STAT391, Lecture 6

Market portfolios and change of numeraire

We start with the same setup as in Lecture 5, i.e. we let \(X(t) = (X_1(t), \ldots, X_d(t))^\top \) be a \(d \)-dimensional stochastic process of observable, but not necessarily tradable quantities. Assume that the dynamics of \(X \) satisfies

\[
dX(t) = \mu(t, X(t))dt + \delta(t, X(t))dW(t),
\]

where \(W \) is an \(n \)-dimensional Brownian motion, \(\mu(t, x) \) a \(d \) vector and \(\delta(t, x) \) a \(d \times n \) matrix. It is assumed that \(\mu \) and \(\delta \) are such that (0.1) has a unique solution. We will let the filtration \(\{\mathcal{F}_t\}_{t \geq 0} \) be generated by \(W \). In addition we assume that the short rate of interest is of the form \(r_t = r(t, X(t)) \). As in Lecture 5, we may have \(r(t, x) = x_d \), in which case \(r \) follows an SDE.

To avoid extra notational complexities, we assume that we work under the risk neutral probability measure \(\bar{P} \), i.e. that \(P = \bar{P} \). For simplicity we just write \(P \) instead of \(\bar{P} \) and \(W \) instead of \(\bar{W} \). In case these measures are not equal, the process of going from \(P \) to \(\bar{P} \) is described in Theorem 0.1, Lecture 5. Furthermore, we shall assume that all conditions of Theorem 0.1, Lecture 5 are satisfied, and we will freely use results from that theorem.

In addition to the observable but not necessarily tradable process \(X \), we shall assume the existence of \(k + 1 \) tradable securities \(S(t) = (S_0(t), \ldots, S_k(t))^\top \). Since we are working under the risk neutral measure, it follows from Equation (0.25), Lecture 5, that the locally riskless return of \(S_i(t) \) equals \(r_i \) for all \(i = 0, 1, \ldots, k \). It is then assumed that \(S \) has the dynamics

\[
dS(t) = r_i S(t)dt + \text{diag}(S(t))\sigma(t, X(t))dW(t),
\]

where \(\text{diag}(S(t)) \) is a \((k + 1) \times (k + 1) \) diagonal matrix with the elements of \(S \) on its diagonal. Written in terms of the elements, we get

\[
dS_i(t) = r_i S_i(t) + S_i(t)\sigma_i(t, X(t))dW(t).
\]

We may for example let \(S_k(t) = B(t) = e^{\int_0^t r_s ds} \), in which case \(\sigma_k(t, X(t)) = 0 \).

If \(Y = \Phi(X(T), S(T)) \) is an \(\mathcal{F}_T \)-measurable contingent claim, to be delivered at \(T \), we know from equation (0.20), Lecture 5, that the price of \(Y \) at time \(t \leq T \) equals

\[
\Pi_Y(t, T) = E \left[\Phi(X(T), S(T))e^{-\int_t^T r(s, X(s)) ds} \bigg| \mathcal{F}_t \right].
\]

Consider now a numeraire process \(\beta \) given by

\[
d\beta(t) = \mu_\beta(t)dt + \sigma_\beta(t)dW(t),
\]

1
and it is assumed that the process β is always positive. Later we will let β just equal the tradeable process $S_0(t)$, and then $\mu_\beta(t) = r_1 S_0(t)$ and $\sigma_\beta(t) = S_0(t) \sigma_0(t, X(t))$. However, for the time being, β is just a nonnegative numeraire process. Using β as a numeraire, the normalized economy $Z(t) = Z_0(t), \ldots, Z_k(t)$ is

$$Z_i(t) = \frac{S_i(t)}{\beta(t)}, \ i = 1, \ldots, k.$$

Here are some more definitions

Definition 0.1 We have the following definitions.

- A portfolio strategy is any adapted, $k + 1$-dimensional process

 \[h(t) = (h_0(t), \ldots, h_k(t)). \]

- The S-value process corresponding to h is

 \[V^S(t; h) = h'(t)S(t) = \sum_{i=0}^{k} h_i(t)S_i(t). \]

 It is S-self financing if

 \[dV^S(t; h) = h'(t)dS(t) = \sum_{i=0}^{k} h_i(t)dS_i(t). \]

- The Z-value process corresponding to h is

 \[V^Z(t; h) = h'(t)Z(t) = \sum_{i=0}^{k} h_i(t)Z_i(t). \]

 It is Z-self financing if

 \[dV^Z(t; h) = h'(t)dZ(t) = \sum_{i=0}^{k} h_i(t)dZ_i(t). \]

- An \mathcal{F}_T-measurable contingent claim is said to be S-attainable if there exists an S-self financing portfolio strategy h so that

 \[V^S(T; h) = Y. \]

 It is Z-attainable if there exists a Z-self financing portfolio strategy h so that

 \[V^Z(T; h) = Y. \]
We have the following easy, but important result

Theorem 0.1 With the above notation

a) The value processes \(V^S \) and \(V^Z \) are connected by

\[
V^Z(t; h) = \frac{1}{\beta(t)} V^S(t; h).
\]

b) A portfolio is \(S \)-self financing if and only if it is \(Z \)-self financing.

c) An \(\mathcal{F}_T \)-measurable contingent claim is \(S \)-attainable if and only if the \(\mathcal{F}_T \)-measurable contingent claim

\[
\frac{Y}{\beta(T)}
\]

is \(Z \)-attainable.

Proof For part a, just note that

\[
V^Z(t; h) = h'(t)Z(t) = \frac{1}{\beta(t)} h'(t)S(t) = \frac{1}{\beta(t)} V^S(t; h).
\]

For part b, assume that the portfolio \(h \) is \(S \)-self financing. Then we have (dropping the function argument \(t \)),

\[
\begin{align*}
Z &= \beta^{-1}S \\
V^S &= h'S \\
V^Z &= \beta^{-1}V^S \\
dV^S &= h'dS.
\end{align*}
\]

We must prove

\[
dV^Z = h'dZ. \tag{0.4}
\]

The rule for differentiating a product gives

\[
dZ = d(\beta^{-1}S) = \beta^{-1}dS + Sd\beta^{-1} + dSd\beta^{-1}.
\]

Therefore (0.4) follows because

\[
\begin{align*}
h'dZ &= h'(\beta^{-1}dS + Sd\beta^{-1} + dSd\beta^{-1)} \\
&= \beta^{-1}dV^S + V^Sd\beta^{-1} + dV^Sd\beta^{-1} \\
&= d(\beta^{-1}V^S) = dV^Z.
\end{align*}
\]

A similar argument applies if we assume that the portfolio \(h \) is \(Z \)-self financing.
Finally for part c, if Y is S-attainable, then there is an S-self financing portfolio h so that $V^S(T; h) = Y$. However, by part b, this portfolio will be self financing for $V^Z(T; h)$, but from part a,

$$V^Z(T; h) = \frac{V^S(T; h)}{\beta(T)} = \frac{Y}{\beta(T)}.$$

The other way is proved in an identical way.

Since arbitrage portfolios and attainable contingent claims are defined in terms of self financing portfolios, the last theorem gives

Theorem 0.2 With the above notation and definitions

a) The S-market is arbitrage free if and only if the Z-market is arbitrage free.

b) The S-market is complete if and only if the Z-market is complete.

c) A price process $\Pi(t)$ is an arbitrage free process in the S-market if and only if the the process $\frac{\Pi(t)}{\beta(t)}$ is an arbitrage free process in the Z-market.

d) The following relationship holds between price processes for a contingent claim Y

$$\Pi_Y(t, T) = \beta(t)\Pi_{Y/\beta(T)}(t, T).$$

Proof For part a, if starting with nothing in the S-market can give Y at time T, where $Y \geq 0$ and $P(Y > 0) > 0$, then the same strategy gives $\frac{Y}{\beta(T)}$ in the Z-market, and since $\beta(T) > 0$, the result follows since this argument also works in the opposite direction. Parts b and c is a straightforward application of Theorem 0.1. For part d, by definition $\Pi_Y(t, T) = \Pi^Y_S(t, T)$ is an arbitrage free price process for Y in the S-market, hence by part c, $\frac{\Pi_Y(t, T)}{\beta(t)}$ is an arbitrage free price process for $\frac{Y}{\beta(T)}$ in the Z-market. But $\Pi^Z_{Y/\beta(T)}(t, T)$ is also an arbitrage free price process for $\frac{Y}{\beta(T)}$ in the Z-market, hence these two processes must be equal, i.e.

$$\Pi_Y(t, T) = \beta(t)\Pi^Z_{Y/\beta(T)}(t, T).$$

From now on we let the numeraire process β be equal to S_0, so in particular it is assumed that $S_0(t) > 0$ for all t. Note also that this choice of numeraire gives $Z_0(t) = 1$.

Assume that the process η given by
d

$$d\eta_t = \eta_t\sigma_0(t, X(t))dW(t), \quad \eta_0 = 1$$

is a martingale on $[0, T]$. A sufficient condition is the usual Novikov condition

$$E\left[e^{\frac{1}{2}\int_0^T \eta^2_s ds}\right] < \infty.$$
The solution of the SDE for \(\eta \) is as always
\[
\eta_t = e^{\int_0^t \sigma_0(s, X(s)) \, dW(s) - \frac{1}{2} \int_0^t |\sigma_0(s, X(s))|^2 \, ds},
\]
and by defining the measure \(P^0 \) by
\[
\frac{dP^0}{dP} |_{\mathcal{F}_0} = \eta_t, \tag{0.5}
\]
we know from Girsanov’s theorem that \(W^0 \) given by
\[
W^0(t) = W(t) - \int_0^t \sigma_0'(s, X(s)) \, ds \tag{0.6}
\]
is a Brownian motion under \(P^0 \). Note that the definition of \(P^0 \) only depends on the numeraire \(S_0 \). It is independent of delivery time \(T \), and it is the same for all assets.

We can now state the important theorem.

Theorem 0.3 Let the numeraire be the price process of a traded asset \(S_0 \) with \(S_0(t) > 0 \) for all \(t \). Let the measure \(P^0 \) be defined by (0.5), so that in particular the process \(W^0 \) given by (0.6) is a Brownian motion under \(P^0 \). Also let the process \(Z \) be given by
\[
Z_i(t) = \frac{S_i(t)}{S_0(t)}, \quad i = 0, \ldots, k.
\]

We then have.

a) Under \(P^0 \), the dynamics of the \(Z \)-processes is given by
\[
dZ_i(t) = Z_i(t)(\sigma_i(t, X(t)) - \sigma_0(t, X(t))) \, dW^0(t), \quad i = 0, \ldots, k.
\]

b) Assume that \(Z \) is a martingale. A sufficient condition for this to hold is again the Novikov condition
\[
E \left[e^{\frac{1}{2} \int_0^T |\sigma_i(t, X(t)) - \sigma_0(t, X(t))|^2 \, ds} \right] < \infty, \quad i = 0, \ldots, k.
\]

Then for every attainable \(T \)-claim \(Y \),
\[
\Pi_Y(t, T) = S_0(t)E^0 \left[\frac{Y}{S_0(T)} \bigg| \mathcal{F}_t \right],
\]
where \(E^0 \) denotes expectation under \(P^0 \).

c) Similarly the \(P^0 \) dynamics of \(S \) is given by
\[
dS_i(t) = S_i(t)(r_i + \sigma_i(t, X(t))\sigma_0'(t, X(t))) \, dt + S_i(t)\sigma_i(t, X(t)) \, dW^0(t), \quad i = 0, \ldots, k.
\]
d) Finally the P^0 dynamics of X is given by

$$dX(t) = (\mu(t, X(t)) + \delta(t, X(t))\sigma'_0(t, X(t)))dt + \delta(t, X(t))dW^0(t).$$

Proof We will use the following identification. Let A and B be adapted process, A one dimensional while B n dimensional. Consider the SDE

$$dV(t) = V(t)A(t)dt + V(t)B'(t)dW(t).$$

Then using Itô’s formula on $\log(V(t))$, we get that

$$V(t) = V(0)e^{\int_0^t (A(s) - \frac{1}{2}B(s)^2)ds + \int_0^t B'(s)dW(s)},$$

(0.7)

where of course $B'(t)$ means the transpose of $B(t)$.

Now to the proof of part a. For simplicity we shall write $\sigma_i(t)$ for $\sigma_i(t, X(t))$. Then by (0.2), (0.6) and (0.7)

$$S_i(t) = S_i(0)e^{\int_0^t (r_s - \frac{1}{2}|\sigma_i(s)|^2)ds + \int_0^t \sigma_i(s)dW(s)}$$

$$= S_i(0)e^{\int_0^t (r_s + \sigma_i(s)\sigma'_0(s) - \frac{1}{2}|\sigma_i(s)|^2)ds + \int_0^t \sigma_i(s)dW^0(s)}.$$

Therefore

$$Z_i(s) = S_i(0)e^{\int_0^t (r_s + \sigma_i(s)\sigma'_0(s) - \frac{1}{2}|\sigma_i(s)|^2)ds + \int_0^t \sigma_i(s)dW^0(s)}$$

$$\times (S_0(0))^{-1}e^{-\int_0^t (r_s + \frac{1}{2}|\sigma_0(s)|^2)ds - \int_0^t \sigma_0(s)dW^0(s)}$$

$$= Z_i(0)e^{-\frac{1}{2}\int_0^t |\sigma_i(s) - \sigma_0(s)|^2ds + \int_0^t (\sigma_i(s) - \sigma_0(s))dW^0(s)}.$$

Thus by (0.7),

$$dZ_i(t) = Z_i(t)(\sigma_i(t) - \sigma_0(t))dW^0(t),$$

and this shows part a. By what we have just proved, and the assumption that Z is a martingale under P^0, not just a local martingale, gives by (0.3) and Theorem 0.2, part d,

$$\Pi_Y(t, T) = S_0(t)\Pi_{Y/S_0(t)}^Z(t, T) = S_0(t)E^0\left[\frac{Y}{S_0(T)}\bigg|\mathcal{F}_t\right].$$

The second equality follows since in the Z-market the process Z is a martingale, hence the r process in (0.3) is zero in the Z-market.

To prove part c, just combine the expressions for $S_0(t)$ and $Z_i(t)$ found above to get

$$S_i(t) = S_0(t)Z_i(t) = S_i(0)e^{\int_0^t (r_s + \sigma_i(s)\sigma'_0(s) - \frac{1}{2}|\sigma_i(s)|^2)ds + \int_0^t \sigma_i(s)dW^0(s)}.$$

Therefore, by (0.7)

$$dS_i(t) = S_i(t)(r_t + \sigma_i(t)\sigma'_0(t))dt + S_i(t)\sigma_i(t)dW^0(t),$$

6
and part c is proved. Part d is easily obtained by inserting the definition of W^0 in (0.6) into (0.1). This ends the proof.

Example 1 Consider the situation with $n = k + 1 = 2$, and assume we have two stocks $S_0(t)$ and $S_1(t)$. We are interested in pricing the European contingent claim of the form $Y = \Phi(S_0(T), S_1(T))$, where Φ is homogeneous of degree one, i.e. $\Phi(ax, ay) = a\Phi(x, y)$. Then with $Z_1(t) = \frac{S_1(t)}{S_0(t)}$, we get

$$Y = S_0(T)\Phi(1, Z_1(T)).$$

By Theorem 0.3, part b, the price of Y at time t equals

$$\Pi_Y(t, T) = S_0(t)E^0[\Phi(1, Z_1(T))|\mathcal{F}_t].$$

Now assume that under the risk neutral measure P, S_1 and S_2 follow (see Example 1, Lecture 5),

$$dS_i(t) = r_iS_i(t)dt + S_i(t)\sigma_i dW(t), \quad i = 0, 1,$$

where σ_1 and σ_2 are constant 2-vectors. Then by Theorem 0.3, part a,

$$Z_1(T) = Z_1(t)e^{-\frac{1}{2}[\sigma_1-\sigma_0]'^{\prime\prime}(T-t) + [\sigma_1-\sigma_0]'(W^0(t) - W^0(0))}. \quad (0.8)$$

Now given \mathcal{F}_t, $(\sigma_1 - \sigma_0)'(W^0(T) - W^0(t)) \sim \mathcal{N}(0, |\sigma_1 - \sigma_0|^2(T-t))$ under P^0, and therefore by Theorem 0.3, part a,

$$\Pi_Y(t, T) = S_0(t)\int_{-\infty}^{\infty} \Phi \left(1, \frac{S_1(t)}{S_0(t)}e^{-\frac{1}{2}|\sigma_1-\sigma_0|^2(T-t) + |\sigma_1-\sigma_0|\sqrt{T-t}y} \right) \frac{1}{2\pi} e^{-\frac{1}{2}y^2} dy.$$

It is worth noting that this formula is correct even when the short rate r_t is stochastic. We could for example have

$$dr_t = \mu(t, r_t)dt + \sigma'(t, r_t)d\hat{W}(t),$$

where $\hat{W}(t) = (W'(t), W_3(t))'$ is a 3-dimensional Brownian motion under P.

Now let us look at the exchange option discussed in Example 1, Lecture 5. To be in accordance with the above notation, we denote $S_2(t)$ by $S_0(t)$ and similarly σ_2 by σ_0. Then

$$Y = (S_1(T) - KS_0(T))^+ = S_0(T)(Z_1(T) - K)^+.$$

Therefore, by the above,

$$\Pi_Y(t, T) = S_0(t)E^0[(Z_1(T) - K)^+|\mathcal{F}_t] = S_0(t)E^0[Z_1(T)1_{[Z_1(T) > K]}|\mathcal{F}_t] - KS_0(t)P^0[Z_1(T) > K|\mathcal{F}_t].$$
It follows from (0.8) that $Z_1(T) = e^X$, where conditioned on \mathcal{F}_t, $X \sim \mathcal{N}(\mu, \sigma^2)$ under P^0. Here

$$
\mu = \log Z_1(t) - \frac{1}{2}\left| \sigma_1 - \sigma_0 \right|^2(T - t),
$$

$$
\sigma^2 = \left| \sigma_1 - \sigma_0 \right|^2(T - t).
$$

Using that

$$
S_0(t)e^{\mu + \frac{1}{2}\sigma^2} = S_0(t)Z_1(t)e^0 = S_1(t),
$$

Lemma 0.1, Lecture 4, gives that

$$
\Pi_Y(t, T) = S_1(t)N\left(\frac{\log \left(\frac{S_1(t)}{K_{S_0(t)}} \right) + \frac{1}{2}\left| \sigma_1 - \sigma_0 \right|^2(T - t)}{\left| \sigma_1 - \sigma_0 \right|\sqrt{T - t}} \right)
$$

$$
- S_0(t)N\left(\frac{\log \left(\frac{S_1(t)}{K_{S_0(t)}} \right) - \frac{1}{2}\left| \sigma_1 - \sigma_0 \right|^2(T - t)}{\left| \sigma_1 - \sigma_0 \right|\sqrt{T - t}} \right)
$$

Example 2 Assume that under the risk neutral measure P the dynamics of a T-bond follows

$$
dP(t, T) = r_t P(t, T) dt + P(t, T) v'(t, T) dW(t)
$$

and the dynamics of a stock follows

$$
dS_t = r_t S_t dt + S_t \sigma'(t) dW(t).
$$

Here W is a 2-dimensional Brownian motion, and $v(t, T)$ and $\sigma(t)$ are two 2-dimensional vectors. We assume that both $v(t, T)$ and $\sigma(t)$ are nonstochastic.

Our aim is to price a European call option on the stock. Delivery time is T and exercise price is K, so that

$$
Y = (S_T - K)^+.
$$

The price of Y at time t equals

$$
\Pi_Y(t, T) = E\left[e^{-\int_t^T r_s ds} (S_T - K)^+ | \mathcal{F}_t \right]
$$

$$
= E\left[e^{-\int_t^T r_s ds} S_T 1_{\{S_T > K\}} | \mathcal{F}_t \right] - KE\left[e^{-\int_t^T r_s ds} 1_{\{S_T > K\}} | \mathcal{F}_t \right]
$$

$$
= \alpha_t - K \beta_t
$$

We will now calculate α_t and β_t separately, using different changes of numeraire.

To find α_t, let $S_0(t) = S_t$ and $S_1(t) = P(t, T)$, giving $Z_1(t) = \frac{P(t, T)}{S_t}$. Then Theorem 0.3a gives,

$$
\alpha_t = S_tE^0[1_{\{S_T > K\}} | \mathcal{F}_t]
$$
\begin{align*}
 &= S_t P^0(S_T > K \mid \mathcal{F}_t) \\
 &= S_t P^0 \left(\frac{1}{S_T} < \frac{1}{K} \mid \mathcal{F}_t \right) \\
 &= S_t P^0 \left(\frac{P(T, T)}{S_T} < \frac{1}{K} \mid \mathcal{F}_t \right) \\
 &= S_t P^0 \left(Z_1(T) < \frac{1}{K} \mid \mathcal{F}_t \right).
\end{align*}

By Theorem 0.3b,
\[dZ_1(t) = Z_1(t)(v(t, T) - \sigma(t))'dW^0(t), \]
hence as in (0.8),
\[Z_1(T) = Z_1(t) e^{-\frac{1}{2} \int_t^T |v(s, T) - \sigma(s)|^2 ds + \int_t^T (v(s, T) - \sigma(s))'dW^0(s)}. \tag{0.9} \]

Therefore, we can write \(Z_1(T) = e^{X} \), where \(X \) given \(\mathcal{F}_t \) follows \(X \sim \mathcal{N}(\mu, a^2(t, T)) \) under \(P^0 \), with
\begin{align*}
 \mu &= \log Z_1(t) - \frac{1}{2} a^2(t, T), \\
 a^2(t, T) &= \int_t^T |v(s, T) - \sigma(s)|^2 ds.
\end{align*}

This yields,
\[\alpha_t = S_t P^0(X \leq -\log K \mid \mathcal{F}_t) = S_t N \left(\frac{\log \left(\frac{S_t}{KP(T, T)} \right) + \frac{1}{2} a^2(t, T)}{a(t, T)} \right). \]

To calculate \(\beta_t \), let \(S_0(t) = P(t, T) \) and \(\hat{S}_t(t) = S_t \). Since this is the opposite of what we did when working with \(\alpha_t \), the hat is added to observe the difference. We shall also write \(\hat{P}^0 \) as well as \(\hat{E}^0 \) to observe the difference of the two changes of numeraire employed here and above. Then since \(P(T, T) = 1 \),
\begin{align*}
 \beta_t &= P(t, T) \hat{E}^0[1_{\{S_T > K\}} \mid \mathcal{F}_t] \\
 &= P(t, T) \hat{P}^0(S_T > K \mid \mathcal{F}_t) \\
 &= P(t, T) \hat{P}^0 \left(\frac{S_T}{P(T, T)} > K \mid \mathcal{F}_t \right) \\
 &= P(t, T) \hat{P}^0(\hat{Z}_1(T) > K \mid \mathcal{F}_t).
\end{align*}

Again by Theorem 0.3b,
\[d\hat{Z}_1(t) = \hat{Z}_1(t)(\sigma(t) - v(t, T))'d\hat{W}^0(t), \]
where \(\hat{W}^0 \) is a 2-dimensional Brownian motion w.r.t. the measure \(\hat{P}^0 \). Now as in (0.9), \(\hat{Z}_1(T) = e^{\hat{X}} \), where given \(\mathcal{F}_t \), \(\hat{X} \) has the \(\hat{P}^0 \) distribution \(\hat{X} \sim \mathcal{N}(\hat{\mu}, a^2(t, T)) \) with
\[
\hat{\mu} = \log \hat{Z}_1(t) - \frac{1}{2}a^2(t, T),
\]
and \(a^2(t, T) \) is as above. Then Lemma 0.1a, Lecture 4, gives
\[
\beta_t = P(t, T)\hat{P}^0(\hat{X} > \log K|\mathcal{F}_t) = P(t, T)N \left(\frac{\log \left(\frac{S_t}{KP(t, T)} \right) - \frac{1}{2}a^2(t, T)}{a(t, T)} \right).
\]
Note that the change of numeraire employed to calculate \(\beta_t \) is nothing more than going from the risk neutral measure to the forward measure \(P^F \) introduced in Lecture 4, so that \(\hat{P}^0 = P^F \). To summarize we have.

Theorem 0.4 Assume that under the risk neutral measure \(P \) the dynamics of a \(T \)-bond follows
\[
dP(t, T) = r_tP(t, T)dt + P(t, T)v'(t, T)dW(t)
\]
and the dynamics of a stock follows
\[
dS_t = r_tS_tdt + S_t\sigma'(t)dW(t).
\]
Here \(W \) is a 2-dimensional Brownian motion, and \(v(t, T) \) and \(\sigma(t) \) are two 2-dimensional vectors. We assume that both \(v(t, T) \) and \(\sigma(t) \) are nonstochastic.

Then the price of a European call option on the stock, exercise price \(K \) and delivery time \(T \), i.e. on
\[
Y = (S_T - K)^+,
\]
equals
\[
\Pi_Y(t, T) = S_tN(d(t, T)) - KP(t, T)N(d(t, T) - a(t, T)),
\]
where
\[
d(t, T) = \frac{\log \left(\frac{S_t}{KP(t, T)} \right) + \frac{1}{2}a^2(t, T)}{a(t, T)},
\]
\[
a^2(t, T) = \int_t^T |v(s, T) - \sigma(s)|^2ds.
\]