STAT 224 Lecture 14
Chapter 7 Weighted Least Squares

Yibi Huang



Unequal Variance

e The linear regression model is

vi = Bo +P1xi1 +...+,8pxl~p + &,

where the random errors are iid N(0, o).
e What if the g;’s are indep. w/ unequal var N(O, 01.2)?

e The ordinary least squares (OLS) estimates for §;'s remain
unbiased, but no longer have the minimum variance.

e Weighted Least Squares (WLS) fixes the problem of
heteroscedasticity

e As seen in Chapter 6, we can also cope with
heteroscedasticity by transforming the response; but
sometime such a transformation is not available



Weighted Least Squares

For the model,
yi = BotBixii+.. +Bpxipt+e;, Where g;’s are indep. w/ var(s;) = (r,.z,
the Weighted Least Squares method finding estimates for 8’s by
minimizing
" (yi = Bo = Bixit — -+ = Bpxip)
LBo,---Bp) = ) a P

=1 g

e In OLS, o7 = o for all i, equivalent to minimize
X0 i = Bo = Brxit =+ = Bpxip)’
e In WLS, we focus
e more on minimizing errors of obs. w/ smaller variances (more
accurate), and
e less on minimizing errors of obs. w/ larger variances (less
accurate)



How to Estimate the Unknown Unequal Variance o

There would be too many parameters to estimate
if each observation has its own parameter 0'1.2 of variance
since we can estimate at most n parameters w/ n observations

e Parameters of OLS: Bo,f1, ... ,Bp, 0
e Parameters of WLS: By, B1.....B8p,07,....0%

Need prior knowledge about the variances 0-1.2. We’'ll focus on the
case when o-l.z’s are inversely proportional to some weights w;

o-l.zzaz/wi i=1,2,...,n

where the weights wi, w», ..., w, are kKnown positive numbers
and o2 is unknown. In this case, WLS is equivalent to minimize

n

D wivi = Bo = Brxis =+ = Bpip).

i=1



Weighted Least Squares (WLS) Estimates for 5’s (May Skip)

The WLS estimate of 8 = (80,51, - ...Bp) that minimize the
weighted sum of squares

n
Do Wil = Bo = Bixit = -+ = Bpxiy)’
is
Bwis = XIWX) 'X"Wy

where

yi L oxin oxi2 o xip wi

» I x1 x2 0 x wa
v="[.x=| " 7 T|lw=

In I X1 X2 oo Xnp Wn

nxn
and W is an n x n matrix with (w;, w», ..., w,) on the diagonal and
0 elsewhere.



Standard Errors of WLS Estimates for 5’s (May Skip)

Under the model
yi = Bo+Bixit + ...+ Bpxip + &, Var(s) = o /wi,
the covariance matrix of ,EWLS is
Cov(Byys) = X (XTWX)™!

The unknown variance parameter o2 is estimated by

SSE

—~2 _ _ (v, — T2
7 =MSE = ==, whereSSE—Zi:wz(yl 2

where the fitted values are
- = P = )
Vi = Bo.wLs +Zj:1ﬂj,WLSxij» i=1,...,n

The s.e. of the WLS estimate 3, w.s for 3, is

\/62 x (jth diagonal element of the matrix (X" WX)-1).



Tests and Cls for 3, for WLS

The t-statistic

—

Biwes =B 0
——— ~1y_p-1, underHy:g; =B;
s.e.(BiwLs)
and the ¢-ClI
BiwLs * tn-p-1.a/2)5-€.(BjwLs)
for g;'s for WLS

can be used in the same way as those for OLS.



WLS When o, is Proportional to x;



If o; is Proportional to Some Predictor x;

Suppose the variance of the ith observation

2

0'1-2 = Var(g)) = a'zxi

is known to be proportional to some value x; > 0, where o> > 0 is
an unknown constant

e Since o? is a constant, this is equivalent to use the weights

1
w; = —.
x2
l
e Thus we minimize:

n

1
L(Bo, B1) = Z F()’i ~Bo - Brxi)’.

i=1 i



Supervisor/Employee Data (p.176)

Data: http://www.stat.uchicago.edu/~yibi/s224/data/P176.txt

X = # of Supervised Workers
Y = # of Supervisors in 27 Industrial Establishments

supvis = read.table("P176.txt", T)

library(ggplot2)

ggplot(supvis, aes(x=X, Y))+geom_point ()+geom_smooth( "Im')+
labs(x="# of Workers (X)", "# of Supervisors (Y)")
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http://www.stat.uchicago.edu/~yibi/s224/data/P176.txt

Supervisor/Employee Data — WLS Approach

As the variance of Y is propor-

[
. — 200 A1
tional to X, we can use WLS S o
1]
with weight w; = 1/x2. S 1501 d
! s o © hd
5 « & o
The Im() command can also 2 100+ . .
. . 2 e
fit WLS models. One just need 51,
H*+ 7 (4
to specify the weights in addi- Lo | | |
. 400 800 1200 1600
tion. # of Supervised Workers (X)
summary (Im(Y ~ X, data=supvis, weights=1/X"2))
Estimate Std. Error t value Pr(>|t])
(Intercept) 3.803296 4.569745 0.832 0.413
X 0.120990 0.008999 13.445 6.04e-13 ***

Residual standard error: 0.02266 on 25 degrees of freedom
Multiple R-squared: ©.8785, Adjusted R-squared: 0.8737
F-statistic: 180.8 on 1 and 25 DF, p-value: 6.044e-13



Example: Cls for 5; in WLS

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.803296 4.569745 0.832 0.413
X 0.120990 0.008999 13.445 6.04e-13 ***

For the Supervisor/Employees Data, the 95% CI for 8y is

BiwLs % tnp-1.a/2)5-€.(Biwrs) ~ 0.12099 + 2.0595 x 0.008999
~ (0.1025,0.1395)
as I(n-p-1,a/2) = £25,0.025) =qt(1-0.025, df=25) ~ 2.0595.

Interpretation: Need to hire 10.25 to 13.95 more supervisors on
average for every extra 100 workers, at 95% confidence.



The Cl for B’s can also be found using confint ().

confint(Im(Y ~ X, data=supvis, weights=1/X"2))
2.5% 97.5 %

(Intercept) -5.6083 13.2149

X 0.1025 0.1395



Sum of Squares and Multiple R?> for WLS

o SST = 3, wi(yi = ,)% where j, = 2 Wi
2iWi

e SSR = ¥, wi(i - ¥,

o SSE = 3 wi(yi —3)*

e SST = SSR + SSE remains valid
e df of SS: same as for OLS

e Multiple R> = SSR/SST
¢ cannot compare the Multiple R? of a WLS model and a OLS
model since SSR and SST are calculated differently

e MSE=SSE/(n—p—-1) =02

e Residual standard error: 0.02266 gives VMSE

e The estimate for o = Var(g;) = 0% /w; is MSE/w;
Residual standard error: 0.02266 on 25 degrees of freedom

Multiple R-squared: 0.8785, Adjusted R-squared: 0.8737
F-statistic: 180.8 on 1 and 25 DF, p-value: 6.044e-13



F-tests for WL

If two WLS models are nested and use the same weights, then we
can compare them using the ANOVA F-statistic
P (SSE educed — SSE pui) / (AE reducea — AE i)
MSEqu

~ FAfE egueea—dfE s ofE . UNDer Ho: reduced model is correct

Imwls = Im(Y ~ X, supvis, 1/X°2)

Imwls2 = Im(Y ~ X + I(X"2), supvis, 1/X°2)
anova(lmwls,lmwls2)

Analysis of Variance Table

Model 1: Y ~ X
Model 2: Y ~ X + I(X"2)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 25 0.0128
2 24 0.0116 1 0.00124 2.58 0.12



Residuals for WLS in R

e model$res give the raw residuals e¢; = y; — ¥;, which are NOT
adjusted by weights

e hatvalues(model) gives the leverage h;;, which is the = ith
diagonal element of the hat matrix

H=XX"WX)"'X"W

e Var(e;) = o(1 — h;;) where h;; = leverage, and o7 = 0% /w;
e rstandard(model) gives internally Studentized residuals

i

\JTH(L = hig)

which are weight-adjusted
e rstudent (model) gives externally Studentized residuals

ri =

~ approx. N(0,1), where &2 = MSE/w;



Residual Plots

ggplot(supvis, aes(x=X, Imwls$res)) + geom_point() +

ylab("Residual™) + geom_hline( 0)
ggplot(supvis, aes(x=X, rstandard(lmwls))) + geom_point() +
ylab("Standardized Residual") + geom_hline( 0)
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e The raw residuals are not weight-adjusted
The residual plot is still funnel-shaped

e To see if the weights are chosen properly to fix the heteroscedastic
problem, plot standardized or studentized residuals and see if the
points scatter evenly around the zero line



Confidence/Prediction Intervals for WLS Models in R

Note that weights must be provided for prediction or the intervals
computed won’t be correct.

predict(lmwls, data.frame(X=1200), weights=1/1200"2,
interval="confidence")
fit lwr  upr
1 149 134.3 163.7
predict(lmwls, data.frame(X=1200), weights=1/1200"2,
interval="prediction")
fit lwr  upr
1 149 91.07 206.9

e At 95% confidence, industrial establishments with 1200
workers require 134.26 to 163.72 supervisors on average

e At 95% confidence, an industrial establishment that has 1200
workers is predicted to have 91.07 to 206.91 supervisors



95% Prediction Intervals — OLS v.s. WLS

e Blue: OLS: Im(Y ~ X, data=supvis)
e Red: WLS: Im(Y ~ X, data=supvis, weights=1/X"2)

e Closer to points with smaller
variance is the WLS line
(red) than the OLS line >
(blue)

e WLS Prediction intervals

reflect the variability of 200 800 1200 1600
observations increases w/ X X
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WLS Model v.s. OLS Model w/ Transformation

e Blue: OLS model 1og(Y) ~ log(X)
e Red: WLS model Y ~ X

200 1
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The OLS model w/ transformation 1log(Y) ~ log(X) (blue) and
the WLS model Y ~ X (red) give nearly identical predicted values
and prediction intervals. Both models are adequate.



WLS: Group Means with Varying
Sample Sizes




Group Means with Varying Sample Sizes

Here is another scenario to use WLS.
] j j 2
W= Bo+ Brxii+ -+ Bpxip + €7, & ~ N, 0?)
° 1 observationSy ,yfz),...,yl(.”") with identical predictor
values: Xils -5 Xip

e Only the group mean y; = Zj ly(])/n, is recorded.

The original values y\",y\, ..., y\"” are not available

e The variance of each individual y(’) is o2.
2
. , o,
e The variance of a group mean y; is 0'1'2 = Var(y;) = —, i.e,,
nj

i = o +Bixit + -+ Bpxip + & & ~ N, o /n))

e Hence, the WLS weights are

. _ g (on
w; =n; since Var(g)=—=—.
wi n; 20



Example: Travel-Chicago Data

n 1 1 7 3 2 4 4 3 1 1 ... 3
x 26 40 32 36 27 39 29 22 34 25 ... 24
y 35 57 343 383 375 363 313 35 30 30 ... 250

Data: http://www.stat.uchicago.edu/~yibi/s224/data/ChiBus.txt

e Each case is a pair of zones in the city of Chicago

e x = travel times, computed from bus timetables augmented by
walk times from zone centers to bus-stops (assuming a
walking speed of 3 mph) and expected waiting times for the
bus (= half of the time between successive buses).

e y = average travel times as reported to the U.S. Census
Bureau by n travelers.

e n = number of travelers/observations for each case

Data from Exercise 6.8 on p.129, Regression Analysis— Theory, Methods, and Applications
by Ashish Sen, Muni Srivastava, 1990
21


http://www.stat.uchicago.edu/~yibi/s224/data/ChiBus.txt

ggplot(chibus, aes(
theme (

chi.ols = Im(y ~ x,

ggplot(chibus, aes(
ylab("Residuals")

X,

n,

Yy,
"top™)
chibus)

n)) + geom_point() +

chi.ols$res)) + geom_point() +

+ geom_hline(
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The scatterplot (left) looks fine but the residual plot (right) for the
naive OLS model Im(y ~ x, data=chibus) shows that
magnitude of residuals decreases as n increases.
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OLS Line v.s. WLS Line

ols.beta = Im(y ~ x, chibus) $coef
wls.beta = Im(y ~ x, chibus, n) $coef
ggplot(chibus, aes(x-x, v, n)) + geom_point() +
geom_abline( ols.beta[l], ols.betal2], "blue") +
geom_abline( wls.beta[1], wls.beta[2], "red")
n
@ 4
@ s
o
Blue line: OLS @
Red line: WLS
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Residual Plots of WLS

chi.wls = Im(y ~ x, chibus, n)
ggplot(chibus, aes(x-n, chi.wls$res)) + geom_point() +
ylab("Residual”) + geom_hline( 0)
ggplot(chibus, aes(x-n, rstandard(chi.wls))) + geom_point() +
ylab("Standardized Residuals") + geom_hline( 0)
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There is a potential outlier. 24



After Removing the Outlier

chibus2 = subset(chibus, n<17)

chi.wls2 = Im(y ~ x, chibus2, n)
ggplot(chibus2, aes(x-n, chi.wls2%res)) + geom_point() +
ylab("Residual™) + geom_hline( 0)
ggplot(chibus2, aes(x-n, rstandard(chi.wls2))) + geom_point() +
ylab("Standardized Residuals") + geom_hline( 0)
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# Model with the outlier
summary (chi.wls) $coef

Estimate Std. Error t value

(Intercept) 2.293 4.5903
X 1.132 0.1475
# Model without the outlier
summary (chi.wls2)$coef

0.4996
7.6764

Estimate Std. Error t value

(Intercept) 7.4294 3.4747
X 0.9146 0.1148

2.138
7.967

Pr>ltl)
0.62101433061
0.00000001458

Pr(>[t])
0.041058924129
0.000000008721
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