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1. ORIENTATION

Finite-state Markov chains have stationary distributions, and irreducible, aperiodic, finite-
state Markov chains have unigue stationary distributions. Furthermore, for any such chain
the n—step transition probabilities converge to the stationary distribution. In various ap-
plications — especially in Markov chain Monte Carlo, where one runs a Markov chain on
a computer to simulate a random draw from the stationary distribution — it is desirable to
know how many steps it takes for the n—step transition probabilities to become close to the
stationary probabilities. These notes will introduce several of the most basic and important
techniques for studying this problem, coupling and spectral analysis. We will focus on two
Markov chains for which the convergence rate is of particular interest: (1) the random-to-top
shuffling model and (2) the Ehrenfest urn model. Along the way we will encounter a number
of fundamental concepts and techniques, notably reversibility, total variation distance, and
Poissonization.

1.1. Example 1: Random-to-Top Card Shuffling. “Random-to-top” is not an especially
efficient way to randomize a deck of cards, but it is one of the easiest of all shuffling
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schemes to analyze mathematically. It works as follows. Assume that the deck consists
of N cards, labelled 1,2, 3, ..., N, and assume that initially the cards are in order. At each
timet =1,2,..., select a card at random, independently of all past selections, and move it
to the top of the deck.

Problem: How many repetitions are needed to “randomize” the deck?

Before we try to solve this problem, we must settle on an appropriate notion of random-
ness. A poker player would consider the deck to be in a perfectly random state if each of
the N! different possible orderings of the deck were equally likely, and so this will be our
operational definition of “perfectly random”.

Proposition 1. Let X be the ordering of the deck after t repetitions of random-to-top. The sequence
{Xi}i=0,1,2,... is an aperiodic, irreducible Markov chain on the set Iy of all N'! orderings of the deck,
and its (unique) stationary distribution is the uniform distribution on I'y.

Proof: It is not difficult to see that the Markov chain is aperiodic and irreducible. That the
stationary distribution is uniform will be shown in section [1.5|below. O

Of course, we won't insist that the deck be in a perfectly random state when we begin
dealing the cards, as this would require the dealer to shuffle infinitely many times. Thus,
we will eventually need to make precise what we mean by “close” to perfectly random.

1.2. Example 2: The Ehrenfest Urn Model of Diffusion. An important part of the day-
to-day business of physics is to understand how bulk properties of matter arise from sta-
tistical regularities in the behavior of its constituent atoms and molecules. In principle,
the time evolution of any physical system is governed by differential equations; however,
explicit solution of these equations is rarely possible, even for small systems, and even
qualitative properties of the solutions are usually difficult or impossible to deduce. There-
fore, statistical physicists invent and study mathematical models in which the interactions
between molecules are merely caracatured, in the hope that these models will shed light
on the behavior of real physical systems.

The Ehrenfest urn model, proposed in 1906 as a simple model of diffusion, is typical in
certain respects of processes studied by statistical physicists. The physical system consists
of N identical (but distinguishable) molecules, each of which may at any time be in either
the right or the left half of a cubical box. In the real physical system, the motion of these
molecules is rather complicated. The Ehrenfests decided to study a simpler model for how
the molecules move from one side of the box to the other: they postulated that at each time
t =1,2,... one of the molecules would be chosen at random and then moved to the other
side of the box.

Here is a simplified (and in certain important respects, a more natural) version of the
model: Each of N balls resides at any given time in one of two urns, labelled 0 and 1. The
system evolves in time as follows: At each time ¢t = 1,2, ... one ball is selected at random
from among the NNV balls in the system and then moved to a random urn (that is, a fair coin
is tossed, and the ball is placed in urn A if the toss is a head and in urn B otherwise).

A natural choice for the state variable of the system is the number X; of balls in 1 at time
t. It is not difficult to see that the sequence {X;} is an irreducible Markov chain with finite



state space {0, 1,2,..., N}, and transition probabilities

1) p(k,k+1) = (1 - k/N)/2;
p(k,k—1)=k/2N;
p(k, k) =1/2.

This Markov chain has a unique equilibrium distribution, which we will determine shortly.

Problem: How many steps are necessary for the system to “reach equilibrium” if all of the
balls begin in urn 0?

The Ehrenfest random walk on the hypercube The random variable X; that records the
number of balls in urn 1 at time ¢ does not carry all of the information about the system, as
it does not record which balls are in which urns. Another natural choice of state variable is
the N-vector S; whose i coordinate is 1 if the i*" ball is in 1 and 0 otherwise. Henceforth,
to distinguish between the processes S; and X, we shall refer to the sequence S; as the
Ehrenfest random walk, and the sequence X as the Ehrenfest urn chain. Observe that each of
the processes { X;} and {S;} is a Markov chain, but their state spaces are different: the state
space of the the Ehrenfest urn chain is the set of integers {0,1,2,..., N}, while the state
space of the Ehrenfest random walk is the N —dimensional hypercube {0,1}", which consists
of all 2V sequences of length N with entries 0 or 1. Notice also that X; is a function of S;:
the variable X; may be recovered from S; by adding the entries of .S;.

The hypercube can be made into an abelian group: N—vectors of Os and 1s are added
component-wise modulo 2. The group is denoted by Z%', because it is gotten by pasting
together NV copies of the two-element group Z,. The group structure is useful in the study
of the Ehrenfest process, because S, is obtained from S; by adding (mod 2) a Bernoulli-
(1/2) random variable to a randomly chosen coordinate of S;: thus,

t
(2) Si=50+Y &,
j=1
where the random variables &1, &2, ... are independent and identically distributed with
distribution
3) P{¢ =0} =1/2 and
P{¢ =er} = (2N)*1 foreachk=1,2,...,N.

Here 0 is the 0 vector in Z3', and ey, is the kth unit vector that is, the vector with a 1 in the
kth coordinate and zeros elsewhere.

Stationary Distributions. It is easy to guess the equilibrium distribution for the Ehrenfest
random walk {S;}. In equilibrium, each of the balls is equally likely to be in either of the
two urns, and for any two balls 7, j the events

{iinurn A} and {jinurn A}

should be independent. Consequently, the stationary distribution of the Markov chain .S;
should be the uniform distribution on the set Z2'. In section below, we will prove that
this guess is correct.

Once we know the equilibrium distribution of the random walk S}, it is easy to recover
that of the Ehrenfest urn process X;. Recall that X; can be recovered from S; be adding
the coordinates. Consequently, one may obtain a random variable X whose distribution is



the equilibrium distribution of the Markov chain X; by choosing a random element S of
the hypercube Z4 with the uniform distribution and adding its coordinates. (EXERCISE:
Explain why.) But the coordinates of a uniformly distributed random element S of the hy-
percube are independent, identically distributed Bernoulli-(1/2) random variables! Thus,
we should expect (and will prove shortly) that the stationary distribution of the Ehrenfest
chain X; will be the Binomial distribution with parameters N and p = 1/2.

1.3. Example 3: Metropolis-Hastings Algorithm. The Metropolis-Hastings algorithm is
a basic strategy for simulation. The problem is this: we are given some complicated prob-
ability distribution 7 on a large state space X" (often much to large to enumerate) and we
would like to estimate some feature of this distribution (e.g., the mean of some function on
&) by simulation. What often makes the problem doubly difficult is that the distribution
7 might have a normalizing constant that is unknown and impossible to calculate directly.
(This is generally the case in Bayesian statistics, where the posterior distribution involves
a denominator given in the form of an integral or sum over the parameter space.) In such
cases, 7 is given in the form

m(x) = Cw(z) where C~!= Z w(y)

yeXx

for a weight function w that is easy to compute. The Metropolis-Hastings strategy is to
run a Markov chain whose transition probability matrix on X" satisfies the detailed balance
equations

(4) w(z)p(z,y) = w(y)p(y, ).

Clearly, if the transition probabilities satisfy these equations, then they satisfy the same
equations with w replaced by 7. We will see in sectionfl.4below that if the transition prob-
abilities satisfy these equations then 7 is a stationary distribution for the transition proba-
bility matrix. If the Markov chain with this transition probability matrix is irreducible then
the ergodic theorem (i.e., the strong law of large numbers) guarantees that if the Markov
chain runs long enough then the empirical distribution of states visited will closely ap-
proximate the stationary distribution. The obvious question of interest for the user: How
long must I run the Markov chain so as to be pretty sure that the approximation is good?

There is an easy and flexible way to find solutions to the detailed balance equations (4)
due to Metropolis. The idea is this: Suppose that 7(z) = Cw(z) is a probability distribution
on a finite set X’ such that 7(x) > 0 for every x, and suppose that X' is the vertex set of a
connected graph G with edge set £. Choose d large enough that no vertex is an endpoint
of more than d edges. For each pair x,y € X’ of distinct vertices, define

(5) plx,y) = (w(y) A 1) /d if z,y share an edge;

w(x)
p(z,y) =0 if 2,y do not share an edge; and

p(.%',.’I}) =1- Zp(x7y)'
y#T

Observe that p(z,z) > 0, because p(z,y) < 1/d for each pair x,y of neighboring vertices,
and no vertex x has more than d neighbors. Thus, equations (5) defines a system of tran-
sition probabilities on X. It is easy to check (EXERCISE: Do it!) that the detailed balance
equations hold for this set of transition probabilities, and so 7 is a stationary distribution



(see Lemma [2]in section [1.4]below). The clever thing about the set (5) of transition proba-
bilities is that you don’t need to know the normalizing constant C' to compute p(x,y), but
nevertheless the stationary distribution is 7.

Since the graph G is connected, the transition probability matrix is irreducible, and so
the stationary distribution is unique; but the Markov chain may be periodic (EXERCISE:
Find an example!). However, by choosing d strictly larger than the degree (:= number of
incident edges) of some vertex, one may obtain an aperiodic, irreducible transition proba-
bility matrix by (5).

Note: You might wonder why we don’t just use the complete graph on the vertex set X
(The complete graph on a set X is the graph that has an edge between every pair =,y € &)
The reason is this: In many problems, the weight function w(x) is computable, but not
easily so. In such problems it is often advantageous to restrict possible transitions z — y
to those pairs for which the ratio w(y)/w(z) is easy to compute.

1.4. Reversible Markov Chains. Here is a simple but extremely useful sufficient condi-
tion for checking that a candidate distribution is in fact a stationary distribution for a given
Markov chain:

Lemma 2. If {p(z,y)}sycx are the one-step transition probabilities of an irreducible Markov
chain on the state space X, and if {m(z)}rcx is a probability distribution on X such that for any
two states x,y € X,

(6) m(z)p(z,y) = m(y)p(y, x),

then = is the unique equilibrium distribution for the Markov chain.
Proof: This is an easy calculation. It will follow immediately from Proposition 3{ below.

The equations (6) are called the detailed balance equations. It is quite easy to see that they
hold for the transition probabilities of the Ehrenfest random walk, with 7 = the uniform
distribution on the hypercube. It is also quite routinee to check that the detailed balance
equations hold for the Ehrenfest urn chain transition probabilities (1) and the Binomial-
(N, 1/2) distribution (EXERCISE: CHECK THIS!).

Note that the detailed balance equations are not a necessary condition for stationarity:
For example, the uniform distribution on the N! possible orderings of a deck of N cards
is stationary for the random-to-top shuffle, as will be shown in section below, but the
detailed balance equations don’t hold. In fact, the Markov chains that satisfy detailed
balance equations are somewhat atypical of Markov chains in general. They are, however,
of great importance:

Definition 1. A Markov chain on a finite or countable state space X’ with transition proba-
bilities p(x, y) is said to be reversible if there is a positive function w : X — (0, c0) such that
for any two states z,y € &,

(7) w(z)p(x,y) = w(y)p(y, ).

The weight function w is not required to be a probability distribution, and there are
important examples, such as the simple random walk on the integers, where the detailed
balance equations (7) hold only for a weight function w that satistfies ) w(x) = occ.



Proposition 3. Suppose that p(z,y) are the transition probabilities of an irreducible random walk
on a finite or countable state space X, and suppose that they satisfy the detailed balance equations
with respect to some weight function w. Then

(A) For any integer n > 1, the n—step transition probabilities p,(x,y) also satisfy the detailed
balance equations with respect to the weight function w.

(B) If the transition probabilities p(x,y) also satisfy the detailed balance equations with respect
to another weight function v, then the weight functions w and v must be proportional, that
is, there exists a positive scalar o such that v(z) = aw(x) forall x € X.

(C) If the Markov chain with transition probabilities p(x,y) is positive recurrent, and if the
transition probabilities satisfy the detailed balance equations with respect to some weight
function w, then w must be proportional to the stationary distribution.

Proof: The proofs of (A) and (B) are left to the reader as exercises (HINT: For (B), you
must make use of the irreducibility of the Markov chain!). To prove (C), we make use
of (A), which asserts that the n—step transition probabilities satisfy the detailed balance
equations relative to w:

®) w(@)pn(2,y) = w(Yy)pa(y, ).

If the Markov chain is aperiodic (we have already assumed that it is irreducible), then the
n—step transition probabilities converge to the stationary distribution, and so taking the
limit in (8) shows that

) w(z)m(y) = wly)m(z).

This implies that the weight function w and the stationary distribution 7 are proportional.
If the Markov chain is not aperiodic, then this argument does not apply directly, because

the n—step transition probabilities do not converge for Markov chain with periodicity.
However, if the period is (say) d, then the matrix

1.
—_ J
(10) @—d;P

is aperiodic and irreducible (Exercise!), has stationary distribution 7, and by (8) satisfies
the detailed balance equations

(11) w(z)g(z,y) = w(y)a(y, z)
with the same weight function w as does p. Since Q is aperiodic, it follows by the argument
above that w is proportional to . O

Proposition 4. (Kolmogorov's Criterion) An irreducible Markov chain on a finite or countable
state space X with transition probabilities p(x,y) is reversible if and only if for every finite cycle
Z0, L1, T2, - . -, Tn—1, Ty = Xo Of states,

n—1 n—1
(12) [ p@i ziv1) = T p(is, ).
i=0 i=0

A cycle is just a finite sequence of states whose first and last elements are the same.
In words, Kolmogorov’s Criterion asserts that a Markov chain is reversible if and only
if for every cycle, the probability of traversing the cycle is the same as the probability of
traversing it in reverse order.



Proof: It is easy to prove that if the Markov chain is reversible then the equation must
hold. (EXERCISE: Do it!) The interesting direction is the converse, that if the equation
holds for every cycle then the detailed balance equations must hold for some weight
function. For this, we will construct a suitable weight function.

First, let z,y € X be any two states such that p(z,y) > 0. I claim that it must also be the
case that p(y,xz) > 0. Here is why: Since the the Markov chain is irreducible, there must
be a cycle zg, 1,22, ..., z, with g = x, =  and 21 = y such that all steps through the
cycle have positive transition probabilities, that is, p(x;, z;+1) > 0. But the Kolmogorov
equations imply that all the reverse steps also have positive transition probabilities
p(xiy1,x;) > 0. Since the first step of the cycle is from z to y, it follows that p(y, z) > 0.

Now fix a state z, € X’ to serve as a reference point: call this state the origin. Observe
that if the detailed balance equations hold for some weight function, then they will hold
for any scalar multiple of it, and so we may as well restrict our search to potential weight
functions that satisfy w(z.) = 1. Now if the detailed balance equations are to hold, it must
be that for any state y with p(z,y) > 0,

)p(:v*’y) _ p(z+,y)
p(y,z) Py, 2i)

Note that the denominator is positive, by the preceding paragraph. Thus, the weight func-
tion is determined for any state y that is accessible from the origin in one step. To extend
the definition of w to all states, we use again the hypothesis that the Markov chain is irre-
ducible: If y € X is any state, there must be a finite sequence ¢, z1, x2, . . ., z, beginning
at o = z, and ending at z,, = y such that p(x;, z;1+1) > 0 for every i. By the result of the
previous paragraph, it must also be the case that p(z;11, ;) > 0. So let’s try to define w(y)
as follows:

(13) H ]9 xuxz—l—l

xz—i-l,xz

w(y) = w(z.

The obvious problem, of course, is that there may be many different positive-probability
paths from the origin to y, so how do we choose among them in defining w(y)? It turns out
that it doen’t matter: any two paths will give the same value for w(y). To see this, suppose
that there are two positive-probability paths, say 3, v, from z. to y. Following 3 to y and
then + in reverse back to z, gives a cycle, for which equation must hold. This implies
(why?) that either path will give the same value w(y) in . Thus, w is well-defined.

It remains to show that the detailed balance equations will hold for all pairs of states
z,y. Let z,y € X be any pair of states such that p(z,y) > 0, and let 8 = (xo, z1, 22, ..., Zm)
and v = (0, Y1, Y2, - - - , Yn) be positive-probability paths from zy = yg = x4 to x,, = = and
Yn = y. By definition of w,

m—1

w(z) = pi(xli’xiﬂ) and
p(mz—l-laxz)
=0
n—1
(yzaszrl)
w\y) =
( ) i=0 (yz+1ayz)

To see that



just apply the Kolmogorov equation to the cycle gotten by following 3 to z, then
jumping to y, and then following  in reverse back to .. 0

Remark. Those of you who haven’t yet thrown away your copy of ROSs will see that he
gives a shorter proof of Kolmogorov’s Criterion (Th. 4.7.2). Unfortunately, (a) his proof
requires that the Markov chain be positive recurrent, and (b) it is not constructive. The
proof given above is constructive: it shows you how to compute the weight function for a
Markov chain that satisfies Kolmogorov’s equations.

1.5. Exercises: Reversiblity, Symmetries and Stationary Distributions.

Problem 1. Birth-Death Chains: A birth-death chain is an irreducible Markov chain whose
state space ) is an interval of the integers, that is,

y=[0,M]:={0,1,2,...,M} or
Y=27Zy:={0,1,2,...} or
Y = Z := {all integers},
and for which only transitions to nearest neighbors are allowed. In this problem only the
state space Z, will be considered. Assume that the nonzero transition probabilities are
plz,x+1):=0, >0 forz >0
plz,x—1):=ay >0 forx >1
p(0,0) := ag > 0.

(A) Find a weight function w(z) such that the detailed balance equations @ hold with
respect to w.
(B) Prove that your weight can be normalized to give a stationary probability distribution
if and only if

oo x—1

ST <o

o
a=1j=0 JIT1

(C) Conclude that a birth-death chain on the nonnegative integers is positive recurrent if
and only if the inequality in (B) holds.

Problem 2. Prove assertions (A) and (B) of Proposition

Problem 3. Let P = (p(i, j)) be an irreducible transition probability matrix on a finite state
space ). An automorphism (or symmetry) of the transition kernel P (or, more informally, of
the the Markov chain with this transition kernel) is a one-to-one mapping 7' : ) — ) such
that for every pair i, j € ),

p(i,j) = p(T (), T(5))-
Let 7 be the unique stationary probability distribution for the transition probability matrix

P. (Recall that the stationary distribution is unique if P is irreducible.) Suppose that 7" :
Y — Y is an automorphism of P. Show that for every i € Y,

(i) = n(T(i)).



Problem 4. Consider the random-to-top shuffle described in section At time ¢, the
state of the deck is the list

Xy = (X(1), X2(2), ..., Xo(N))

in which the ith entry X, (i) records the identity of the ith card from the top of the deck.
Thus, the sequence Xy, X1,... is a Markov chain on the state space Sy, the set of all per-
mutations of the set

[N] == {1,2,3,...,N}.

(a) Explain briefly why the Markov chain X, is aperiodic and irreducible. (b) Show that for
any two permutations , o there is an automorphism 7' of the transition kernel such that
T(m) = 0. (c) Conclude that the unique stationary distribution of the Markov chain is the
uniform distribution on Sy.

Problem 5. Consider the Ehrenfest random walk S; on the hypercube G = Z1'. (a) Show
that for any two states =,y € G there is an automorphism 7" of the transition probability
kernel such that T'(x) = y. (b) Conclude that the uniform distribution on G is the unique
stationary distribution.

2. COUPLING

The term coupling is used loosely by probabilists to describe constructions in which two
(or sometimes more) random objects (random variables, or random vectors, or sequences
of random variables) are built simultaneously on the same probability space in such a way
that information about one provides information about the other. In such constructions the
two random objects are dependent (otherwise neither would give any information about
the other); the trick in using a coupling argument is to arrange things so that the random
objects interact in just the right way. This is a bit vague, but the examples to follow will
illustrate how the strategy often works.

2.1. Coupling and Total Variation Distance. How close is close? Since our goal is to be
able to say something about the number of steps a Markov chain must run to get “close” to
equilibrium, we must have a notion of what it means for the distribution of X; to be “close”
to the stationary distribution. The most natural mathematical definition of the “closeness”
of two probability distributions on a finite set uses the so-called total variation distance.

Definition 2. Let ¢ and v be two probability distributions on a finite or denumerable set
X. The total variation distance between p and v is defined to be

(14) = vl = 5 3 lufa} — via)]
zeX
(15) = max(u(A) — v(4)).

Notice that the total variation distance between p and v is 0 if and only if ;1 = v, and that
the total variation distance is 1 (the maximum possible value) if and only if the measures
w1 and v are supported by disjoint subsets of X. Also, if ju, is a sequence of probability
distributions, then

(16) lim ||, — p|l7y =0 iff lim p,{z} =p{z} VoeX.



There is an equivalent characterization of total variation distance that uses the notion
of coupling. Define a coupling of the probability measures ; and v to be a probability dis-
tribution A on the Cartesian product X x A whose marginal distributions are p and v,
respectively, that is,

(17) uf{z} = Z Mz,y} Ve e X and
yeX

(18) vy = Mayh Wwyed.
zeX

Notice that there are in general many couplings of two given probability measures f, v.
Define a maximal coupling to be a coupling that assigns the largest possible probability to
the diagonal

(.)C X X)diagonal = {(:E,y) EXXX 1 x= y}

Proposition 5. For any pair i, v of probability distributions on a finite set X there is a maximal
coupling A, and

(19) A& x X) — A(X x X)dmgonaz = ||lp—v|7v.

Proof: Homework. HINT: First try to guess what the diagonal entries A{x, z} have to be.
O

2.2. Coupling Constructions and Convergence of Markov Chains. In studying conver-
gence rates of Markov chains, what one needs is not just a simultaneous construction of
two random variables but a simultaneous construction of two (or more) infinite sequences
of random variables. Probabilists somewhat loosely refer to any such construction as a
coupling. The two (or more) sequences, say {X;}:cny and {Y;}+cn, are often both Markov
chains with the same transition probability matrix P, but with different initial conditions.
It will then be the case that for any ¢ € N the joint distribution of (X;,Y}) is a coupling of
the marginal distributions x;X and y}” of X; and Y}, respectively. In particular, it will follow
from Proposition 5|above (why?) that

(20) I — ud Iy < P{X; # Yi}.

Doeblin Coupling: This is the most basic coupling of two Markov chains, used first by
Doeblin. Let p(z,y) be the transition probability kernel of Markov chain on a finite or
countable state space X. Define a transition probability kernel on the Cartesian product
X x X by

(21) q((z,y), («",y)) = p(z, 2" )p(y, ¥') if x #y
=p(z,2) ifr=yand 2’ =y
=0 otherwise.

It is easy to check that this is defines a transition probability matrix, that is, that the row
sums are all 1. Thus, there is a Markov chain (X¢, ¥;) on X x X with transition probabilities
q(+, ). This Markov chain behaves according to the following rules: if X; # Y; then the two
components make independent jumps according to the transition probability kernel p, and
if X; =Y} then they make the same jump. Thus, the diagonal is an absorbing set.



Proposition 6. Let (X;,Y:) be a Markov chain on X x X with transition probability kernel q.
Then each of the component processes X and Y; is, by itself, a Markov chain on X with transition
probabilities p. Moreover, if the transition probability kernel p is ergodic (irreducible and aperiodic)
and the state space X is finite, then with probability one (X, Y;) will eventually be absorbed in the
diagonal, that is, eventually X; = Y;.

Proof: It is easy to see that marginally the sequence X; is a Markov chain with transition
probabilities p(x, 2’) by summing over the variable ¢/ in above. It is also obvious that
the diagonal is an absorbing set for the Markov chain (X;,Y;). Thus, what remains is to
prove that the diagonal is accessible from every state (z,y) € X x X. For this, it is enough
to show that there is a positive-probability path from (z,y) to the diagonal. Here we use
the hypothesis that the transition kernel p is aperiodic and irreducible: this assures that for
some integer n > 1 the n—step transition probability matrix P" has all entries positive. In
particular, there exists z € X" such that both p,(z, z) > 0 and p,(y, z) > 0. But this implies
that there are sequences of states

r=2x1,%2,...,0, =2 and
Y=Y,Y2,---yYn = %2
such that p(z;, z;+1) > 0 and p(y;, yi+1) > 0 for each i. Then

q((i,9i), (Tit1,Yig1)) > 0

for each i < k, where k is the smallest integer such that z;, = yx, and so (z;,y;)1<i<k is @
positive-probability path from (z,y) to the diagonal point (z, z). O

Proposition [6| has important ramifications for the Markov chain X;. Suppose that the
initial state Xy = x is nonrandom, but that the initial state Yj is random, with distribution
m, where 7 is the stationary distribution for the transition probability kernel p. Then for
every time ¢ > 0, the distribution of Y; is 7. On the other hand, the distribution of X; is not
(in general) 7 for any finite time ¢. By Proposition [} the pair (X, Y;) will eventually reach
the diagonal for a first time

(22) T =min{t : Xy =Y},

after which it will be absorbed. Thus, by inequality (20), with y; denoting the distribution
of X; when the Markov chain is started in state X, = z,

(23) [l = 7llzv < P{r > t}.]

It should be noted that this conclusion is true not only for the Doeblin coupling — the
particular coupling determined by the kernel ¢ defined by above — but for any cou-
pling. That is, if X; and Y; are both Markov chains with transition probability matrix
p, with Y; having the stationary distribution 7 and Xo—,, and if X; = Y; for all times
t > 1, then inequality holds. In applications of the coupling method, the hard work
is usually in finding a clever way to build such a pair X;,Y; so that P{r > t} can be effi-
ciently approximated. Later we will build couplings for random-to-top shuffling and for
the Ehrenfest chain.

Note also that the inequality is, in a sense, a “quantitative” version of Kolmogorov’s
convergence theorem for ergodic Markov chains: By Proposition [6| eventual absorption in
the diagonal is certain, so 7 < oo with probability one, and so P{r > t} — 0ast — oo.




Thus, (23) implies that the total variation distance between j; and 7 converges to 0 as
t — oo. This in turn implies that for each state z € X,

Jim iz} = iz}

Proposition 7. Let X, be an ergodic Markov chain on a finite state space X with transition prob-
ability matrix p(z,y) and with initial distribution p = po. Let 7 be the unique stationary distri-
bution for the transition probability matrix p(x,y), and let p, be the distribution of X;. Then the
total variation distance ||, — 7||7v converges monotonically fo zero as t — oc.

Proof: We have already noted that the total variation distance converges to 0 as t — oo.
We must show that the total variation distance is (weakly) monotonically decreasing in t.
Since the initial distribution p = p is arbitrary, it suffices to show that the total variation
distance decreases in the first step, that is, that

(24) | = 7llrv < ||po — 7|

For this we use the characterization of the total variation norm by maximal coupling given
in Proposition |5, In particular, there is a maximal coupling A = X of the probability
distributions 1 = p9 and 7, and for this maximal coupling,

ko = mllrv = M(u,v) + u# v}

Consider the Markov chain (X, ;) with transition probabilities ¢ as defined by equations
above, with initial distribution )\, and let A; be the distribution of the pair (X, Y7).
Then A; is a coupling of the distributions p; and 7, because (a) each of the processes X; and
Y; is, by itself, a Markov chain with transition probabilities p(x,y); and (b) consequently,
the marginal distributions of X; and Y; are u; and n. Furthermore, the distribution \;
attaches at least as much probability to the diagonal as does Ay, because the diagonal is
an absorbing set for the transition probability kernel ¢q. Therefore, by Proposition |5, the

O

inequality holds.

2.3. Couplings for the Ehrenfest Urn and Random-to-Top Shuffling. Both random-to-
top shuffling and the Ehrenfest urn are systems with a large number of component subsys-
tems that interact weakly: For card-shuffling, the components are the individual cards; and
for the Ehrenfest urn, the components are the individual balls. For such multi-component
systems it is often possible to construct couplings by forcing the coupled chains to manip-
ulate the same component at each step.

Example: Random-to-top shuffling The coupling will have two decks of cards each under-
going random-to-top shuffling. The states of the two decks at any time ¢ will be denoted by
X and Y}, respectively; each of these is a random ordering of the integers 1,2,..., N. The
initial state X of the first deck will be some particular nonrandom ordering, for instance,
the ordering

1234---N

The initial state Yj of the second deck will be uniformly distributed on the set of all N!
possible orderings. The pair (X;,Y;) evolves as follows: at each time ¢, a random integer
J: between 1 and N is chosen, independently of all past choices, and the card labelled J;
in each of the two decks is moved to the top. Observe that the evolution of each of the
two decks follows the random-to-top rule, but that the evolutions of the two decks are not
independent (as they were in the Doeblin coupling defined by equation (21))). Define 7 to



be the first time ¢ at which all of the cards have been moved at least once. Observe that
at time 7 the states of the two decks coincide; moreover, once they coincide, they coincide
forever after. Therefore, by inequality above, the total variation distance between the
distribution of X; and the uniform distribution is bounded above by P{r > t}.

Example: Random walk on the hypercube The idea is similar to that used in random-to-
top shuffling. The coupling will involve two distinct sets of N balls (say “red” and “blue”)
labelled 1,2,..., N, each evolving as in the Ehrenfest urn model. The states of the two
system will be denoted by R; and B, respectively; each of these is a random N— vector
of 0s and 1s. The initial state Ry is a particular nonrandom vector, perhaps the vector 0
of all zeros; and the initial state By is uniformly distributed on the set Z2' of all possible
configurations. The pair (R;, B;) evolves as follows: at each time, a random coordinate
J = J; and a Bernoulli-(1/2) random variable & are chosen, independent of all previous
choices. The pair (Ry+1, B+1) is obtained from (R, B;) by changing the Jth coordinate in
each of R; and B; to & (that is, both red and blue balls labelled J; are moved to urn &).
Once again, each of the sequences R; and B; behaves individually as a random walk on
the hypercube. Define 7 to be the first time at which all of the balls have been touched at
least once; then R; = B, for all t > 7. Therefore, as for random-to-top shuffling, the total
variation distance between the distribution of X; and the uniform distribution is bounded
above by P{r > t}.

2.4. The Coupon Collector’s Problem. The couplings described in section[2.3/have an im-
portant connection with a famous problem of elementary probability known as the coupon
collector’s problem. Roughly stated, the problem is this: If random draws are made re-
peatedly and independently from a population of N objects (e.g., “balls” or “cards”), how
many draws are needed to make it reasonably likely that every member of the population
will be selected at least once? In both of the couplings described in section the coales-
cence time 7 is the first time that all NV objects have been sampled at least once, and the
total variation distance from the equilibrium distribution at time ¢ is bounded above by
the tail probability P{r > t¢}.

The problem of approximating the tail probability P{r > n} may be reformulated as
a question about the distribution of the number U, of balls that are not seen in the first n
draws: in particular,

(25) P{r >n}=P{U, > 1}.

To study the distribution of U,,, we define for each index j € [N] := {1,2,..., N} and each
integer n > 1 indicator random variables

(26) Y, = Y, — 0 %f ] %s chosen in tbe first n draws
’ 1 if j is not chosen in the first n draws;
then
N

27) Un =) Yo,

j=1
Lemma 8.
(28) EY,;=(1-1/N)"

(29) EYp jYni = (1—2/N)".



Proof: This is an easy calculation. 0

Note that the random variables Y; and Y}, are negatively correlated. (In fact, one can see
this without doing any calculations by observing that if ball j is not chosen then it is more
likely that ball k& will be chosen.) Equations (28) and (29) imply that

cov(Y;,Yy) = EY;Y), — EY;EY),
=(1-2/N)"—(1—-1/N)> <0
Therefore, the variance of U, is smaller than the variance of the sum of N independent,
identically distributed Bernoulli random variables with mean (28):
(30) var(U,) = NEYi(1 — EY}) + ZZ jcov (Y}, V)

< NEYi(1 - EY1)
< NEY; = EU, and
(31) EU,=N(1-1/N)".

Proposition 9. Suppose that N — oo and n — oo in such a way that n/N — C for some
constant 0 < C' < oc. Then for every e > 0,

(32) lim_ P{|U/N — exp{~C}| > ¢} =0.

Proof: If n/N — C as N — oo then (1 — 1/N)™ — exp{—C}, and so by equation (31),
EU, /N converges to exp{—C'}. Hence, for sufficiently large N, the difference EU,,/N —
exp{—C} will be less than ¢/2 in magnitude. By Chebyshev’s inequality and inequality

(@0),
P{|U, — EU,| > N¢/2} < 4var(U,)/N?é*
< 4EU,/N?%e

— 0
as N — oo. O

Proposition [9] shows that it is not enough to draw C'N times to have any reasonable
chance of seeing all NV balls in the population, because with CN draws there is a very high
probability that about Ne~¢ balls (a positive fraction of the population) will not be seen.
Thus, if we want to have a good chance of seeing all the balls we must draw n > N times.
How much larger than N should the sample size n be? The answer is hidden in formula
for the expected number of balls that will not be seen in n draws. Keeping in mind
that (1—1/N)N ~ e~! for large N, we see that the number n of draws that will get EU,, ~ 1
is about N log N. In fact, the following is true.

Lemma 10. Suppose that N — oo and n — oo in such a way that n = aN log N + SN + O(1).
Then

1\" €
o )

Note: The notation O(1) indicates that the remainder is bounded as n, N — co. The symbol
~ indicates that the ratio of the two sides converges to 1.



Proof: This is based on the behavior of the natural logarithm function near the argument
1:log(1 — x) = —z + O(2?) as z — 0. Consequently,

(1-1/N)" =exp{(aNlog N + SN + O(1))log(l —1/N)}
= exp{(aNlog N + BN + O(1))(—1/N + O(1)/N?)}
= NP exp{O(1)(log N)/N}
~ N~
U

Proposition 11. Suppose that N — oo and n — oo in such a way that n ~ aN log N for some
constant o > 0. Then

(34) lim P{U, =0} =1 ifa>1; and
(35) lim P{U, =0}=0 ifoo < 1.

In fact, if o < 1 then for every e > 0,

(36) lim P{U, < N'7%¢} =0.
Proof: This is another simple exercise in the use of the Chebyshev inequality. O

2.5. Exercises.

Problem 6. Poissonization: There is another useful technique for dealing with problems
like the coupon collector problem that avoids the need to deal with correlated Bernoulli
random variables. It is based on the following simple device: instead of drawing a sample
of fixed size n, draw a sample of a random size k, where & is independent of the draws, and
has a Poisson distribution with parameter . Let Z; = Z, ; be the number of times ball j is
drawn in the first x draws, and let Y} be the indicator of the event Z; = 0.

(a) Prove that the random variables Z1, Zs, ..., Zy are i.i.d., each with Poisson distribution
A/N. (b) Conclude that the random variables Y; are i.i.d. Bernoulli, with success parameter
exp{—A/N}. (c) Use the results (a) and (b) to give another proof of the first two relations in
Proposition HINT: Use the Chebyshev inequality to show that the event |x—\| > \1/2+¢
has vanishingly small probability as A\ — oo.

Problem 7. The Coin Collector: A collector makes random draws repeatedly from a set
of N coins, each weighted so that the probability of falling Heads when tossed is p. After
each draw, he tosses the coin drawn and observes whether it falls Heads or Tails. Let
be the first time at which the collector has observed a Head on every one of the IV coins.
Show that there is a constant C' = C), such that for every ¢ > 0,as N — oo,

(37) P{r<(C—-¢)NlogN} — 0 and
(38) P{r <(C+¢)NlogN} — 1.



2.6. Convergence Rates for the Ehrenfest Urn and Random-to-Top. Our results concern-
ing the coupon collector’s problem give us some immediate information about the num-
ber of steps necessary to reach equilibrium in the Ehrenfest urn and in random-to-top
shuffling. Recall that in each of these Markov chains, the total variation distance between
the distribution y; of the state variable after ¢ steps and the equilibrium distribution 7 is
bounded above by P{r > t}, where 7 is the first time that all of the cards or balls in the urn
have been touched at least once. Furthermore, P{r > n} = P{U,, > 1}. By Proposition[11]
if N is large and n > aN log N then P{U,, > 1} ~ 0. This implies the following corollary.

Corollary 12. Let yu; denote the distribution of the state variable X, or S, for either random-to-top
shuffling of an N —card deck or for the Ehrenfest random walk on the N —dimensional hypercube
7. Suppose that N — oo and t — oo in such a way that t ~ aN log N for some constant o > 1.
Then

(39) H,U,t — 7T”TV — 0.

Thus, a little more than NV log N steps suffice to reach equilibrium. Are Nlog N steps
actually needed? For random-to-top shuffling, the answer isn’t yet known (as far as I
am aware, despite my claim in a previous version of these notes that it is), but you will
show in the homework that it takes at least (1/2)N log N steps. For the Ehrenfest urn
scheme, however, the answer is known to be NO: in fact, as we will see, just a bit more
than (1/2)Nlog N steps are needed to reach equilibrium. In section {3l we will develop
some additional technical machinery that will give us very precise information about the
total variation distance to uniformity. However, even without this machinery we can use
what we know about coupon collecting to show that it takes at least (1/2) N log N steps to
reach equilibrium.

Proposition 13. Let p; denote the distribution of the state variable Sy for the Ehrenfest random
walk on the N —dimensional hypercube 7Y, where the initial state is the vector 0 (all balls start in
urn 0). Suppose that N — oo and t — oo in such a way that for some 6 > 0,

(40) t < ((1/2) — 6)Nlog N.
Then
(41) Hut - 7THTV =1.

Proof: Recall that the equilibrium distribution 7 is the uniform distribution on Z%". Under

this distribution, the coordinate random variables are i.i.d. Bernoulli-(1/2). Thus, if A is

the event that the sum of the coordinates is less than N/2 — N/2%¢, then

(42) im 7(4) =0,

by Chebyshev’s inequality (or by the Central Limit Theorem). We will show that if ¢ <

((1/2) — §)N log N, where ¢ > ¢, then

(43) ]\}im ue(A) = 1.

The relation (41)) will then follow from the definition (15) of the total variation distance.
Assume, then, that ¢ < ((1/2) — §)Nlog N. By relation (36), for large N it is nearly

certain that U; > N(1+9)/2 where U, is the number of balls not touched in the first ¢ steps.

Each of these balls must therefore remain in urn 0 at time ¢. On the other hand, each

ball that is touched in the first ¢ steps has a 50/50 chance of being in urn 0 at time ¢.



By the Central Limit Theorem (or Chebyshev’s inequality), the chance that fewer than
(N —Uy)/2 — N'/?log N of these are in urn 0 is nearly 0 for large N. Consequently, with
probability approaching 1, the number of balls in urn 0 at time ¢ is at least

U+ (N —Uy)/2 — NY?1log N] = (N 4+ Uy)/2 — NY?log N
> N/2 4+ NUHI/2 _ N1/21og N
Ife < §/2 then N(1+9)/2 _ N1/21og N > N'/2%¢ for all large N, and so musthold. O

We have now established that after (1.00001)N log N steps the Ehrenfest urn is close to
equilibrium, but after (.49999)N log N steps it is still very far from equilibrium. All of this
suggests that the “right” answer is CN log N for some C' € [.5,1]. What is the right value
of C? To answer this, we will next discuss the technique known as spectral analysis. But
first, some problems.

2.7. Exercises.

Problem 8. Top-to-Random Shuffling. “Top- to-random” shuffling works as you might
guess: at each step, the top card of the deck is moved to a randomly chosen position in the
deck. (More precisely, with probability 1/N the top card remains in place, and the state of
the deck remains unchanged; and for each £ = 2,3,..., N, with probability 1/N the top
card is inserted just below the kth card.)

(a) Verify that the stationary distribution is uniform on the N'! permutations of the cards.

The object of the rest of the problem is to determine the number of steps necessary to
randomize a deck of N cards. For simplicity, assume that the initial state X of the deck is
1,2,...,N), that is, that the cards are initially arranged in order.

(b) Let 7 be the first time that card /N (which started on the bottom) is moved from the top
to a random position. Show that 7 is a strong stationary time, that is, show that the state of
the deck X, at time 7 has the uniform distribution and is independent of 7. HINT: Think
about what happens to those cards that are inserted below card N before time 7.

(c) Conclude that the total variation distance to the uniform distribution after n steps is no
more than 2P{7r > n}.

(d) Let oy, 02, . .. be the successive times at which the top card is moved to a position below
card N, and let £, = oy, — o _1(Where oy = 0). Show that (i) the random variables &1, &o, . ..
are independent; and (ii) each & has a geometric distribution with parameter (???) (you
tigure it out).

(e) Finally, use what you know about sums of independent geometric random variables to
show that for any € > 0

]\}im P{oy > (1+¢)NlogN} =0.
Problem 9. Mixing Rate for Random-to-Top Shuffling. The object of this problem is to
show that it takes at least (1 — )N log N steps to randomize a deck of N cards by random-
to-top shuffling.

(a) The first step is to learn something about the structure of a random permutation. Let
Y = (Y1,Ys,...,Yn) be arandomly chosen permutation of the integers [N] = {1,2,...,N}.



Fix k1 < kg < --- < kpr. What is the probability that

Vi, <Yi, <o <Yg,,7

(b) A rising sequence in a permutation y = (y1,y2, ..., yn) is a subsequence k1 < ky < --- <
ks such that

Yy < Yky < < Yky-
Prove that for any ¢ > 0,

(44) A}im P{there is a rising sequence of length N %“inY} =0.

HINT: How many increasing sequences k1 < ko < --- < ky of length M = N 27 are
there? Combine this information with the answer to part (a).

(c) By part (b) you know that if you examine a deck of cards and find a rising sequence of

length N 3¢ then the deck wasn’t random (or if it was then you hit on a very unlikely event).
Now suppose that you start with an ordered deck

1,2,...,N

and do random-to-top k times. Show that if k¥ < (3 — 2¢)Nlog N then with probability

approaching one (as N — oo) there will be a rising sequence of length M = N 2*<. HINT:
What happens to the cards you don’t touch in the £ shuffles?

3. SPECTRAL ANALYSIS

3.1. Transition Kernel of a Reversible Markov Chain. Reversible Markov chains are in
many ways simpler than Markov chains generally, and not only (or even primarily) be-
cause the detailed balance equations provide a simple way to find the stationary distri-
bution. Far more important is the fact that the transition kernel of a reversible Markov
chain is self-adjoint. The ramifications of this go far beyond what we will discuss in this
course; here we will discuss only the case where the state space X is finite, and where the
stationary distribution 7 is the uniform distribution on &. In this case, the detailed balance
equations read

(45) p(z,y) = p(y, x);

thus, the transition probability matrix P is symmetric. Here is what should immediately
come to mind in connection with symmetric matrices:

Spectral Theorem for Symmetric Matrices. Let A be a symmetric, real, m x m matrix. Then
all eigenvalues of A are real, and there is a complete orthonormal basis (ONB) of real eigenvectors.

Thus, if you use the right basis — namely, the orthonormal basis of normalized eigenvec-
tors — then the matrix will be diagonal, and the diagonal entries will be the eigenvalues.
Here is another way to express this:

(46) A= Nuju],
j=1



where u; is an orthonormal basis of eigenvectors (written as column vectors), uf are the
transposes of the vectors u;, and \; are the eigenvalues corresponding to the eigenvectors
uj, that is,

(47) AU,j = )\ju]‘.

An easy consequence of the spectral representation is that the matrix norm of A is the
maximum of |\;| over all eigenvalues. What this means is that for any vector v of norm 1,
the norm of Av is at most max |A;|. (EXERCISE: Check this.)

The orthogonality of the eigenvectors is especially important: it guarantees, among
other things, that when A is multiplied by itself repeatedly, the result is

(48) A" =" Nluju]
j=1

(Exercise: Prove this.) Recall from your first course in probability theory that the character-
istic function of a sum of n i.i.d. random variables is just the nth power of the characteristic
function of the first term. Formula (48), when applied to a symmetric transition probability
matrix A = IP, indicates that, in a certain sense, the spectrum of IP (the set of eigenvalues) is
the natural analogue for reversible Markov chains of the characteristic function for sums
of i.i.d. random variables.

Proposition 14. Let IP be a symmetric, aperiodic, irreducible transition probability matrix. Then
A1 = 1 is a simple eigenvalue, with eigenvector 1 (the column vector with all entries 1), and all
other eigenvalues \; satisfy

(49) —1</\j<1.

Remark. This result further indicates that the spectrum of the transition probability ma-
trix acts as an analogue of the characteristic function for sums of i.i.d. r.v.s. In particular,
reversibility is the natural analogue for Markov chains of symmetry for probability distri-
butions on the real line (recall that the characteristic function of a symmetric probability
distribution on R is real-valued).

Proof: The fact that P1 = 1 is merely the assertion that the row sums are all 1, which
follows because P is a transition probability matrix. Thus A\; = 1 is an eigenvalue, with
eigenvector 1 (normalized, it is u; = 1/y/m). What remains to be shown is that all other
eigenvalues are smaller than 1 in modulus.

Let u; be any nonzero eigenvector orthogonal to 1: then Pu; = Aju; for some eigen-
value )\;. We don’t yet know that |[\;| < 1, but we do know that 17u; = 0. Becasue P
is symmetric, its stationary distribution must be the uniform distribution 1/m, and so the
n—step transition probability matrix P" must converge as n — oo to the matrix with all
entries equal to 1/m. Consequently,

lim P"u; = 1Tuj/m = 0.
n—oo
But because Pu; = \ju;,
]P’”uj = )\?uj
Thus, it must be the case that A — 0. This implies that (i) the eigenvalue A; = 1 is simple;
and (ii) all other eigenvalues are strictly less than one in modulus. O



Let’s take stock of what we have learned: If P is a symmetric, aperiodic, irreducible
transition probability matrix, then A\; = 1 is a simple eigenvalue with eigenvector 1, and
all other eigenvalues )\; are less than one in absolute value. Furthermore, the nth power of
IPis given by

(50) P" =" Nujuj ,
j=1

with u; = 1/y/m, so that uju? is the constant matrix with all entries 1/m. Consequently,
the difference

(51) P*(z,y) —m(y) =P"(x,y) — 1/m

is just the z, y entry of the matrix
m
(52) A" =P" —yul = Z )\?uju;‘r.
=2

Consequently, the rate of convergence of P" as n — oo is controlled by the nontrivial eigen-
values (\; # 1) and their eigenvectors. Following are two estimates on the total variation
norm ||P"(z, -) — uniform||7y in terms of the nontrivial eigenvalues.

Proposition 15. Let P be a symmetric, aperiodic, irreducible m x m transition probability matrix
with nontrivial eigenvalues \a, A3, ..., Ay, written according to multiplicity and in decreasing
order of absolute value. Then

(53) |P™(z, ) — uniform||py < v/m|Xao|™.
Furthermore, if P*"(x, x) has the same value for all states x, then

1/2
m /

(54) IP"™(x, -) — uniform||py < <> A"
j=2

Remark. The hypothesis that P?"(x, z) has the same values for all states x is often satisfied
by reversible Markov chains whose stationary distribution is uniform, because the unifor-
mity of the stationary distribution often arises from symmetry. The hypothesis holds for
the Ehrenfest random walk, in particular. The reason for wanting this is that the estimate

is often sharper than (53).

Proof: The total variation distance in each of the inequalities is just the sum of the absolute
values of the entries in the z row of the matrix A" = P" — 11T /m; by the Cauchy-Schwartz



inequality,

2
(55) (Z P2, y) —mll> < (Zmlpn(:r,y) —mll2> (Zﬂ“)
Y Y
= Zm|pn(xay) - m—l‘Z

= Zm(pn(xa y)2 - Qm_lpn(x, y) + m_2)

= mpa(z,y)® —2+1
Y
= mpan(z,z) — 1

= mA*(z, )

the last by the Chapman-Kolmogorov equations and the fact that p(z, y) = p(y, «). Observe
that this string of inequalities implies that py,(z,z) > 1/m for any finite-state Markov
chain with a symmetric transition probability matrix.

Thus, the square of the total variation distance is bounded above by m times the diag-
onal entry A?"(z,z), where A is the matrix defined by (52). This entry equals el A*"¢,,
where e, is the unit vector with a 1 in entry = and all other entries 0. But

el A%e, = el A" A",
= [|A" eI
< A3

(Recall that the matrix norm of a symmetric matrix is the magnitude of the largest eigen-
value in absolute value.) Combining this estimate with the string of inequalities in the
previous paragraph, we obtain the first assertion of the proposition.

Finally, if P?"(x, z) is the same for all states x then A?"(z, x) is also the same for all states
z, and so mA**(x,z) = Y, A*"(y,y), which is just the trace of A*". Now the trace of a
symmetric matrix is the sum of its eigenvalues, in this case ", A?" (note that one of the

eigenvalues is 0: see (52)). This proves the second assertion . O

3.2. Spectrum of the Ehrenfest random walk. It is possible to give simple, explicit for-
mulas for the eigenvalues and eigenvectors of the transition probability matrix P of the
Ehrenfest random walk. The reason for this has to do with the fact that the Ehrenfest ran-
dom walk actually has a representation as a sum of i.i.d. random variables valued in the
group ZY'; in fact, the eigenvectors of the transition probability matrix will turn out to be
the group characters of Z2', which are the analogues of the complex exponentials e*. It
would take us too far afield to study Fourier analysis on Z’ in general, so I will only write
down the eigenvectors and check that they actually are the eigenvectors.

Recall that the state space of the Ehrenfest random walk is the hypercube Z&" = {0,1}¥,
and so the transition probability matrix Pis a 2V x 2" matrix. Thus, there will be 2%V vectors
in the orthonormal basis of eigenvectors. Because there is no canonical linear ordering of
the elements of the state space, it is more natural to think of vectors as functions u : ZY —
R than as column vectors of length 2/V: The entries of the vector u are just the values u(z),



where z € ZY, and the dot product of two vectors (functions) u, v is just

(56) ulv = Z u(z)v(x).

xezg

Similarly, the x entry of of Pu is given by

(57) Pu(z) = > ple,y)uly).

yezy
We are looking for solutions to the eigenvector equation Pu = Au.

Definition 3. The group characters are the functions v ; defined by

(58) ug(x) = uy(zr, 29, 2n) = [[(-1)%.
JjeJ

Here J is an arbitrary subset of [N] := {1,2,...,N}.

Observe that there are precisely 2V group characters, one for each of the 2% different
subsets of [IV]. Each character is a function taking values in the set {—1,1}; the character
uy is the function that is identically one.

Proposition 16. The group characters, when divided by 2N/2, form an orthonormal basis, and each
character is an eigenvector of the transition probability matrix P of the Ehrenfest random walk:

(59) Puy = (1|](\][|) uy.

Thus, the eigenvalues of P are (), := (1 — k/N) for k = 0,1,2,..., N, and B} has multiplicity

(3)-

Proof: Let J, J' be subsets of [N], and let K = JAJ' be their symmetric difference, that is,
K = (J\J)U(J'\J). Observe that uju; = ug, because every index j that is in either both
or neither of .J, J' will be written twice in the product [], [ . This is relevant because in
taking the dot product of u; and w; you multiply their entries together and then sum:
thus,

(60 Wy = Y url).

xezg

I claim that this sum is zero if K # () and 2V if J = (. The latter is obvious, because
if K = () then ug(z) = 1 for every x € Z5. That the sum is 0 when K # () is almost as
obvious: let i be the smallest element of K, and for each state x let 2’ be the state that agrees
with z in all coordinates except the ith, where it differs. Then ug (z) = —ux (z’); hence, the
terms of the sum cancel in pairs. This proves that the characters, when normalized,
are orthonormal. The normalizing constant is 1/ V/N, because the sum has the value
2N when K = (). Since any 2" nonzero orthogonal vectors in an inner product space of
dimension 2 must constitute a basis, it follows that the normalized characters form an
orthonormal basis.



It remains to verify that the eigenvalue \; corresponding to the eigenvector u; is (1 —
2|.J|/N). Fix an element = € Z', and consider the sum

Puy(z) = Z p(z, y)us(y)-

N
y€Z2

that defines Pu(x): this is just the expected value of v ;(S1) given that Sy = z, where S,,
are the successive states of the Ehrenfest random walk. Recall how the state S; is gotten
from the initial state Sy: one of the coordinates j € [N] is chosen at random, and this entry
of Sy = =z is changed randomly (to a Bernoulli-1/2). What effect will this have on the
value of u;? If the coordinate j that is chosen is not in J, then there will be no change:
uy(S1) = uy(So). If the coordinate j is in J, however, then u;(S1) = eu;(Sy) where e = £1
with probability 1/2.. Consequently,

E(uy(51) S0 = x) = uy(z)(1 = [J[/N) —uy(@)|J|/2N + uy(x)[J]/2N,

and so u is indeed an eigenvector, with eigenvalue \; =1 — |J|/N. O

3.3. Rate of convergence of the Ehrenfest random walk. We are now prepared to deter-
mine the mixing rate of the Ehrenfest random walk. By Proposition (16, we know that the
eigenvalues of the transition probability matrix are the numbers 3, = 1 — k/N, where
k=0,1,2,..., N, and that eigenvalue 3} occurs with multiplicity (],Z ) Propositionpro-
vides bounds on the total variation distance from the stationary distribution in terms of
the eigenvalues. So let’s see what becomes of inequality when

1
n= §NlogN+CN.

The right side of involves a sum over all of the eigenvalues \; except the trivial eigen-
value \; = 1. Hence



2N
(61) (I[P (2, ) — uniform||7v)?* < )~ A3"
j=2

exp{—2nk/N}

5 exp{—klog N — 2Ck}

e—QC’k

e—2Ck
k!
k=1

= exp{exp{—2C'}} — 1.
Note that this final bound is small when C' is large. Thus, a little more than (1/2)N log N
steps suffice for the Ehrenfest random walk to reach equilibrium. Recall that, by the argu-

ments of section at least ((IV/2) — 0N ) log N steps are necessary to reach equilibrium.
Therefore, we have now established the following.

<

Theorem 17. Let ju,, denote the distribution of the state variable S,, for the Ehrenfest random walk
on the N —dimensional hypercube 75, where the initial state is the vector O (that is, all balls in urn
0). Then for every 6 > 0,as N — oo,

62 i - 1 d

( ) n§(N/2H—H]{716)logNHun 7T||TV - an

63 - 0.

(63) nz(N/zrg%logNHun mllrv —

Problem 10. Consider a variant of the Ehrenfest random walk in which, at each step, the
ball that is selected is returned to the urn it came from with probability 1 — p and moved
to the other urn with probability p. (The case studied in the notes is p = 1/2.)

(a) Calculate the spectrum of the transition probability matrix. (b) Show that for some
constant C' > 0, about C'N log N steps are needed to reach equilibrium, and identify C in
terms of p.
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