
Stat 317/253 Winter 2014 HW #4 January 17

Due Friday January 24th, in class (at the beginning of the lecture period)

Readings: [IPM10e] Section 4.4, p.214-230 (skip Example 4.26 on p.225-228)

Problems to Turn In:

1. [IPM10e] Exercise 4.15

2. (This problem is to show that an irreducible finite-state Markov chain is positive
recurrent.) Let {Xn, n ≥ 0} be an irreducible Markov chain with M states (M <∞).

(a) Use Problem 1 ([IPM10e] Exercise 4.15) above to show that there exists a δ > 0 such
that for all i, the probability of reaching j some time in the first M steps, starting at i, is
greater than δ.

(b) Use part (a) to show that there exist C <∞ and ρ < 1 such that for any states i, j,

P(Xm 6= j,m = 0, . . . , n|X0 = i) < Cρn.

(c) Use part (b) to show that E(Tij) < ∞, where Tij is the first time that the Markov
chain reaches the state j when starting from state i. This implies that state j is positive
recurrent.

3. [IPM10e] Exercise 4.38

4. [IPM10e] Exercise 4.39

Problems for Self-Study (Do NOT turn in):

1. [IPM10e] Exercise 4.16 (See p.748 solutions for solutions)

2. (Must See!) [IPM10e] Exercise 4.10, 4.24, 4.46
The exercises are about on finding limit distributions for finite-state Markov chains. Problems
of this type always appear in the midterm. Make sure you are familiar with them. Solutions
are included for self-study. Questions? Ask TA or Yibi.

[IPM10e] Exercise 4.20

A transition probability matrix P is said to be doubly stochastic if the sum over each column equals
one; that is, ∑

i
Pij = 1, for all j

If such a chain is irreducible and aperiodic and consists of M + 1 states 0, 1, . . . ,M , show that the
limiting probabilities are given by

πj =
1

M + 1
, j = 0, 1, . . . ,M

Stat317/153: Winter 2014 HW #4 (created January 17, 2014) 1 of 4



Solution: We can see that πj = 1
M+1 , j = 0, 1, . . . ,M is a stationary distribution since∑M

j=0
πiPij =

∑M

j=0

1

M + 1
Pij

=
1

M + 1

∑M

j=0
Pij =

1

M + 1
× 1 (since P is doubly stochastic)

=
1

M + 1
= πj

Such a Markov chain is positive recurrent since it is finite and irreducible. Along with aperiodicity,
we know that the chain is ergodic. By Theorem 4.1, such a chain will have a limiting distribution,
and the stationary distribution πj = 1

M+1 , j = 0, 1, . . . ,M is the unique limiting distribution

[IPM10e] Exercise 4.24

Consider three urns, one colored red, one white, and one blue. The red urn contains 1 red and 4
blue balls; the white urn contains 3 white balls, 2 red balls, and 2 blue balls; the blue urn contains
4 white balls, 3 red balls, and 2 blue balls. At the initial stage, a ball is randomly selected from
the red urn and then returned to that urn. At every subsequent stage, a ball is randomly selected
from the urn whose color is the same as that of the ball previously selected and is then returned
to that urn. In the long run, what proportion of the selected balls are red? What proportion are
white? What proportion are blue?

Solution: Let Xn be the color of the ball in the nth draw. The state space is {R, W, B}. The
transition probability matrix is

P =


R W B

R 1
5 0 4

5
W 2

7
3
7

2
7

B 3
9

4
9

2
9


We can get the long-run proportion of the 3 colors drawn by solving the system of equations πP = π,
where π = (πR, πW , πB)

πR =
1

5
πR +

2

7
πW +

3

9
πB

πW =
3

7
πW +

4

9
πB

πB =
4

5
πR +

2

7
πW +

2

9
πB

and also that πR + πW + πB = 1. The solution is

πR =
25

89
, πW =

28

89
, πB =

36

89

In the long run, 25/89 ≈ 28.1% of the balls drawn will be red, 28/89 ≈ 31.5% be white, 36/89 ≈
40.4% be blue.

Stat317/153: Winter 2014 HW #4 (created January 17, 2014) 2 of 4



[IPM10e] Exercise 4.46

An individual possesses r umbrellas which he employs in going from his home to office, and vice
versa. If he is at home (the office) at the beginning (end) of a day and it is raining, then he will take
an umbrella with him to the office (home), provided there is one to be taken. If it is not raining,
then he never takes an umbrella. Assume that, independent of the past, it rains at the beginning
(end) of a day with probability p.

(i) Define a Markov chain with r + 1 states which will help us to determine the proportion of
time that our man gets wet. (Note: He gets wet if it is raining, and all umbrellas are at his
other location.)

(ii) Show that the limiting probabilities are given by

πi =

{
q

r+q , if i = 0
1

r+q , if i = 1, . . . , r
where q = 1− p.

(iii) What fraction of time does our man get wet?
(iv) When r = 3, what value of p maximizes the fraction of time he gets wet?

Solution:

(i) Let Xn be the number of umbrellas in his current location. The state space is X = {0, 1, . . . , r}.

If the men has i > 0 umbrellas in his current location, then there will be r − i umbrellas in the
other place, when he gets to the other place, there will still be r − i umbrellas there if it doesn’t
rain. So Pi,r−i = q. If it rains, then he will bring one umbrella there, so there will be r − i + 1
umbrellas, Pi,r−i+1 = p. If he has no umbrella at hand, then there will be r umbrellas in the other
place whether it rains or not. So P0r = 1. As a summary, the transition probabilities are

Pi,r−i = q Pi,r−i+1 = p, for i = 1, 2, . . . , r

P0r = 1

Pij = 0 if i+ j > r + 2 or i+ j < r

(ii) This Markov chain is irreducible and finite, and hence positive recurrent. Along with aperiod-
icity, we know that the only stationary distribution is the limiting distribution. So we just need to
show that the πi’s given in the problem is a stationary distribution.∑m

i=0
πiPi0 = πrPr0 =

1

r + q
× q =

q

r + q
= π0∑m

i=0
πiPij = πr−jPr−j,j + πr−j+1Pr−j+1,j

=
1

r + q
× q +

1

r + q
× p =

1

r + q
= πj for 1 ≤ j ≤ r − 1∑m

i=0
πiPir = π0P0r + π1P1r =

q

r + q
× 1 +

1

r + q
× p =

1

r + q
= πr

Thus the πi’s given is indeed the stationary distribution, and hence is the limiting distribution.
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(iii) The men gets wet only when he has no umbrella at his current location, and it rains. So the
probability is π0p = pq

r+q .

(iv) Let f(p) = pq
r+q = p(1−p)

r+1−p . So

f ′(p) =
(1− 2p)(r + 1− p) + p(1− p)

(r + 1− p)2
=

(r + 1− p)2 − r(r + 1)

(r + 1− p)2
= 1− r(r + 1)

(r + 1− p)2
.

The two roots of f ′(p) = 0 are r + 1±
√
r(r + 1). Since 0 ≤ p ≤ 1, p = r + 1−

√
r(r + 1) is what

we want. Since

f ′′(p) =
−2r(r + 1)

(r + 1− p)3
< 0,

p = r + 1−
√
r(r + 1) must be a maximum. When r = 3, the maximum is attained at 4− 2

√
3.
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