In the following problems, all markets are assumed to be arbitrage–free, and to contain a riskless asset (called BOND), with riskless rate of return \(r \).

1. **Numeraire Invariance.** Prove Proposition 1 in the notes.

2. **Put–Call Parity.** Consider a single–period market with a risky asset \(\text{STOCK} \), a \(\text{CALL} \) option with strike \(K \), and a \(\text{PUT} \) option with strike \(K \). Assume that the rate of return on the riskless asset BOND is \(r = 0 \).
 (a) Show that there is a replicating portfolio in the assets \(\text{STOCK}, \text{CALL}, \text{and BOND} \) for the asset PUT.
 (b) Deduce a formula for the \(t = 0 \) market price of PUT in terms of the \(t = 0 \) market prices of \(\text{STOCK} \) and \(\text{CALL} \).
 (c) Explain how your answers to parts (a) and (b) must be modified if \(r > 0 \).

3. **Stocks with Dividends.** Consider a \(T \)--period market with a riskless asset BOND whose rate of return is \(r = 0 \). Let \(\text{STOCK} \) be a risky asset that, at each \(t = 1, 2, \ldots, T \), pays a dividend of \(\delta S_t \) shares of BOND, where \(1 > \delta > 0 \) is a fixed constant and \(S_t \) is the current share price of \(\text{STOCK} \). Let \(\pi \) be an equilibrium distribution for the market.
 (a) Show that
 \[
 S_0 = (1 + \delta)^T \sum_{\omega \in \Omega} \pi(\omega) S_T(\omega),
 \]
 where the sum is over all possible market scenarios \(\omega \).
 (b) What is the forward price \(F_0 \) of asset \(\text{STOCK} \)? (NOTE: The forward contract is an agreement made at \(t = 0 \) for a BUYER to pay \(F_0 \) shares of BOND at \(t = T \) in exchange for one share of \(\text{STOCK} \).)

4. Let \(\mathcal{M} \) be a homogeneous, \(T \)--period binary market with a risky asset \(\text{STOCK} \) whose share price follows equations (26)-(27) of the notes. Assume that the market \(\mathcal{M} \) has a riskless asset BOND with rate of return \(r = 0 \). Consider a contract FLOOR that pays the BUYER one share of BOND at every time \(t = 1, 2, \ldots, T \) when the share price of \(\text{STOCK} \) is below its initial value \(S_0 \). What is the arbitrage price of one FLOOR at time \(t = 0 \)?