Bayes’ Theorem

Let A and B_1, \ldots, B_k be events in a sample space Ω.

Inversion problem: given $P(A|B_j)$ (and $P(B_j)$) find $P(B_j|A)$

Bayes’ Theorem:

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{P(A)} = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^{k} P(A|B_i)P(B_i)}$$

For continuous random variables X and Y, Bayes’ Theorem is formulated in terms of densities:

$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x) f_X(x)}{f_Y(y)} = \frac{f_{Y|X}(y|x) f_X(x)}{\int f_{Y|X}(y|x) f_X(x) \, dx}$$

Application to statistical inference:

- Probabilistic model: $f(y|\theta)$ - distribution of Y for fixed θ
- Statistical problem: given data y make statements about θ
- Likelihood: $l(\theta|y) = f(y|\theta)$ (reflects inversion problem)

Bayesian approach:

A Bayesian statistical (parametric) model consists of

- $f(y|\theta)$, a parametric statistical model (likelihood function), and
- $\pi(\theta)$, a prior distribution on the parameters.

The posterior distribution of the parameter θ is

$$\pi(\theta|y) = \frac{f_{Y|\theta}(y|\theta) \pi(\theta)}{\int_{\Theta} f_{Y|\theta}(y|\theta) \pi(\theta) \, d\theta} \sim f_{Y|\theta}(y|\theta) \pi(\theta)$$

The Bayesian modelling approach can be summarized by

posterior \sim likelihood \times prior.

Bayesian interpretation of probability

probability = (subjective) uncertainty
Bayesian Inference

Example: Binomial distribution

- Likelihood function
 \[Y|\theta \sim \text{Bin}(n, \theta) \]

- Prior distribution
 \[\theta \sim U(0, 1) = \text{Beta}(1, 1) \]

- Posterior distribution
 \[\theta|Y \sim \text{Beta}(1 + Y, 1 + n - Y) \]

Uncertainty about parameter can be updated repeatedly when new data are available:

- take current posterior distribution as prior
- compute new posterior distribution conditional on new data

The posterior distribution is used for inference about \(\theta \):

- posterior mean
 \[\mathbb{E}(\theta|Y) \]

- posterior variance
 \[\text{var}(\theta|Y) = \mathbb{E}((\theta - \mathbb{E}(\theta|Y))^2|Y) \]

- posterior confidence interval (credibility interval)
 \[\int_{\theta_1}^{\theta_r} \pi(\theta|Y) \, d\theta = 1 - \alpha \]
Conjugate Priors

A mathematical convenient choice are conjugate priors: The posterior distribution belongs to the same parametric family as the prior distribution with different parameters:

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Prior</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(y</td>
<td>\theta)$</td>
<td>$\pi(\theta)$</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>$\mathcal{N}(\theta, \sigma^2)$</td>
<td>$\mathcal{N}(\mu, \tau^2)$</td>
<td>$\mathcal{N}\left(\frac{\sigma^2 \mu + \tau^2 y}{\sigma^2 + \tau^2}, \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2}\right)$</td>
</tr>
<tr>
<td>Poisson</td>
<td>Gamma</td>
<td>Gamma</td>
</tr>
<tr>
<td>Poisson(θ)</td>
<td>$\Gamma(\alpha, \beta)$</td>
<td>$\Gamma(\alpha + y, \beta + 1)$</td>
</tr>
<tr>
<td>Gamma</td>
<td>Gamma</td>
<td>Gamma</td>
</tr>
<tr>
<td>$\Gamma(\nu, \theta)$</td>
<td>$\Gamma(\alpha, \beta)$</td>
<td>$\Gamma(\alpha + \nu, \beta + y)$</td>
</tr>
<tr>
<td>Binomial</td>
<td>Beta</td>
<td>Beta</td>
</tr>
<tr>
<td>Bin(n, θ)</td>
<td>Beta(α, β)</td>
<td>Beta($\alpha + y, \beta + n - y$)</td>
</tr>
<tr>
<td>Multinomial</td>
<td>Dirichlet</td>
<td>Dirichlet</td>
</tr>
<tr>
<td>$M_k(\theta_1, \ldots, \theta_k)$</td>
<td>$D(\alpha_1, \ldots, \alpha_k)$</td>
<td>$D(\alpha_1 + y_1, \ldots, \alpha_k + y_k)$</td>
</tr>
<tr>
<td>Normal</td>
<td>Gamma</td>
<td>Gamma</td>
</tr>
<tr>
<td>$\mathcal{N}(\mu, 1/\theta)$</td>
<td>$\Gamma(\alpha, \beta)$</td>
<td>$\Gamma\left(\alpha + \frac{1}{2}, \beta + \frac{1}{2} (\mu - y)^2\right)$</td>
</tr>
</tbody>
</table>

Problems in choice of prior:

- The conjugate priors might not reflect our uncertainty about θ correctly.
- In general, for non-conjugate priors the posterior distribution is not available in analytic form.
- It is difficult to describe uncertainty about θ in form of a particular distribution. In particular, we might be uncertain about the parameters of the prior distribution (\sim hierarchical modelling, empirical Bayesian methods).
Bayesian Analysis with Missing Data

Bayesian statistical model:

○ Data model:
 \[f(Y|\theta) \quad \text{complete-data likelihood} \]
 \[f(R|Y, \xi) \quad \text{missing-data mechanism} \]

○ Prior distribution:
 \[\pi(\theta, \xi) \]

The posterior distribution of \(\theta \) and \(\xi \) is

\[
\pi(\theta, \xi | Y_{\text{obs}}, R) \sim f(Y_{\text{obs}}, R|\theta, \xi) \pi(\theta, \xi) \\
= \int f(Y_{\text{obs}}, y_{\text{mis}}, R|\theta, \xi) \pi(\theta, \xi) \, dy_{\text{mis}} \\
= \int f(Y_{\text{obs}}, y_{\text{mis}}|\theta) f(R|Y_{\text{obs}}, y_{\text{mis}}, \xi) \pi(\theta, \xi) \, dy_{\text{mis}}
\]

If the data are missing at random (MAR) then

\[
\pi(\theta, \xi | Y_{\text{obs}}, R) \sim \int f(Y_{\text{obs}}, y_{\text{mis}}|\theta) f(R|Y_{\text{obs}}, \xi) \pi(\theta, \xi) \, dy_{\text{mis}} \\
= \int f(Y_{\text{obs}}, y_{\text{mis}}|\theta) \, dy_{\text{mis}} f(R|Y_{\text{obs}}, \xi) \pi(\theta, \xi) \\
= f(Y_{\text{obs}}|\theta) f(R|Y_{\text{obs}}, \xi) \pi(\theta, \xi)
\]
Bayesian Analysis with Missing Data

For inference on θ, we consider the marginal posterior distribution of θ

$$\pi(\theta|Y_{obs}, R) = \int_\Xi \pi(\theta, \xi|Y_{obs}, R) \, d\xi$$

$$\sim \int_\Xi f(Y_{obs} | \theta) \, f(R|Y_{obs}, \xi) \, \pi(\theta, \xi) \, d\xi$$

If the parameters are distinct in the sense that

$$\pi(\theta, \xi) = \pi(\theta) \, \pi(\xi)$$

then the marginal posterior distribution of θ satisfies

$$\pi(\theta|Y_{obs}, R) \sim f(Y_{obs} | \theta) \, \pi(\theta) \cdot \int_\Xi f(R|Y_{obs}, \xi) \, \pi(\xi) \, d\xi$$

It follows that

$$\pi(\theta|Y_{obs}, R) = \frac{f(Y_{obs} | \theta) \, \pi(\theta)}{\int_\Theta f(Y_{obs} | \theta) \, \pi(\theta) \, d\theta}$$

and hence $\pi(\theta|Y_{obs}, R) = \pi(\theta|Y_{obs})$.

Result:

The missing data mechanism is ignorable for posterior inference about the parameter θ if

- the data are missing at random (MAR) and
- the parameters θ and ξ are distinct, that is

$$\pi(\theta, \xi) = \pi(\theta) \, \pi(\xi).$$