Problem 1. Suppose \(X \) has density \(f(x) = c/x^6 \) for \(x > 1 \) and \(f(x) = 0 \) otherwise, where \(c \) is a constant.
(a) Find \(c \).
(b) Compute \(\mathbb{E}X \).
(c) Compute \(\text{Var}X \).

Problem 2. (a) Suppose \(X \) is a uniform random variable on \((0, 1]\). Find the density function of the random variable \(Y = -\log X \).
(b) Suppose that \(Y \) has is a continuous random variable with c.d.f. \(F(x) = P\{Y \leq x\} \). What is the distribution of \(F(Y) \)?

Problem 3. Let \(Z = (X_1, X_2, X_3) \) be a random point, written in rectangular coordinates \(X_1, X_2, X_3 \), chosen from the uniform distribution on the interior of the unit ball in 3 dimensions.
(a) What is the probability density of the distance \(R = \sqrt{X_1^2 + X_2^2 + X_3^2} \)?
(b) What is the probability density of the first coordinate \(X_1 \)?

Problem 4. Let \(X \) be a random variable with density \(f(x) = ce^{-x^2-x} \), where \(c \) is a constant.
(a) Find \(c \).
(b) Compute \(\mathbb{E}X \).