9. Identification of causal structures

X_r set of random variables in X_r

P probability distribution on X_r

$J(P)$ set of conditional independence relations which hold for P

Question:

Can we find a graphical representation for $J(P)$?

G class of graphs $G=(V, E)$

Aim:

Find $G \in G$ such that P satisfies the global Markov property w.r.t. G.
Definition (Consistency)

A graph $G = (V, E)$ is consistent with P if P satisfies the global Markov property w.r.t. G,

$$J(G) \subseteq J(P).$$

If G is complete $\Rightarrow J(G) = \emptyset$

$\Rightarrow G$ consistent with P

$G(P) = \{ G \in G | G$ consistent with $P \}$

Definition (Minimality)

A graph $G \in G(P)$ is minimal (for P) if for all graphs $G' \in G(P)$

$$J(G) \subseteq J(G') \Rightarrow G = G'$$
Recovering DAG structures

Recall: Two DAGs G_1 and G_2 are Markov equivalent,

$$J(G_1) = J(G_2),$$

if

- they have the same skeleton

 \[(a,b \text{ adjacent in } G_1) \iff (a,b \text{ adjacent in } G_2)\]

- they have the same immoralities

 \[(\text{subgraphs of the form } a \rightarrow c \leftarrow b)\]

IC algorithm (Inductive causation)

1. Find undirected graph $G^{(u)} = (V, E^{(u)})$ such that

 $$a \rightarrow b \in E^{(u)} \iff \exists S_{ab} \subseteq V \setminus \{a, b\}: X_a \perp X_b | X_{S_{ab}} [P]$$

2. Obtain partially directed graph $G^{(p)} = (V, E^{(p)})$ from $G^{(u)}$:

 $$a \rightarrow c \leftarrow b \text{ in } G^{(u)}, c \notin S_{ab} \Rightarrow a \rightarrow c \leftarrow b \text{ in } G^{(p)}$$

3. Obtain $G^{(d)} = (V, E^{(d)})$ by orienting as many edges in $G^{(p)}$ as possible without
 - creating immoralities
 - creating directed cycles
ad (1):

start with conditional independence graph \(G = (V, E) \)
\[a \leftarrow b \iff X_a \perp X_b \mid X_{\{a,b\}} \]

search for sets \(S_{ab} \):

start with sets of cardinality 0, then cardinality 1, etc

remove edges as soon as separation is found

ad (3):

the following rules are required to obtain a maximally oriented graph:

\(R_1: \ a \rightarrow b \rightarrow c \Rightarrow a \rightarrow b \rightarrow c \)

\(R_2: \ a \xrightarrow{c} b \Rightarrow a \xrightarrow{c} b \)

\(R_3: \)

\(R_4: \)
Example

\[\mathcal{J}(G) : \begin{align*}
 &1 \parallel 3 \parallel 2, 1 \parallel 4, 1 \parallel 8, 6, 7 \parallel 3, 2 \\
 &2 \parallel 4, 2 \parallel 8, 6, 7 \parallel 3 \\
 &3 \parallel 8, 7 \parallel 3, 14, 5 \parallel 3 \\
 &4 \parallel 7 \parallel 12 \\
 &5 \parallel 7 \parallel 6
\end{align*} \]

\[\mathcal{G}^{(1)} : \begin{align*}
 &\begin{array}{c}
 1 \quad 2 \\
 \downarrow \quad \quad \downarrow \\
 3 \quad 4
 \end{array}
\end{align*} \]

\[\mathcal{G}^{(2)} : \begin{align*}
 &\begin{array}{c}
 1 \quad 2 \\
 \downarrow \quad \quad \downarrow \\
 3 \quad 4
 \end{array}
\end{align*} \]

\[\mathcal{G}^{(3)} : \begin{align*}
 &\begin{array}{c}
 1 \quad 2 \\
 \downarrow \quad \quad \downarrow \\
 3 \quad 4
 \end{array}
\end{align*} \]
Structures with bidirected edges

Aim: Find minimal consistent graphs in
\[\mathcal{G} = \{ G \text{ directed graph without directed cycles} \} \]

For J(P) search for graph with 4 types of edges:

\[
\begin{align*}
& a \rightarrow b \quad \Rightarrow \quad a \rightarrow b \in E \\
& a \rightarrow b \quad \Rightarrow \quad a \rightarrow b \in E \lor a \leftarrow b \in E \\
& a \leftarrow b \quad \Rightarrow \quad a \leftarrow b \in E \\
& a \leftarrow b \quad \Rightarrow \quad a \leftarrow b \in E \lor a \leftarrow b \in E
\end{align*}
\]

\[\text{etc.} \]
IC* algorithm (Inductive causation with latent variables)

(1) Find undirected graph $G^{u} = (V_{1}, E_{1})$

\[a \rightarrow b \notin E_{1} \iff \exists S_{ab} \subseteq V_{1} \backslash \{a, b\}: X_{a} \perp\!\!\!\!\!\!\perp X_{b} \mid X_{S_{ab}} \mid P \]

(2) Search for immoralities $\rightarrow G^{w} = (V_{1}, E^{w})$

\[a \rightarrow c \leftarrow b \text{ in } G^{u}, c \notin S_{ab} \Rightarrow a \rightarrow c \leftarrow b \text{ in } G^{w} \]

(3) Obtain $G^{*} = (V_{1}, E^{*})$ by orienting and marking as many edges as possible according to

\[R_{1}^{*} : \begin{cases} a \rightarrow c \rightarrow b \\ a \rightarrow c \leftarrow b \end{cases} \Rightarrow a \rightarrow c^{*} \rightarrow b \]

\[R_{2}^{*} : \begin{cases} a \rightarrow b \\ * \rightarrow c_{1} \rightarrow \cdots \rightarrow c_{n} \end{cases} \Rightarrow \begin{cases} a \rightarrow b \\ * \rightarrow c_{1} \rightarrow \cdots \rightarrow c_{n} \end{cases} \]

\[\Rightarrow \text{ only simple graphs (no multiple edges)} \]
Example

\[G_x: \]

\[G^{(1)} \]

\[G^{(2)} \]

\[G^{(3)} \]

\[G_x \]

\[G^{(1)} \]

\[G^{(2)} \]

\[G^{(3)} \]