

Lecture 19 Chapter 8 Queueing Models

Let

\[X(t) = \# \text{ of customers in the system at time } t \]
\[Q(t) = \# \text{ of customers waiting in queue at time } t \]

Assume that \(\{X(t), t \geq 0\} \) and \(\{Q(t), t \geq 0\} \) has a stationary distribution.

\[L = \lim_{t \to \infty} \frac{\int_0^t X(s) \, ds}{t} = \text{the average } \# \text{ of customers in the system} \]
\[L_Q = \lim_{t \to \infty} \frac{\int_0^t Q(s) \, ds}{t} = \text{the average } \# \text{ of customers waiting in queue} \]
\[W = \text{the average amount of time, including waiting time and service time, a customer spends in the system; } \]
\[W_Q = \text{the average amount of time a customer waiting in queue.} \]

Lecture 19 - 1

Cost Identity

Many interesting and useful relationships between quantities in Queueing models can be obtained by using the cost identity.

Imagine that entering customers are forced to pay money (according to some rule) to the system. We would then have the following basic cost identity:

average rate at which the system earns

\[= \lambda \cdot \text{average amount an entering customer pays} \]

Proof. Let \(R(t) \) be the amount of money the system has earned by time \(t \). Then we have

average rate at which the system earns

\[= \lim_{t \to \infty} \frac{R(t)}{t} = \lim_{t \to \infty} \frac{N(t) R(t)}{N(t)} = \lim_{t \to \infty} \frac{R(t)}{N(t)} \]

\[= \lambda \cdot \text{average amount an entering customer pays,} \]

provided that the limits exist.

Lecture 19 - 3

8.3.1 M/M/1 Model

Let \(X(t) \) be number of customers in the system at time \(t \).
\(\{X(t), t \geq 0\} \) is a birth and death process with

birth rates \(\lambda_j \equiv \lambda \), and death rates \(\mu_j \equiv \mu \).

Recall in Example 6.14 we have showed that the stationary distribution exists when \(\lambda < \mu \), and the stationary distribution is

\[P_n = \lim_{t \to \infty} P(X(t) = n) = \left(1 - \frac{\lambda}{\mu}\right)^n \frac{\lambda^n}{n!}, \quad n = 0, 1, \ldots \]

Thus

\[L = \lim_{t \to \infty} \sum_{n=1}^{\infty} n P(X(t) = n) = \sum_{n=1}^{\infty} n P_n = \frac{\lambda}{\mu - \lambda} \]

\[= \frac{1/\mu}{1/\lambda - 1/\mu} \]

Lecture 19 - 5

Little’s Formula

Let

\[N(t) = \# \text{ of customers enter the system at or before time } t. \]

We define \(\lambda \) be the arrival rate of entering customers,

\[\lambda = \lim_{t \to \infty} \frac{N(t)}{t} \]

Little’s Formula:

\[L = \lambda W \]
\[L_Q = \lambda W_Q \]

Lecture 19 - 2

Proof of Little’s Formula

To prove \(L = \lambda W \):

- we use the payment rule:
 - each customer pays \$1 per unit time while in the system
- the average amount a customer pay = \(W \), the average waiting time of customers.
- the amount of money the system earns during the time interval \((t, t + \Delta t) \) is \(X(t) \Delta t \), where \(X(t) \) is the number of customers in the system at time \(t \)
- and the rate the system earns is thus \(\lim_{t \to \infty} \frac{\int_0^t X(s) \, ds}{t} = L \), the formula follows from the cost identity.

To prove \(L_Q = \lambda W_Q \), we use the payment rule:

- each customer pays \$1 per unit time while in queue.

The argument is similar.

Lecture 19 - 4

8.3.1 M/M/1 Model (Cont’d)

Let \(T \) be the time of a customer spend in the system.
If there are \(n \) customers in the system while this customer arrives, then \(T \) is the sum of the service times of the \(n+1 \) customers \(\sim \text{Gamma}(n+1, \mu) \). That is,

\[P(T \leq t) = \sum_{n=0}^{\infty} P_n \int_0^t \frac{\mu^{n+1}}{n!} s^n e^{-\mu s} \, ds \]

\[= \sum_{n=0}^{\infty} \left(1 - \frac{\lambda}{\mu}\right)^n \frac{\lambda^n}{n!} \int_0^t \frac{\mu^{n+1}}{n!} s^n e^{-\mu s} \, ds \]

\[= (\mu - \lambda) \int_0^t \frac{(\lambda s)^n}{n!} e^{-\mu s} \, ds \]

\[= (\mu - \lambda) \int_0^t e^{-(\mu - \lambda) s} \, ds = 1 - e^{-(\mu - \lambda) t} \]

Therefore, \(T \sim \text{Exp}(\mu - \lambda) \Rightarrow W = E[T] = \frac{1}{\mu - \lambda} \).

This verifies Little’s formula, \(L = \lambda W \).

Lecture 19 - 6
8.3.1 M/M/1 Model (Cont’d)

\[W_Q = W - \mathbb{E}[\text{service time}] = W - 1/\mu = \frac{\lambda}{\mu(\mu - \lambda)} \]

\[L_Q = \lambda W_Q = \frac{\lambda^2}{\mu(\mu - \lambda)} \]

Example 8.2 Suppose customers arrive at a Poisson rate of 1 in 12 minutes, and that the service time is exponential at a rate of one service per 8 minutes. What are \(L \) and \(W \)?

Solution. Since \(\lambda = 1/12, \mu = 1/8 \), we have

\[L = \frac{1/\mu}{1/\lambda - 1/\mu} = \frac{8}{12 - 8} = 2, \quad W = \frac{1}{\mu - \lambda} = 24 \]

Observe if the arrival rate increases 20% to \(\lambda = 1/10 \), then

\[L = 4, \quad W = 40 \]

When \(\lambda/\mu \approx 1 \), a slight increase in \(\lambda/\mu \) will lead to a large increase in \(L \) and \(W \). Lecture 19 - 7

Birth & Death Queueing Models

In addition to \(M/M/1 \) and \(M/M/\infty \) models, a more general family of birth & death queueing models is the following:

\[M/M/k \]

Queueing System with Balking

Consider the \(M/M/k \) system, but suppose that a customer finds \(n \) others in the system upon his arrival will only join the system with probability \(\alpha_n \), i.e., he balks (walks away) with prob. \(1 - \alpha_n \). This system is a birth and death process with

\[\lambda_n = \lambda \alpha_n, \quad n \geq 0 \]

\[\mu_n = \min(n, k) \mu, \quad n \geq 1 \]

A special case of \(M/M/k \) queueing system with balking is the \(M/M/\infty \) system with finite capacity \(N \), where

\[\alpha_n = \begin{cases} 1 & \text{if } n < N \\ 0 & \text{if } n \geq N \end{cases} \]

Lecture 19 - 9

Birth & Death Queueing Models (Cont’d)

With balking, the rate that customers enter the system is not \(\lambda \) (since not all customers enter the system), but

\[\lambda_k = \sum_{n=0}^{\infty} \lambda_n P_n \]

Consequently, the average waiting time is

\[W = L/\lambda_k = \sum_{n=0}^{\infty} n \lambda_n P_n / \sum_{n=0}^{\infty} \lambda_n P_n \]

and the average amount of time waiting in queue \((W_Q) \) and average number of customers in queue \((L_Q) \) are respectively

\[W_Q = W - \mathbb{E}[\text{service time}] = W - 1/\mu \]

\[L_Q = \lambda Q W_Q \]

Lecture 19 - 11

M/M/\infty Model

In this case, customers will be served immediately upon arrival. Nobody will be in queue. We have

\[W_Q = \lambda Q = 0, \quad W = \text{average service time} = 1/\mu \]

and hence \(L = \lambda W = \lambda/\mu \).

As a verification, observe that \(\{X(t), t \geq 0\} \) is a birth and death process with

birth rates \(\lambda_j \equiv \lambda \) and death rates \(\mu_j \equiv \mu \).

The stationary distribution is

\[P_n = \frac{\lambda^n}{n! \mu^n} P_0 = \frac{\lambda^n}{n! \mu^n} \sum_{n=0}^{\infty} \frac{1}{n!} = e^{-\lambda/\mu} (\lambda/\mu)^n, \quad n = 0, 1, \ldots \]

Therefore \(X(t) \sim \text{Poisson}(\lambda/\mu) \) as \(t \to \infty \).

\[L = \mathbb{E}[X(t)] = \lambda/\mu \]

Lecture 19 - 10

Birth & Death Queueing Models

For a birth & death queueing model, the stationary distribution of the number of customers in the system is given by

\[P_k = \lim_{t \to \infty} P(X(t) = k) = \frac{\lambda_0 \lambda_1 \cdots \lambda_{k-1} / (\mu_1 \mu_2 \cdots \mu_k)}{1 + \sum_{n=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n}}, \quad k \geq 1 \]

The necessary and sufficient condition for such a stationary distribution to exist is that

\[\sum_{n=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} < \infty. \]

With \(\{P_n\} \), the average number of customers in the system is simply

\[L = \sum_{n=0}^{\infty} n P_n \]

Lecture 19 - 10

Busy Period in a Birth & Death Queueing Model

There is a alternating renewal process embedded in a birth & death queueing model. We say a renewal occurs if the system become empty.

Using the alternating renewal theory, the long-proportion of time that the system is empty is \(\mathbb{E}[\text{idle}] / (\mathbb{E}[\text{idle}] + \mathbb{E}[\text{Busy}]) \), where

\[\mathbb{E}[\text{idle}] = \text{expected length of an idle period} \]

\[\mathbb{E}[\text{Busy}] = \text{expected length of a busy period} \]

Also note that the long-run proportion of time that the system is empty is simply \(P_0 = \lim_{t \to \infty} P(X(t) = 0) \). Since the length of an idle period \(\sim \text{Exp}(\lambda_0) \), we have \(\mathbb{E}[\text{idle}] = 1/\lambda_0 \). In summary, we have that

\[P_0 = \frac{1/\lambda_0}{1/\lambda_0 + \mathbb{E}[\text{Busy}]} \]

or

\[\mathbb{E}[\text{Busy}] = \frac{1 - P_0}{\lambda_0 P_0} \]

Lecture 19 - 12