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Accuracy of Predictions for SLR



Two Kinds of Predictions

There are TWO kinds of predictions for the response Y given
X = x0 based on a SLR model Y = β0 + β1X + ε:

• given X = x0, estimation of the mean response

E[Y |X = x0] = β0 + β1x0

• given X = x0, prediction of the response for one specific
observation

Y = β0 + β1x0 + ε

For the Fire Damage example in L03, one may want to

• estimate the average fire damage for all houses located 2
miles away from the nearest fire station, which is β0 + 2β1

• predict the fire damage for a specific house located 2 miles
away from the nearest fire station which is β0 + 2β1 + ε
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Estimation v.s. Prediction

The first one is an estimation problem as β0 + β1x0 only involve
fixed parameters β0, β1, and a known number x0.

The second one is a prediction problem as β0 + β1x0 + ε involve a
random number ε
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Estimated Value and Predicted Value

Both
E[Y |X0] = β0 + β1x0 and Y = β0 + β1x0 + ε

are estimated/predicted by

β̂0 + β̂1x0

The noise ε for a future observation is predicted to be its mean 0.
We cannot make a better prediction for ε from the observed
(xi, yi)’s since ε independent of all observed (xi, yi)’s.
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The Two Prediction Problems Differ in Uncertainty!

For estimating E[Y |X = x0] = β0 + β1x0, the variance for the
estimate β̂0 + β̂1x0 can be shown to be

Var
(̂
β0 + β̂1x0

)
= σ2

(
1
n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

)
To predict Y = β0 + β1x0 + ε, we need to include the extra variability
from the noise ε.

Var
(̂
β0 + β̂1x0 + ε

)
= Var

(̂
β0 + β̂1x0

)
+Var(ε)

= σ2
(
1
n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

)
+σ2

As n gets large,

• Var(̂β0 + β̂1x0) would go down to 0, but
• Var(̂β0 + β̂1x0 + ε) just goes down to σ2.
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What Affects the Accuracy of Prediction?

Recall the variances for the two prediction problems are
σ2

(
1
n +

(x0−x̄)2∑n
i=1(xi−x̄)2

)
for estimating E[Y |X = x0] = β0 + β1x0

σ2
(
1+ 1

n +
(x0−x̄)2∑n
i=1(xi−x̄)2

)
to predict Y when X = x0

An accurate prediction (less variance) comes from

• small σ2 (i.e., small noise ε’s)
• large sample size n
• large

∑n
i=1(xi − x̄)2 (more spread in predictors)

• small (x0 − x̄)2
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Confidence Intervals and Prediction Intervals

The 100(1 − α)% confidence interval for β0 + β1x0 is

β̂0 + β̂1x0 ± t(n−2,α/2) σ̂

√
1
n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

The 100(1 − α)% prediction interval for Y = β0 + β1x0 + ε is

β̂0 + β̂1x0 ± t(n−2,α/2) σ̂

√
1+

1
n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

where σ̂ =
√

MSE.
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Example: Fire Damage Data

Recall the fire damage data in L03. The variables are

• dist: distance to the nearest fire station in miles
• damage: amount of fire damage in $1000

fire = data.frame(

dist=c(0.7,1.1,1.8,2.1,2.3,2.6,3.0,3.1,3.4,3.8,4.3,4.6,4.8,5.5,6.1),

damage=c(14.1,17.3,17.8,24.0,23.1,19.6,22.3,27.5,26.2,26.1,31.3,

31.3,36.4,36.0,43.2)

)
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Confidence Intervals and Prediction Intervals in R

lmfire = lm(damage ~ dist, data = fire)

predict(lmfire, data.frame(dist=2), interval="confidence")

fit lwr upr

1 20.12 18.43 21.8

predict(lmfire, data.frame(dist=2), interval="prediction")

fit lwr upr

1 20.12 14.84 25.4

• For houses located 2 miles away from the nearest fire station,
the average fire damage is estimated to be $20,120 with a
95% confidence interval from $18,430 to $21.800.

• When a house located 2 miles away from the nearest fire
station, the fire damage is between $14,840 to $25,400 with
95% confidence.

• The prediction interval for a single house is wider.
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The plot below shows the 95% confidence intervals and the 95%
prediction intervals at different values of x0.
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Both the confidence intervals and the prediction intervals are
narrowest when x0 = x̄.

11



geom_smooth(method='lm') in ggplot() by default includes the
95% confidence intervals for estimating E(y|X = x0).

library(ggplot2)

ggplot(fire, aes(x=dist, y=damage)) + geom_point() +

geom_smooth(method='lm', formula='y~x') +

xlab("Distance to Nearest Fire Station (miles)") +

ylab("Fire Damage ($1000)")
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Accuracy of Predictions for MLR



Accuracy of Predictions for MLR

An MLR model Y = β0 + β1X1 + · · · βpXp + ε also has two kinds of
conditional prediction problems of the response Y given the values
of the predictors:

X1 = x01, . . . , Xp = x0p.

• estimation of the mean response given X1 = x01, . . . , Xp = x0p

E[Y |X0] = β0 + β1x01 + · · · + βpx0p

• prediction of the response for one specific observation
given X1 = x01, . . . Xp = x0p

Y = β0 + β1x01 + · · · + βpx0p + ε
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Just like SLR, two problems have identical estimated/predicted
values

β̂0 + β̂1x01 + · · · + β̂px0p

but their standard errors are different

s.e.( ̂E(Y |X0)) = σ̂
√

xT
0 (XT X)−1x0

s.e.(Ŷ |X0) = σ̂
√

1+ xT
0 (XT X)−1x0

where xT
0 = (1, x01, . . . , x0p)T .
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Confidence Intervals and Prediction Intervals

The 100(1 − α)% confidence interval for
E[Y |X1 = x01, . . . Xp = x0p] = β0 + β1x01 + · · · + βpx0p is

β̂0 + β̂1x01 + · · · + β̂px0p ± t(n−p−1,α/2) s.e.( ̂E(Y |X0))

The 100(1 − α)% prediction interval for
Y = β0 + β1x01 + · · · + βpx0p + ε is

β̂0 + β̂1x01 + · · · + β̂px0p ± t(n−p−1,α/2) s.e.(Ŷ |X0)
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For the trees data in L03

data(trees)

trees$Diameter = trees$Girth

lmtrees = lm(log(Volume) ~ log(Diameter) + log(Height), data=trees)

predict(lmtrees, data.frame(Diameter=10, Height = 70),

interval = "confidence")

fit lwr upr

1 2.68 2.633 2.726

predict(lmtrees, data.frame(Diameter=10, Height = 70),

interval = "prediction")

fit lwr upr

1 2.68 2.507 2.853

• The mean log(Volume) for all 70-ft-tall, 10 ft in diameter,
cherry trees is estimated to between 2.633 to 2.726, at 95%
confidence level

• The log(Volume) for a randomly selected 70-ft-tall cherry tree
with a diameter of 10 ft is predicted to be between 2.507 to
2.853.
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One can exponentiate the intervals to get intervals for Volume
rather than for log(Volume).

predict(lmtrees, data.frame(Diameter=10, Height = 70),

interval = "confidence")

fit lwr upr

1 2.68 2.633 2.726

predict(lmtrees, data.frame(Diameter=10, Height = 70),

interval = "prediction")

fit lwr upr

1 2.68 2.507 2.853

• The mean Volume for all 70-ft-tall, 10 ft in diameter, cherry
trees is estimated to between e2.633 ≈ 13.92 to e2.726 ≈ 15.27
cubic ft, at 95% confidence level

• The Volume for a randomly selected 70-ft-tall cherry tree with
a diameter of 10 ft is predicted to be between e2.507 ≈ 12.26 to
e2.853 ≈ 17.34 cubic ft.
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Sum of Squares, Degrees of
Freedom, Mean Squares



Sum of Squares

Observe that
yi − y = (̂yi − y)︸  ︷︷  ︸

a

+ (yi − ŷi)︸  ︷︷  ︸
b

Squaring up both sides using the identity (a + b)2 = a2+b2+2ab, we
get

(yi − y)2 = (̂yi − y)2︸   ︷︷   ︸
a2

+ (yi − ŷi)2︸    ︷︷    ︸
b2

+ 2(̂yi − y)(yi − ŷi)︸              ︷︷              ︸
2ab

Summing up over all the cases i = 1, 2, . . . , n, we get

SST︷        ︸︸        ︷
n∑

i=1

(yi − y)2 =

SSR︷        ︸︸        ︷
n∑

i=1

(̂yi − y)2 +

SSE︷         ︸︸         ︷
n∑

i=1

(yi − ŷi)2 +2
n∑

i=1

(̂yi − y)(yi − ŷi)︸                 ︷︷                 ︸
= 0, see next page.
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Why
∑n

i=1(̂yi − y)(yi − ŷi) = 0?

n∑
i=1

(̂yi − y)(yi − ŷi︸︷︷︸
=ei

)

=

n∑
i=1

ŷiei −

n∑
i=1

yei

=

n∑
i=1

(̂
β0 + β̂1xi1 + . . . + β̂pxip

)
ei −

n∑
i=1

yei

= β̂0

n∑
i=1

ei︸︷︷︸
=0

+β̂1

n∑
i=1

xi1ei︸   ︷︷   ︸
=0

+ . . . + β̂p

n∑
i=1

xipei︸   ︷︷   ︸
=0

−y
n∑

i=1

ei︸︷︷︸
=0

= 0

in which we used the properties of residuals that
∑n

i=1 ei = 0 and∑n
i=1 xikei = 0 for all k = 1, . . . , p.
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Interpretation of Sum of Squares

n∑
i=1

(yi − y)2

︸        ︷︷        ︸
SST

=

n∑
i=1

(̂yi − y)2

︸        ︷︷        ︸
SSR

+

n∑
i=1

(

=ei︷︸︸︷
yi − ŷi)2

︸         ︷︷         ︸
SSE

• SST = total sum of squares
• total variability of Y
• depends on the response Y only, not on the form of the model

• SSR = regression sum of squares
• variability of Y explained by X1, . . . , Xp

• SSE = error (residual) sum of squares
• = minβ0,β1,...,βp

∑n
i=1(yi − β0 − β1xi1 − · · · − βpxip)2

• variability of Y not explained by the X’s
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Degrees of Freedom

If the MLR model yi = β0 + β1xi1 + . . . + βpxip + εi, εi’s i.i.d.
∼ N(0, σ2) is true, it can be shown that

SSE
σ2 ∼ χ

2
n−p−1,

If we further assume that β1 = β2 = · · · = βp = 0, then

SST
σ2 ∼ χ

2
n−1,

SSR
σ2 ∼ χ

2
p

and SSR is independent of SSE.

Note the degrees of freedom of the 3 chi-square distributions

d f T = n − 1, d f R = p, d f E = n − p − 1

break down similarly

d f T = d f R + d f E

just like SST = SSR + SSE.
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Multiple R2 and Adjusted R2



Multiple R-Squared

Multiple R2, also called the coefficient of determination, is
defined as

R2 =
SSR
SST

= 1 −
SSE
SST

= proportion of variability in Y explained by X1, . . . , Xp

• 0 ≤ R2 ≤ 1

• For SLR, R2 = r2
xy is the square of the correlation between X

and Y. So multiple R2 is a generalization of the correlation
• For MLR, R2 is the square of the correlation between Y and Ŷ
• When more terms are added into a model, R2 may increase or

stay the same but never decrease
• Is large R2 always preferable?
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Adjusted R-Squared

Since R2 always increases as we add terms to the model, some
people prefer to use an adjusted R2 defined as

R2
ad j = 1 −

SSE/dfE
SST/dfT

= 1 −
SSE/(n − p − 1)

SST/(n − 1)

= 1 −
n − 1

n − p − 1
(1 − R2).

• −
p

n − p − 1
≤ R2

ad j ≤ R2 ≤ 1

• Unlike R2, R2
ad j can be negative

• R2
ad j does not always increase as more variables are added.

In fact, if unnecessary terms are added, R2
ad j may decrease.

23



Adjusted R-Squared

Since R2 always increases as we add terms to the model, some
people prefer to use an adjusted R2 defined as

R2
ad j = 1 −

SSE/dfE
SST/dfT

= 1 −
SSE/(n − p − 1)

SST/(n − 1)

= 1 −
n − 1

n − p − 1
(1 − R2).

• −
p

n − p − 1
≤ R2

ad j ≤ R2 ≤ 1

• Unlike R2, R2
ad j can be negative

• R2
ad j does not always increase as more variables are added.

In fact, if unnecessary terms are added, R2
ad j may decrease.

23



Adjusted R-Squared

Since R2 always increases as we add terms to the model, some
people prefer to use an adjusted R2 defined as

R2
ad j = 1 −

SSE/dfE
SST/dfT

= 1 −
SSE/(n − p − 1)

SST/(n − 1)

= 1 −
n − 1

n − p − 1
(1 − R2).

• −
p

n − p − 1
≤ R2

ad j ≤ R2 ≤ 1

• Unlike R2, R2
ad j can be negative

• R2
ad j does not always increase as more variables are added.

In fact, if unnecessary terms are added, R2
ad j may decrease.

23



R2 and R2
ad j in R

> lmtrees = lm(log(Volume) ~ log(Diameter) + log(Height), data = trees)

> summary(lmtrees)

... (output omitted)

Residual standard error: 0.08139 on 28 degrees of freedom

Multiple R-squared: 0.9777, Adjusted R-squared: 0.9761

F-statistic: 613.2 on 2 and 28 DF, p-value: < 2.2e-16

The R output above shows that R2 = 0.9777 and R2
ad j = 0.9761.

The predictors log(Diameter) and log(Height) can explain
97.77% of the variation in log(Volume).
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Model R2 R2
ad j

log(Volume) ~ log(Height) 0.4207 0.4008
log(Volume) ~ log(Diameter) 0.9539 0.9523
log(Volume) ~ log(Diameter) + log(Height) 0.9777 0.9761
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F-Tests on Multiple Regression
Coefficients



Nested Models

We say Model 1 is nested in Model 2 if Model 1 is a special case
of Model 2 (and hence Model 2 is an extension of Model 1).

E.g., for the 4 models below,

Model A : Y = β0 + β1X1 + β2X2 + β3X3 + ε

Model B : Y = β0 + β1X1 + β2X2 + ε

Model C : Y = β0 + β1X1 + β3X3 + ε

Model D : Y = β0 + β1(X1 + X2) + ε

• B is nested in A . . . . . . . . . . . . since A reduces to B when β3 = 0

• C is also nested in A . . . . . . . since A reduces to C when β2 = 0
• D is nested in B . . . . . . . . . . since B reduces to D when β1 = β2

• B and C are NOT nested in either way
• D is NOT nested in C
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Nesting Relationship is Transitive

If Model 1 is nested in Model 2, and Model 2 is nested in Model 3,
then Model 1 is also nested in Model 3.

For example, for models in the previous slide,

D is nested in B, and B is nested in A,

implies D is also nested in A, which is clearly true because Model
A reduces to Model D when

β1 = β2, and β3 = 0.

When two models are nested (Model 1 is nested in Model 2),

• the simpler model (Model 1) is called the reduced model,
• the more general model (Model 2) is called the full model.
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SST of Nested Models

Question: Compare the SST’s for Model A, B, C, and D. Which one
is the largest? Or are they equal?

The 4 models have an identical SST.
SST =

∑n
i=1(yi − y)2 only depends on the response y but not on

which predictors are included in the model.
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SSE of Nested Models

When a reduced model is nested in a full model, then

(i) SSEreduced ≥ SSE f ull, and (ii) SSRreduced ≤ SSR f ull.

Proof.
• Observe that min{a, b, c, d} ≤ min{a, b, c} is always true for any

numbers a, b, c, and d
• In general, min S 1 ≤ min S 2 if S 2 is a subset of S 1 where S 1 and S 2

are two sets of numbers
• We will prove (i) for

full model yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi

reduced model yi = β0 + β1xi1 + β3xi3 + εi

The proofs for other nested models are similar.

SSE f ull = min
β0,β1,β2,β3

∑n

i=1
(y1 − β0 − β1xi1 − β2xi2 − β3xi3)2

≤ min
β0,β1,β3

∑n

i=1
(y1 − β0 − β1xi1 − β3xi3)2 = SSEreduced
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Part (ii) follows directly from (i), the identity SST = SSR + SSE, and
the fact that all MLR models of the same data have a common SST
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General Framework for Testing Nested Models

H0: reduced model is true v.s. H1 : full model is true

• Since the reduced model is nested in the full model,

SSEreduced ≥ SSE f ull

• Simplicity or Accuracy?
• The full model fits the data better (with a smaller SSE) but is

more complicate
• The reduced model doesn’t fit as well but is simpler.
• If SSEreduced ≈ SSE f ull, one can sacrifice a bit of accuracy in

exchange for simplicity
• If SSEreduced ≫ SSE f ull, it would sacrifice too much in accuracy

in exchange for simplicity. The full model is preferred.
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• Hence, a larger difference SSEreduced − SSE f ull is stronger
evidence against the reduced model

• How large SSEreduced − SSE f ull is considered large?
• It depends on the difference in the complexity of the two

models, which can be reflected by the difference in the
number of parameters of the two models,

d f Ereduced − d f E f ull

• The larger the magnitude of the noise, σ2, the larger
SSEreduced − SSE f ull is even if H0 is true

• Hence a reasonable test statistic is
(SSEreduced − SSE f ull)/(dfEreduced − dfE f ull)

σ2

• Need to estimate the unknown σ2 with the MSE.
• Should estimate σ2 using MSE f ull rather than MSEreduced as

the full model is always true since the reduced model is a
special case of the full model
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The F-Statistic

F =
(SSEreduced − SSE f ull)/(dfEreduced − dfE f ull)

MSE f ull

• dfEreduced is the df for SSE for the reduced model.
• dfE f ull is the df for SSE for the full model.
• F ≥ 0 since SSEreduced ≥ SSE f ull

• The smaller the F-statistic, the more the reduced model is
favored

• Under H0, the F-statistic has an F-distribution with
dfEreduced-dfE f ull and dfE f ull degrees of freedom.
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Testing All Coefficients Equal Zero

Testing the hypotheses

H0: β1 = · · · = βp = 0 v.s. Ha: not all β1 . . . , βp = 0

is a test to evaluate the overall significance of a model.

Full :yi = β0 + β1xi1 + · · · + βpxip + εi

Reduced :yi = β0 + εi (all predictors are unnecessary)

• The LS estimate for β0 in the reduced model is β̂0 = y, so

SSEreduced =

n∑
i=1

(yi − β̂0)2 =
∑

i

(yi − y)2 = SST f ull

• dfE f ull = n − p − 1.
• dfEreduced = n − 1 since the reduced model has 0 predictors.
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Testing All Coefficients Equal Zero

Hence F =
(SSEreduced − SSE f ull)/(dfEreduced − dfE f ull)

MSE f ull

=
(SST f ull − SSE f ull)/[n − 1 − (n − p − 1)]

SSE f ull/(n − p − 1)

=
SSR f ull/p

SSE f ull/(n − p − 1)
=

MSR f ull

MSE f ull
.

Moreover, F ∼ Fp,n−p−1 under H0: β1 = β2 = · · · = βp = 0.

In R, the F statistic and p-value are displayed in the last line of the
output of the summary() command.

> lmtrees = lm(log(Volume) ~ log(Diameter) + log(Height), data = trees)

> summary(lmtrees)

... (part of output omitted)...

Residual standard error: 0.08139 on 28 degrees of freedom

Multiple R-squared: 0.9777, Adjusted R-squared: 0.9761

F-statistic: 613.2 on 2 and 28 DF, p-value: < 2.2e-16
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ANOVA and the F-Test

The test of all coefficients equal zero is often summarized in an
ANOVA table.

Sum of Mean

Source df Squares Squares F

Regression d f R = p SSR MSR=
SSR
dfR

F =
MSR
MSE

Error d f E = n − p − 1 SSE MSE=
SSE
dfE

Total d f T = n − 1 SST

ANOVA is the shorthand for analysis of variance.
It decomposes the total variation in the response (SST) into
separate pieces that correspond to different sources of variation,
like SST = SSR + SSE in the regression setting.
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Example Tree Data

lmfull = lm(log(Volume) ~ log(Diameter) + log(Height), data=trees)

lmreduced = lm(log(Volume) ~ 1, data=trees)

anova(lmreduced, lmfull)

Analysis of Variance Table

Model 1: log(Volume) ~ 1

Model 2: log(Volume) ~ log(Diameter) + log(Height)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 30 8.31

2 28 0.19 2 8.12 613 <2e-16
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Testing Some Coefficients Equal to Zero

Ex. Testing H0: β2 = β3 = 0 under the model
Y = β0 + β1X1 + β2X2 + β3X3 + ε.

• full model: Y = β0 + β1X1 + β2X2 + β3X3 + ε

• reduced model: Y = β0 + β1X1 + ε

lmfull = lm(Y ~ X1 + X2 + X3)

lmreduced = lm(Y ~ X1)

anova(lmreduced, lmfull)
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Testing Some Coefficients Equal to Non-Zero Values

In the model for the trees data,

log(Volume) = β0 + β1 log(Diameter) + β2 log(Height) + ε

recall we think that β1 = 2 and β2 = 1.

We can test both coefficients in one test. Under H0: β1 = 2 and
β2 = 1, the full model becomes the reduced model below

log(Volume) = β0 + 2 log(Diameter) + 1 log(Height) + ε

• Note in the reduced model, the coefficients of log(Diameter)
and log(Height) are both known

• Terms with known coefficients in an MLR model are called
offsets. One can add an offset term in an lm() model like

lmreduced = lm(log(Volume) ~ 1, offset=2*log(Diameter)+log(Height),

data=trees)
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One can then test H0: β1 = 2 and β2 = 1 simultaneously in one test
as follows

lmfull = lm(log(Volume) ~ log(Diameter) + log(Height), data=trees)

lmreduced = lm(log(Volume) ~ 1, offset=2*log(Diameter)+log(Height),

data=trees)

anova(lmreduced, lmfull)

Analysis of Variance Table

Model 1: log(Volume) ~ 1

Model 2: log(Volume) ~ log(Diameter) + log(Height)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 30 0.188

2 28 0.185 2 0.00222 0.17 0.85
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Testing Equality of Coefficients

Ex1. Testing H0: β1 = β2 = β3 under the model
Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε, the reduced model is

Y = β0 + β1X1 + β1X2 + β1X3 + β4X4 + ε

= β0 + β1(X1 + X2 + X3) + β4X4 + ε

• Make a new variable W = X1 + X2 + X3

• Fit the reduced model by regressing Y on W and X4
• Find SSEreduced and dfEreduced− dfE f ull =

2

lmfull = lm(Y ~ X1 + X2 + X3 + X4)

W = X1 + X2 + X3

lmreduced = lm(Y ~ W + X4)

# or simply

lmreduced = lm(Y ~ I(X1 + X2 + X3) + X4)

anova(lmreduced, lmfull) 41
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Testing Equality of Coefficients (2)

Ex2. Testing H0: β1 = β2 and β3 = β4 under the model
Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε, the reduced model is

Y = β0 + β1X1 + β1X2 + β3X3 + β3X4 + ε

= β0 + β1(X1 + X2) + β3(X3 + X4) + ε

• Make new variables W1 = X1 + X2, W2 = X3 + X4

• Fit the reduced model by regressing Y on W1 and W2

• Find SSEreduced and dfEreduced− dfE f ull =

2

• In R

lmfull = lm(Y ~ X1 + X2 + X3 + X4)

lmreduced = lm(Y ~ I(X1 + X2) + I(X3 + X4))

anova(lmreduced, lmfull)
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Testing Equality of Coefficients (2)

Ex2. Testing H0: β1 = β2 and β3 = β4 under the model
Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε, the reduced model is

Y = β0 + β1X1 + β1X2 + β3X3 + β3X4 + ε

= β0 + β1(X1 + X2) + β3(X3 + X4) + ε

• Make new variables W1 = X1 + X2, W2 = X3 + X4

• Fit the reduced model by regressing Y on W1 and W2

• Find SSEreduced and dfEreduced− dfE f ull = 2
• In R

lmfull = lm(Y ~ X1 + X2 + X3 + X4)

lmreduced = lm(Y ~ I(X1 + X2) + I(X3 + X4))

anova(lmreduced, lmfull)
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Testing Coefficients under Constraints (1)

Ex1 say the full model is

Full model : Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ϵ

If H0: β2 = β3 + β4, then the reduced model is

Y = β0 + β1X1 + (β3 + β4)X2 + β3X3 + β4X4 + ε

= β0 + β1X1 + β3(X2 + X3) + β4(X2 + X4) + ε

• Make new variables W1 = X2 + X3, W2 = X2 + X4

• Fit the reduced model by regressing Y on X1, W1 and W2

• Find SSEreduced and dfEreduced− dfE f ull =

1

lmfull = lm(Y ~ X1 + X2 + X3 + X4)

lmreduced = lm(Y ~ X1 + I(X2 + X3) + I(X2 + X4))

anova(lmreduced, lmfull)
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If H0: β2 = β3 + β4, then the reduced model is

Y = β0 + β1X1 + (β3 + β4)X2 + β3X3 + β4X4 + ε

= β0 + β1X1 + β3(X2 + X3) + β4(X2 + X4) + ε

• Make new variables W1 = X2 + X3, W2 = X2 + X4

• Fit the reduced model by regressing Y on X1, W1 and W2

• Find SSEreduced and dfEreduced− dfE f ull = 1

lmfull = lm(Y ~ X1 + X2 + X3 + X4)

lmreduced = lm(Y ~ X1 + I(X2 + X3) + I(X2 + X4))

anova(lmreduced, lmfull)
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Testing Coefficients under Constraints (2)

Ex2: If we suspect β2 = 2β1, then the reduced model is

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε

= β0 + β1X1 + 2β1X2 + β3X3 + β4X4 + ε

= β0 + β1(X1 + 2X2) + β3X3 + β4X4 + ε

• Make a new variable W = X1 + 2X2

• Fit the reduced model by regressing Y on W, X3 and X4

• Find SSEreduced and dfEreduced− dfE f ull =

1

• Can be done in R as follows

lmfull = lm(Y ~ X1 + X2 + X3 + X4)

lmreduced = lm(Y ~ I(X1 + 2*X2) + X3 + X4)

anova(lmreduced, lmfull)
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Testing Coefficients under Constraints (2)

Ex2: If we suspect β2 = 2β1, then the reduced model is

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε

= β0 + β1X1 + 2β1X2 + β3X3 + β4X4 + ε

= β0 + β1(X1 + 2X2) + β3X3 + β4X4 + ε

• Make a new variable W = X1 + 2X2

• Fit the reduced model by regressing Y on W, X3 and X4

• Find SSEreduced and dfEreduced− dfE f ull = 1
• Can be done in R as follows

lmfull = lm(Y ~ X1 + X2 + X3 + X4)

lmreduced = lm(Y ~ I(X1 + 2*X2) + X3 + X4)

anova(lmreduced, lmfull)
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Example (Tree Data)

In the model for the trees data,

log(Volume) = β0 + β1 log(Diameter) + β2 log(Height) + ε

to test whether H0: β1 = 2β2 is true, we can conduct the test below

lmfull = lm(log(Volume) ~ log(Diameter) + log(Height), data=trees)

lmreduced = lm(log(Volume) ~ I(2*log(Diameter) + log(Height)), data=trees)

anova(lmreduced, lmfull)

Analysis of Variance Table

Model 1: log(Volume) ~ I(2 * log(Diameter) + log(Height))

Model 2: log(Volume) ~ log(Diameter) + log(Height)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 29 0.188

2 28 0.185 1 0.00204 0.31 0.58
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Testing Coefficients under Constraints (3)

Ex3: To test H0: β1 + β2 = 1 against H1: β1 + β2 , 1 for the model
Y = β0 + β1X1 + β2X2 + ε, then say, β1 + β2 = 1 + δ.

Y = β0 + β1X1 + β2X2 + ε

Y = β0 + β1X1 + (1 − β1 + δ)X2 + ε

= = β0 + X2 + β1(X1 − X2) + δX2 + ε

• Testing whether β1 + β2 = 1 is equivalent to testing δ = 0.
• Note the term + X2 has a known coefficient +1 and hence is

an offset

lmfull = lm(Y ~ X1 + X2)

lmreduced = lm(Y ~ I(X1 -X2), offset = X2)

anova(lmreduced, lmfull)
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Testing Coefficients under Constraints (3)

Ex3: To test H0: β1 + β2 = 1 against H1: β1 + β2 , 1 for the model
Y = β0 + β1X1 + β2X2 + ε, then say, β1 + β2 = 1 + δ.

Y = β0 + β1X1 + β2X2 + ε

Y = β0 + β1X1 + (1 − β1 + δ)X2 + ε

= = β0 + X2 + β1(X1 − X2) + δX2 + ε

• Testing whether β1 + β2 = 1 is equivalent to testing δ = 0.
• Note the term + X2 has a known coefficient +1 and hence is

an offset

lmfull = lm(Y ~ X1 + X2)

lmreduced = lm(Y ~ I(X1 -X2), offset = X2)

anova(lmreduced, lmfull)
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F-Test on a Single β j is Equivalent
to t-Test



F-Test on a Single β j is Equivalent to t-Test

Say one wants to test a single β3 = 0 in the model

Y = β0 + β1X1 + β2X2 + β3X3 + ε

• one can do a t-test by reading the t-statistic and P-value for X3

from the output for summary(lm(Y ~ X1 + X2 + X3))
• alternatively, one can conduct an F-test comparing the models

Full model :Y = β0 + β1X1 + β2X2 + β3X3 + ε

Reduced model :Y = β0 + β1X1 + β2X2 + ε

anova(lm(Y ~ X1 + X2 + X3), lm(Y ~ X1 + X2))

One can show that the F-statistic = (t-statistic)2 and the P-values
are the same, and thus the two tests are equivalent.

The proof involves complicate matrix algebra and is hence omitted.
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E.g., for the trees data, one might test the β j for log(Height)
using an F-test,

lm1 = lm(log(Volume) ~ log(Diameter) + log(Height), data = trees)

lmreduced = lm(log(Volume) ~ log(Diameter), data = trees)

anova(lmreduced,lm1)

Analysis of Variance Table

Model 1: log(Volume) ~ log(Diameter)

Model 2: log(Volume) ~ log(Diameter) + log(Height)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 29 0.383

2 28 0.185 1 0.198 29.9 0.0000078
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summary(lm1)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.632 0.79979 -8.292 5.057e-09

log(Diameter) 1.983 0.07501 26.432 2.423e-21

log(Height) 1.117 0.20444 5.464 7.805e-06

Observe

• (t-statistics)2 = (5.4644)2 ≈ 29.86 = F-statistic.
• The P-values are both 0.0000078.

The slight difference is due to rounding.
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