Homework for Lecture 7. Due Wed 3/10 at the beginning of class. Since we need to hand out solutions on Wed evening, absolutely no late HW will be accepted for any reason. (Sorry!)

1. **Stationary distributions**
 Consider a process X_t given by
 \[dX_t = \mu(X_t)dt + \sigma(X_t)dW_t \] (1)

 (a) Let f is a 1-1 twice differentiable strictly increasing function, and set $Y_t = f(X_t)$. Find the equation corresponding to (1) for Y_t.
 (b) Find an f so that the equation for Y_t has no drift term.
 (c) Find an f so that the equation for Y_t has diffusion term dW_t only.
 (d) Let assume that X_t is stationary. Determine when Y_t is stationary. Is there a converse?

2. **Jumps**
 Follow the lecture and show explicitly the form of $f_i(s, t)$ and $g_i(s, t)$ that are needed to set up the hedgeing strategy for option # 2 in terms of option # 1.

3. **More Jumps**
 Suppose that Z_i has a normal distribution. Find the class of all possible risk neutral distributions when only S and a money market bond are traded.