It the following problems, use the same values as in the lecture. You can use either R or Splus.

\[M \leftarrow 1000 \]
\[n \leftarrow 100 \]
\[r \leftarrow \log(1.05)/n \]
\[u \leftarrow 1.01 \]
\[d \leftarrow 0.99 \]
\[u_t \leftarrow \exp(-r) \cdot u \]
\[d_t \leftarrow \exp(-r) \cdot d \]
\[\pi_H \leftarrow (1-d_t)/(u_t -d) \]
\[\pi_T \leftarrow (u_t-1)/(u_t -d) \]
\[S_0 \leftarrow 100 \]

You may wish to check out the R commands “source” and “function” for these problems.

1. **Barrier option.** We wish to determine the price \(v \) of a barrier options which pays \(E(S_n - K)^+ \) for \(K = 105 \) if \(S_n \) has first crossed the barrier \(X = 95 \).

 (a) Estimate by simulation the value \(v \).

 (b) Find, by theoretical means, a Markov process \(Z_t \) so that \(Z_t \) is a two component vector and so that the value \(V_t \) of the option at time \(t \) can be written \(V_t = f(Z_t) \).

 (c) Use the result in (b) to calculate \(v \) exactly in R. You need to build a tree. – For this specific subproblem, you may use Matlab if you prefer.

2. **Optimal sampling.** We are interested in estimating the price call option price \(E(S_n - K)^+ \) for \(K = 110 \). To this end, for each value of \(Q(H) = .45, .5, .55, .6, .65, .7 \), do the following. Create \(R = 100 \) replications of your estimated price (since each price is based on \(M=1000 \) drawings, you are here drawing \(M \cdot R = 100,000 \) binomial random variables). Use the “var” command in R to determine the variability of your estimate.

 Create a plot that gives the variances for each \(Q(H) \). On the basis or your results, explain which value of \(Q(H) \) you would prefer to use.