that there is
only one extension to the æ°algebra generated by these sets.
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