Maximum Likelihood Estimation

Let \(Y_1, \ldots, Y_n \) be independent and identically distributed random variables.

Assume: Data are sampled from a distribution with density \(f(y|\theta_0) \) for some (unknown but fixed) parameter \(\theta_0 \) in a parameter space \(\Theta \).

Definition Given the data \(Y \), the *likelihood function* \(L_n(\theta|Y) \) is

\[
L_n(\theta|Y) = f_Y(Y|\theta) = \prod_{i=1}^{n} f_{Y_i}(Y_i|\theta)
\]

More generally, we may define \(L_n(\theta|Y) \) as any function of \(\theta \in \Theta \) proportional to \(f_Y(Y|\theta) \).

Definition The *log-likelihood function* \(l_n(\theta|Y) \) is the (natural) logarithm of the likelihood function \(L_n(\theta|Y) \),

\[
l_n(\theta|Y) = \log L_n(\theta|Y) = \sum_{i=1}^{n} \log f_{Y_i}(Y_i|\theta).
\]

Example: For \(Y_i \overset{iid}{\sim} \mathcal{N}(\mu_0, \sigma_0^2) \), the likelihood function is

\[
L_n(\mu, \sigma^2|Y) = f_Y(Y|\mu, \sigma^2) = (2\pi\sigma^2)^{-n/2} \exp \left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (Y_i - \mu)^2 \right)
\]

and the log-likelihood function is (ignoring the additive constant)

\[
l_n(\mu, \sigma^2|Y) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (Y_i - \mu)^2.
\]

The parameter is \(\theta = (\mu, \sigma^2) \) and the parameter space is \(\Theta = \mathbb{R} \times \mathbb{R}^+ \).
Maximum Likelihood Estimation

Definition A *maximum likelihood estimator* (MLE) $\hat{\theta}_{\text{ML}}$ of θ maximizes the likelihood $L_n(\theta|Y)$, or equivalently, the log-likelihood $l_n(\theta|Y)$:

$$\hat{\theta}_{\text{ML}} = \arg\max_{\theta \in \Theta} l_n(\theta|Y).$$

Assume: $L_n(\theta|Y)$ differentiable and bounded above (in θ)

\Rightarrow solve the likelihood equation

$$S(\theta|Y) = \frac{\partial l_n(\theta|Y)}{\partial \theta} = 0.$$

($S(\theta|Y)$ is called score function)

Example: $Y_i \overset{iid}{\sim} \mathcal{N}(\mu_0, \sigma_0^2)$

The log-likelihood function is:

$$l_n(\mu, \sigma^2|Y) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (Y_i - \mu)^2$$

Differentiation with respect to μ:

$$\frac{\partial l_n(\mu, \sigma^2|Y)}{\partial \mu} = 0 \iff \frac{n}{\sigma^2} (\bar{Y} - \mu) = 0 \Rightarrow \hat{\mu}_{\text{ML}} = \bar{Y}$$

Differentiation with respect to σ^2:

$$\frac{\partial l_n(\mu, \sigma^2|Y)}{\partial \sigma^2} = 0 \iff -\frac{1}{\sigma^2} + \frac{1}{\sigma^4} \sum_{i=1}^{n} (Y_i - \mu)^2 = 0$$

$$\Rightarrow \hat{\sigma}^2_{\text{ML}} = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$
Maximum Likelihood Estimation

Large-sample Properties

For large \(n \) (and under certain regularity conditions), the MLE is approximately normally distributed:

\[
\hat{\theta}_{\text{ML}} - \theta_0 \approx \mathcal{N}(0, C)
\]

Assume: Model is correctly specified (\(Y \) is sampled from density \(f(\cdot|\theta_0) \)).

Then the covariance matrix \(C \) is given by

\[
C = I(\theta_0)^{-1}
\]

where \(I(\theta_0) \) is the expected (Fisher) information (matrix)

\[
I(\theta) = \mathbb{E}(I(\theta|Y)|\theta) = \int I(\theta|y) f_Y(y|\theta) \, dy
\]

and

\[
I(\theta|Y) = -\frac{\partial^2 l_n(\theta|Y)}{\partial \theta^2}
\]

is the observed information (matrix).

Example: \(Y_i \overset{\text{iid}}{\sim} \mathcal{N}(\mu_0, \sigma_0^2) \)

\[
I(\mu, \sigma^2|Y) = \left(\begin{array}{cc} \frac{n}{\sigma^2} (\bar{Y} - \mu) & -\frac{n}{\sigma^2} (\bar{Y} - \mu) \\ -\frac{n}{\sigma^2} (\bar{Y} - \mu) & \frac{n}{\sigma^4} \sum_{i=1}^{n} (Y_i - \mu)^2 \end{array} \right)
\]

Note that at \((\hat{\mu}, \hat{\sigma}^2)\), the observed Fisher information becomes

\[
I(\hat{\mu}, \hat{\sigma}^2|Y) = \left(\begin{array}{cc} \frac{n}{\sigma^2} & 0 \\ 0 & \frac{n}{\sigma^4} \end{array} \right).
\]

The expected information matrix is

\[
I(\mu, \sigma^2) = \left(\begin{array}{cc} \frac{n}{\sigma^2} & 0 \\ 0 & \frac{n}{\sigma^4} \end{array} \right).
\]
Maximum Likelihood Estimation

Confidence interval for θ:
An approximate $(1 - \alpha)$ confidence interval for θ_j is
\[
\hat{\theta}_j \pm z_{\alpha/2} \sqrt{I(\hat{\theta}|Y)_{jj}^{-1}}
\]
or
\[
\hat{\theta}_j \pm z_{\alpha/2} \sqrt{I(\hat{\theta})_{jj}^{-1}}
\]

Incorrect specified model
If the model is incorrectly specified and the data Y are sampled from a true density f^* then the ML estimate converges to the value θ^* which minimizes the Kullback-Leibler information
\[
\mathbb{E} \left[\log \left(\frac{f(Y|\theta)}{f^*(Y)} \right) \right].
\]
In this case, we have
\[
\hat{\theta}_{ML} - \theta^* \approx \mathcal{N}(0, C^*)
\]
where
\[
C^* = I(\theta^*)^{-1} K(\theta^*) I(\theta^*)^{-1}
\]
and
\[
K(\theta) = \mathbb{E} \left(S(\theta|Y) S(\theta|Y)^T \right).
\]
In that case, the covariance matrix can be estimated by the estimator
\[
\hat{C}^* = I(\hat{\theta}|Y)^{-1} \hat{K}(\hat{\theta}) I(\hat{\theta}|Y)^{-1}.
\]
where
\[
\hat{K}(\theta) = S(\theta|Y) S(\theta|Y)^T.
\]
Newton-Raphson Method

Aim: Find $\hat{\theta}$ such that

$$S(\hat{\theta}|Y) = \frac{\partial l_n(\theta|Y)}{\partial \theta} \bigg|_{\theta=\hat{\theta}} = 0.$$

Problem: Analytic solution of likelihood equations not always available.

Example: Randomly censored normal data

$$L_n(\theta|Y_{\text{obs}}, R) = \prod_{i=1}^{m} \frac{1}{\sigma} \varphi \left(\frac{Y_i - \mu}{\sigma} \right) \prod_{i=m+1}^{n} \left[1 - \Phi \left(\frac{c - \mu}{\sigma} \right) \right]$$

Example: Bivariate normal data, both variables subject to nonresponse

$$L_n(\theta|Y_{\text{obs}}) = \prod_{i=1}^{l} f_{Y_i}(Y_i|\mu, \Sigma) \prod_{i=l+1}^{m} f_{Y_{i1}}(Y_{i1}|\mu_1, \sigma_1^2) \prod_{i=m+1}^{n} f_{Y_{i2}}(Y_{i2}|\mu_2, \sigma_2^2)$$

Computational approach: Solve likelihood equation iteratively

Let $\theta^{(k)}$ be the current estimate. Taylor expansion of the score function about $\theta^{(k)}$ yields

$$S(\hat{\theta}|Y) \approx S(\theta^{(k)}|Y) - I(\theta^{(k)}|Y)(\hat{\theta} - \theta^{(k)})$$

Since $S(\hat{\theta}|Y) = 0$ ($\hat{\theta}$ maximizes $l_n(\theta|Y)$) we obtain

$$\hat{\theta} \approx \theta^{(k)} + I(\theta^{(k)}|Y)^{-1} S(\theta^{(k)}|Y).$$

This suggests the following iteration:

Newton-Raphson method:

$$\hat{\theta}^{(k+1)} = \hat{\theta}^{(k)} + I(\hat{\theta}^{(k)}|Y)^{-1} S(\hat{\theta}^{(k)}|Y)$$
Newton-Raphson Method

Example: Censored exponentially distributed observations

Suppose that \(T_i \overset{iid}{\sim} \text{Exp}(\theta) \) and that the censored times

\[
Y_i = \begin{cases}
T_i & \text{if } T_i \leq C \\
C & \text{otherwise}
\end{cases}
\]

are observed. Let \(m \) be the number of uncensored observations. Then

\[
l_n(\theta|Y) = m \log(\theta) - \theta \sum_{i=1}^{n} Y_i
\]

with first and second derivative

\[
\frac{\partial l_n(\theta|Y)}{\partial \theta} = \frac{m}{\theta} - \sum_{i=1}^{n} Y_i \quad \text{and} \quad \frac{\partial^2 l_n(\theta|Y)}{\partial \theta^2} = -\frac{m}{\theta^2}
\]

Thus we obtain for the observed and expected information

\[
I(\theta|Y) = I(\theta) = \frac{m}{\theta^2}.
\]

Thus the MLE can be obtained be the Newton-Raphson iteration

\[
\hat{\theta}^{(k+1)} = \hat{\theta}^{(k)} + \left(\frac{\hat{\theta}^{(k)}}{m}\right) \cdot \left(\frac{m}{\hat{\theta}^{(k)}} - \sum_{i=1}^{n} Y_i\right)
\]

Numerical example: Choose starting value in (0, 1)

<table>
<thead>
<tr>
<th>Iteration k</th>
<th>Starting value</th>
<th>0.01</th>
<th>0.4</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0096</td>
<td>0.0764</td>
<td>-0.1307</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0374</td>
<td>0.1264</td>
<td>-0.3386</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.1084</td>
<td>0.1805</td>
<td>-1.1947</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2157</td>
<td>0.2137</td>
<td>-8.8546</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.2097</td>
<td>0.2209</td>
<td>-372.3034</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.2205</td>
<td>0.2211</td>
<td>-627630.4136</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.2211</td>
<td>0.2211</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.2211</td>
<td>0.2211</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.2211</td>
<td>0.2211</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.2211</td>
<td>0.2211</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
Newton-Raphson Method

Implementation in R:

```r
# Log-likelihood, 1st & 2nd derivative
ln<-function(p,Y,R) {
  m<-sum(R==1)
  ln<-m*log(p)-p*sum(Y)
  attr(ln,"gradient")<-m/p-sum(Y)
  attr(ln,"hessian")<-m/p^2
  ln
}
# Newton-Raphson method
newmle<-function(p,ln,...) {
  l<-ln(p,...)
  pnew<-p-attr(l,"gradient")/attr(l,"hessian")
  pnew
}
# Simulate censored data ~ Exp(1/5)
Y<-rexp(10,1/5)
R<-ifelse(Y>10,0,1)
Y[R==0]=10
# Plot first derivative of the log-likelihood
x<-seq(0.05,0.6,0.01)
plot(x,attr(ln(x,Y,R),"gradient"),type="l",
  xlab=expression(theta),ylab="Score function")
abline(0,0)
# Apply Newton-Raphson iteration 3 times
# Starting value p=0.3
p<-0.3
p<-newmle(p,ln,Y=Y,R=R)
p
p<-newmle(p,ln,Y=Y,R=R)
p
p<-newmle(p,ln,Y=Y,R=R)
p
```

First iteration

Second iteration

Third iteration
Newton-Raphson Method

Example: t distribution
Suppose that Y_1, \ldots, Y_n are independently sampled from the density

$$f_{Y_i}(y|\mu) = \frac{1}{\sqrt{\pi} \Gamma(\frac{1}{2})} (1 + (y - \mu)^2)^{-1}$$

(t distribution with one degree of freedom and noncentrality parameter μ). The log-likelihood function and its first and second derivative are given by

$$l_n(\mu|Y) = -\sum_{i=1}^{n} \log \left(1 + (Y_i - \mu)^2\right)$$

$$\frac{\partial l_n(\mu|Y)}{\partial \mu} = 2 \sum_{i=1}^{n} (Y_i - \mu) (1 + (Y_i - \mu)^2)^{-1}$$

$$\frac{\partial^2 l_n(\mu|Y)}{\partial \mu^2} = 2 \sum_{i=1}^{n} \left[2(Y_i - \mu)^2(1 + (Y_i - \mu)^2)^{-2} - (1 + (Y_i - \mu)^2)^{-1}\right]$$

Now suppose that $Y = (-1.318, 0.613, -6.004, -22.687)^T$.

![Graphs showing log-likelihood, score function, and Newton-Raphson iteration and convergence.](image-url)
Alternative Methods

Quasi-Newton methods
Use iterative approximation

\[
\hat{\theta}^{(k+1)} = \hat{\theta}^{(k)} - A^{-1} S(\hat{\theta}^{(k)} | Y),
\]

where \(A\) is an approximation to the Hessian matrix \(-I(\hat{\theta}^{(k)} | Y)\).

Modified Newton methods
- *Fisher’s scoring method:*
 Replace observed information \(I(\hat{\theta}^{(k)} | Y)\) by expected information

\[
I(\hat{\theta}^{(k)}) = \mathbb{E}(I(\hat{\theta}^{(k)} | Y) | \hat{\theta}^{(k)})
\]

- *Variant:* If the model is correctly specified

\[
I(\theta_0) = \text{var}(S(\theta_0 | Y)S(\theta_0 | Y)^T).
\]

For iid data, this suggests to approximate \(I(\hat{\theta}^{(k)})\) by

\[
\sum_{i=1}^{n} S(\hat{\theta}^{(k)} | Y_i)S(\hat{\theta}^{(k)} | Y_i)^T - \frac{1}{n} S(\hat{\theta}^{(k)} | Y)S(\hat{\theta}^{(k)} | Y)^T,
\]

where \(S(\hat{\theta}^{(k)} | Y_i)\) is the score function based on a single observation.