7.4 Renewal Reward Processes

7.5.1 Alternating Renewal Processes

Proof of Proposition 7.3(a)

We give the proof for (a) only. To prove this, write

\[R(t) = \frac{\sum_{n=1}^{N(t)} R_n}{N(t)} = \frac{\sum_{n=1}^{N(t)} R_n}{N(t)} \times \frac{N(t)}{t} \]

By the strong law of large numbers we obtain

\[\frac{\sum_{n=1}^{N(t)} R_n}{N(t)} \rightarrow E[R_1] \quad \text{as } t \to \infty \]

and by Proposition 7.1

\[\frac{N(t)}{t} \rightarrow \frac{1}{E[X_1]} \quad \text{as } t \to \infty \]

The result thus follows.

Example 7.12 (A Car Buying Model) Solution

- An event occurs whenever Mr. Brown buys a new car
- Interarrival times: \(X_i = \min(Y_i, T) \)
- Cost incurred in the \(i \)th cycle: \(R_i = C_1 + C_2 1_{(Y_i \leq T)} \)
- Are \((X_i, R_i) \), \(i = 1, 2, \ldots \) i.i.d?

\[E[X_i] = \int_0^\infty \min(y, T)h(y)dy = \int_0^T yh(y)dy + T(1 - H(T)) \]

\[E[R_i] = C_1 + C_2 P(Y_i \leq T) = C_1 + C_2 H(T) \]

- long-run average cost

\[= \frac{C_1 + C_2 H(T)}{\int_0^T yh(y)dy + T(1 - H(T))} \]

7.4 Renewal Reward Processes

Let \(\{N(t), t \geq 0\} \) be a renewal process with i.i.d. interarrival times \(X_i, i = 1, 2, \ldots \). Let \(R_i \), \(i = 1, 2, \ldots \) be i.i.d random variables. \(R_i \) may depend on the \(i \)th interarrival time \(X_i \), but \((X_i, R_i) \) are i.i.d random variable pairs. The compound process

\[R(t) = \sum_{j=1}^{N(t)} R_j \]

is called a renewal reward process. \(R(t) \) may be considered as reward earned during the \(i \)th cycle, and \(R(t) \) represents the total reward earned up to time \(t \).

Proposition 7.3 If \(E[R_1] < \infty \) and \(E[X_1] < \infty \), then

(a) with probability 1, \(\lim_{t \to \infty} \frac{R(t)}{t} = \frac{E[R_1]}{E[X_1]} \)

(b) \(\lim_{t \to \infty} \frac{E[R(t)]}{t} = \frac{E[R_1]}{E[X_1]} \)

Example 7.16 & 7.17

Let \(\{N(t), t \geq 0\} \) be a renewal process with i.i.d. interarrival times \(X_i, i = 1, 2, \ldots \). Consider the current age of the item in use at time \(t \)

\[A(t) = t - S_{N(t)} \]

What is the long-run average of age

\[\lim_{t \to \infty} \frac{\int_{0}^{t} A(s)ds}{t} \]

Also consider the residual life of the item in use at time \(t \)

\[Y(t) = S_{N(t)} + 1 - t \]

What is the long-run average of residual life

\[\lim_{t \to \infty} \frac{\int_{0}^{t} Y(s)ds}{t} \]
Solution to Example 7.16

Let’s try to turn $\int_0^t A(s)ds$ into a renewal reward process:

Note $\int_0^{N(t)} A(s)ds < \int_0^t A(s)ds < \int_0^{N(t)+1} A(s)ds$, and

$$\int_0^{N(t)} A(s)ds = \sum_{i=1}^{N(t)} \int_{S_{i-1}}^{S_i} A(s)ds = \sum_{i=1}^{N(t)} \int_{S_{i-1}}^{S_i} s - S_{i-1}ds$$

$$= \sum_{i=1}^{N(t)} \int_0^{S_i} udu \quad \text{(let } u = s - S_{i-1})$$

$$= \sum_{i=1}^{N(t)} \frac{S_i^2}{2} = R(t),$$

where $R(t) = \sum_{i=1}^{N(t)} R_i$ is a renewal reward process with $R_0 = \frac{X_0^2}{2}$. Similarly, one can show that

$$\int_0^{N(t)+1} A(s)ds = \sum_{i=1}^{N(t)+1} R_i = R(t) + R_{N(t)+1}.$$

Lecture 17 - 7

Solution to Example 7.17

Similarly, from that

$$\int_0^{N(t)} Y(s)ds \leq \int_0^t Y(s)ds \leq \int_0^{N(t)+1} Y(s)ds,$$

one can show that

$$\int_0^{N(t)} Y(s)ds = \sum_{i=1}^{N(t)} \int_{S_{i-1}}^{S_i} (S_i - s)ds = \sum_{i=1}^{N(t)} \int_0^{S_i} udu \quad \text{(let } u = s - S_{i-1})$$

$$= \sum_{i=1}^{N(t)} \frac{X_i^2}{2} = R(t),$$

and that $\int_0^{N(t)+1} Y(s)ds = \sum_{i=1}^{N(t)+1} \frac{X_i^2}{2} = R(t) + R_{N(t)+1}$. By the same argument, the long-run average of residual life of the item in use is

$$\lim_{t \to \infty} \frac{\int_0^t Y(s)ds}{t} = \lim_{t \to \infty} R(t) = \frac{E[R_1]}{E[X_1]} = \frac{E[X_1]^2}{2E[X_1]}$$

Lecture 17 - 9

7.5.1. Alternating Renewal Processes (Cont’d)

The alternating renewal process can be regarded as a reward process with reward $R_i = Z_i$,

$$R(t) = \sum_{i=1}^{N(t)} Z_i$$

Then

$$R(t) \leq \int_0^t U(s)ds \leq R(t) + Z_{N(t)+1}$$

By Proposition 7.3, with probability 1,

$$\lim_{t \to \infty} \frac{R(t)}{t} = \frac{E[Z_1]}{E[X_1]} = \frac{E[Z_1]}{E[Z_1] + E[Y_1]}$$

and hence

$$\lim_{t \to \infty} \frac{\int_0^t U(s)ds}{t} = \lim_{t \to \infty} \frac{R(t)}{t} = \frac{E[Z_1]}{E[Z_1] + E[Y_1]} = \frac{E[ON]}{E[ON] + E[OFF]}$$

Lecture 17 - 11

Definition: A Lattice Distribution

A random variable X is said to have a lattice distribution if there is an $h > 0$ for which

$$\sum_{k=-\infty}^{\infty} P(X = kh) = 1$$

in which the largest h is called the span of X.

Example 1. Many discrete distributions, like Poisson, Binomial, are lattice distributions.

Example 2. Continuous distributions are non-lattice. Mixtures of discrete and continuous distributions are also non-lattice.

Remark: If X_i‘s are i.i.d. with a common lattice distribution, then

$$S_n = X_1 + \ldots + X_n$$

also has a lattice distribution for all n.

Lecture 17 - 12
Theorem: If the distribution of the interarrival times is non-lattice, then

\[
\lim_{t \to \infty} P(\text{the system is on at time } t) = \lim_{t \to \infty} P(U(t) = 1) = \frac{\mathbb{E}[Z]}{\mathbb{E}[Z] + \mathbb{E}[Y]}
\]

Exercise 7.39

- Two independent machines, each functions for an exponential time with rate \(\lambda \)
- A single repairman. All repair times are independent with distribution function \(G \)
- If the repairmen is free when a machine fails, he will begin repairing that machine immediately; Otherwise, then that machine must wait until the other machine has been repaired.
- Once repaired, a machine is as good as new.
- What proportion of time is the repairmen idle?

Lecture 17 - 13

Example 7.23 & 7.24

Let \(\{N(t), t \geq 0\} \) be a renewal process with i.i.d. interarrival times \(X_i, i = 1, 2, \ldots \), where \(\mu = \mathbb{E}[X_1] \) and \(F(x) = P(X_i \leq x) \).

Consider the current age of the item in use at time \(t \)

\[A(t) = t - S_{N(t)} \]

and the residual life of the item in use at time \(t \)

\[Y(t) = S_{N(t)+1} - t \]

Proposition The long-run proportion of time that \(A(t) \leq x \) is the same as the long-run proportion of time that \(Y(t) \leq x \), and is

\[F_e(x) = \frac{1}{\mu} \int_0^x (1 - F(u))du \]

Furthermore, if \(F \) is non-lattice,

\[\lim_{t \to \infty} P(A(t) \leq x) = \lim_{t \to \infty} P(Y(t) \leq x) = F_e(x) \]

Lecture 17 - 15

Example 7.24 (Con’d)

For \(Y(t) \),

- let’s say the system is OFF at time \(t \) if \(Y(t) \leq x \)
- length of OFF time \(Z_i = \min(X_i, x) \)

\[\mathbb{E}[Z_i] = \mathbb{E}[\min(X_i, x)] = \int_0^x (1 - F(u))du \]

- length of a cycle = \(X_i \), \(\mathbb{E}[\text{ON}] + \mathbb{E}[\text{OFF}] = \mathbb{E}[X_i] = \mu \)
- long-run proportion of time that \(Y(t) \leq x \)

\[\frac{\mathbb{E}[\text{OFF}]}{\mathbb{E}[\text{ON}] + \mathbb{E}[\text{OFF}]} = \frac{1}{\mu} \int_0^x (1 - F(u))du \]

Remark 1: The ON time in Example 7.23 is not the same as the ON time in Example 7.24

Lecture 17 - 17

Exercise 7.39 Solutions

- The system is ON when the repairmen is idling, OFF when busy
- length of ON time: \(Z \sim \text{Exp}(2\lambda), \mathbb{E}[Z] = 1/(2\lambda) \)
- length of OFF time \(Y, \mathbb{E}[Y] = ? \)
- \(T = \) the time it takes to repair the first failing machine. \(T \sim G \)
- \(U = \) the time the working machine can function after the first machine failed. By the memoryless property, \(U \sim \text{Exp}(\lambda) \)
- Note that \(Y = T + Y'1_{\{T > U\}} \) where \(Y' \) is the time the repairmen remains busy after the first failing machine is fixed. Note that \(Y' \) is independent of \(T \) and \(U \), and has the same distribution as \(Y \). Thus

\[\mathbb{E}[Y] = \mathbb{E}[T] + \mathbb{E}[Y']P(T > U) = \mathbb{E}[Y] = \frac{\mathbb{E}[T]}{P(T < U)} \]

- long-run proportion of ON time =

Lecture 17 - 14

Example 7.23 (Con’d)

For \(A(t) \),

- let’s say the system is ON at time \(t \) if \(A(t) \leq x \)
- length of ON time \(Y_t = \min(X_t, x) \)

\[\mathbb{E}[Y_t] = \mathbb{E}[\min(X_t, x)] = \int_0^\infty P(\min(X_t, x) > u)du \]

\[= \int_0^\infty (1 - F(u))du \]

- length of a cycle = \(X_t \), \(\mathbb{E}[\text{ON}] + \mathbb{E}[\text{OFF}] = \mathbb{E}[X_t] = \mu \)
- long-run proportion of time that \(A(t) \leq x \)

\[\frac{\mathbb{E}[\text{ON}]}{\mathbb{E}[\text{ON}] + \mathbb{E}[\text{OFF}]} = \frac{1}{\mu} \int_0^\infty (1 - F(u))du \]

Lecture 17 - 16

About \(F_e \)

The density and \(k \)th moment of the distribution \(F_e \) is

\[f_e(x) = \frac{1}{\mu} (1 - F(x)) \]

\[\int_0^\infty x^k f_e(x)dx = \frac{\mathbb{E}[X^{k+1}]}{(k+1)\mathbb{E}[X]} \]

Recall that

\[m(t) = \frac{1}{\mu} - \frac{1}{t} + \frac{\mathbb{E}[Y(t)]}{\mu t} \]

If \(F \) is non-lattice, since the limiting distribution of \(Y(t) \) is \(F_e \), we have

\[\lim_{t \to \infty} \mathbb{E}[Y(t)] = \frac{\mu^2 + \sigma^2}{2\mu} \]

Thus

\[m(t) = \frac{t}{\mu} - 1 + \frac{\mu^2 + \sigma^2}{2\mu^2} + o(t) \]

\[= \frac{t}{\mu} + \frac{\sigma^2 - \mu^2}{2\mu^2} + o(t) \]

Lecture 17 - 18