A Remark on the Notation for Means and Variances

The **mean**, or **expected value**, or **expectation** of a random variable X can be denoted as

- μ_X
- $\mu(X)$
- $E(X)$ (Here “E” means “expectation”)

The **variance** of a random variable X can be denoted as

- σ_X^2
- $\sigma^2(X)$
- $\text{Var}(X)$

Four Rolls of a Die (1)

The two properties on the previous slide are very useful since you can find the mean and variance for $X_1 + X_2 + \cdots + X_n$ without knowing the distribution of X_1, X_2, \ldots, X_n.

Example: What is the mean and variance for the sum of the number of spots one gets when rolling a die 4 times?

Approach 1

- Let S_4 be the total number of spots in 4 rolls.
- **Possible values of S:** 4, 5, 6, ..., 23, 24
- **Distribution of S_4?**
 - e.g., $P(S_4 = 15) = ?$
 - How many ways are there to have a sum of 15 in 4 rolls?
 - $6^4 = 1296$ possible outcomes, too many to enumerate
- **Is there an easier way?**

Many Rolls of a Die

The second approach can be easily generalized to more rolls. Consider the total number of spots S_n got in n rolls of a die, and let X_i be the number of spots got in the ith roll, for $i = 1, 2, \ldots, n$. Then

$$S_n = X_1 + X_2 + \cdots + X_n$$

and all the X_i’s have a common distribution with mean 3.5 and variance 35/6. The mean and variance of S_n are hence

- $E(S_n) = E(X_1) + E(X_2) + \cdots + E(X_n) = 3.5 \times n$
- $\text{Var}(S_n) = \text{Var}(X_1) + \text{Var}(X_2) + \cdots + \text{Var}(X_n) = \frac{35}{12} \times n$

since X_i’s are independent of each other.

The mean and variance S_n can be found without first working out the distribution of S_n.

Four Rolls of a Die — Approach 2

Let X_1, X_2, X_3, and X_4 be respectively the number of spots in the 1st, 2nd, 3rd, and 4th roll.

- **Observe** that $S_4 = X_1 + X_2 + X_3 + X_4$
- X_1, X_2, X_3, and X_4 have a common distribution:
 - value | 1 | 2 | 3 | 4 | 5 | 6
 - probability | 1/6 | 2/6 | 3/6 | 4/6 | 5/6 | 6/6
- **mean:** $E(X_1) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{2}{6} + 3 \cdot \frac{3}{6} + 4 \cdot \frac{4}{6} + 5 \cdot \frac{5}{6} + 6 \cdot \frac{6}{6} = 3.5$
- $\text{Var}(X_1) = \frac{1}{6} \cdot \frac{1}{6} + \frac{2}{6} \cdot \frac{2}{6} + \frac{3}{6} \cdot \frac{3}{6} + \frac{4}{6} \cdot \frac{4}{6} + \frac{5}{6} \cdot \frac{5}{6} + \frac{6}{6} \cdot \frac{6}{6} - E(X_1)^2 = \frac{35}{36}$
- $X_2, X_3,$ and X_4 have the same mean and variance as X_1 since they have a common distribution
- So $E(S_4) = E(X_1) + E(X_2) + E(X_3) + E(X_4) = 3.5 + 3.5 + 3.5 + 3.5 = 14.$
- **Since** $X_1, X_2, X_3,$ and X_4 are independent, we have
 - $\text{Var}(S_4) = \text{Var}(X_1) + \text{Var}(X_2) + \text{Var}(X_3) + \text{Var}(X_4)$
 - $= \frac{35}{36} + \frac{35}{36} + \frac{35}{36} + \frac{35}{36} = 35/36.$
Sum and Mean of i.i.d. Random Variables

The rolling die example demonstrates a common scenario for many problems: suppose \(X_1, X_2, \ldots, X_n\) are i.i.d. random variables with mean \(\mu\) and variance \(\sigma^2\).

- Here, “i.i.d.” = “independent, and identically distributed”, which means that \(X_1, X_2, \ldots, X_n\) are independent and have identical probability distributions.

The mean and variance of \(S_n = X_1 + X_2 + \cdots + X_n\) are then

\[
\mathbb{E}(S_n) = \mathbb{E}(X_1) + \mathbb{E}(X_2) + \cdots + \mathbb{E}(X_n) = \mu \times n = n\mu
\]

\[
\text{Var}(S_n) = \text{Var}(X_1) + \text{Var}(X_2) + \cdots + \text{Var}(X_n) = \sigma^2 \times n = n\sigma^2
\]

- Observe \(\text{Var}(S_n) = n\sigma^2 \geq \text{Var}(X_i) = \sigma^2\), the sum of \(X_i\)’s has greater variability than a single \(X_i\) does.

Lecture 14&15 - 7

Properties of Correlation \(\rho\)

Let \(\rho\) be the correlation of random variables \(X\) and \(Y\). \(\rho\) has very similar properties with the sample correlation \(r\).

- \(-1 \leq \rho \leq 1\)
- If \(X\) and \(Y\) are independent, then \(\rho = 0\)
 (But when \(\rho = 0\), \(X\) and \(Y\) may not be independent.)
- If \(\rho > 0\) then when \(X\) gets big, \(Y\) also tends to get big, and vice versa. In this case,
 \(\text{Var}(X + Y) > \text{Var}(Y) + \text{Var}(X)\).
- If \(\rho < 0\) then when \(X\) increases, \(Y\) tends to decrease, and vice versa. In this case,
 \(\text{Var}(X + Y) < \text{Var}(Y) + \text{Var}(X)\).
- If \(\rho = 1\) or \(-1\), then there exists constants \(a\) and \(b\) such that \(Y\) always equals \(aX + b\).

Lecture 14&15 - 9

What if Not Independent?

In general, if \(X\) and \(Y\) are NOT independent, then

\[
\text{Var}(X + Y) = \text{Var}(Y) + \text{Var}(X) + 2\rho\sigma(X)\sigma(Y).
\]

Here, \(\rho\) is the correlation between \(X\) and \(Y\), which is defined analogously to the (sample) correlation \(r\).

\[
\text{sample correlation } r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)
\]

\[
\text{correlation } \rho = \mathbb{E} \left[\left(\frac{X - \mu X}{\sigma X} \right) \left(\frac{Y - \mu Y}{\sigma Y} \right) \right]
\]

- We’ll NEVER compute \(\rho\) in STAT220.
 The formula is FYI only.

Correlation between two independent variables is zero.

Lecture 14&15 - 10

A Statistical Model of Simple Random Sampling

Consider a population comprised of \(N\) individuals, indexed from 1 to \(N\). Each individual has a numerical characteristic such that \(x_i\) is the numerical characteristic of the \(i\)th individual.

Example. The population is the 50,000 people age 25 and over in this town, indexed from 1 to \(N = 50,000\). Let \(x_i\) be the years of schooling of the \(i\)th individual in the population.

When a single individual is selected at random from the population (everyone has \(1/N\) chance to be selected), how many years of schooling \(X\) did he/she get?

- \(X\) is a random variable
- What is the probability distribution of \(X\)?

\[
p_x = P(X = x) = \frac{\text{# of people who have got } x \text{ years of schooling}}{N}
\]

Lecture 14&15 - 11

Review of Simple Random Samples

Suppose \(X_1, X_2, \ldots, X_n\) are \(n\) draws at random without replacement from a population of size \(N\). That is,

1. In the first draw, everyone has \(1/N\) chance to be selected
2. In the second draw, each of the remaining \(N - 1\) has \(1/(N - 1)\) chance to be selected
3.
4. In the \(n\)th draw, each of the remaining \(N - n + 1\) has \(1/(N - n + 1)\) chance to be selected

Then \(\{X_1, X_2, \ldots, X_n\}\) is called a simple random sample (SRS) of size \(n\).

Lecture 14&15 - 12
Properties of Simple Random Samples

1. Every \(X_i \) has the same probability distribution (the population distribution \(X \)).

2. The \(X_i \)'s are (nearly) independent
 - Since we usually sample without replacement, draws are not independent.
 - As long as the sample size \(n \) is small (< 10% relative to the population size \(N \), the dependencies among sampled values are small and are generally ignored.
 - When sampling from an infinite population (\(N = \infty \)), the \(X_i \)'s are independent.

Due to the reasons above, we often assume observations \(X_1, X_2, \ldots, X_n \) in a simple random sample are i.i.d. from some (population) distribution.

Lecture 14&15 - 13

Properties of the Sample Mean

So far we have shown that: the sample mean \(\bar{X}_n \) of i.i.d random variables with mean \(\mu \) and variance \(\sigma^2 \) has the following properties:

1. \(\mathbb{E}(\bar{X}_n) = \mu \). \(\bar{X}_n \) is an unbiased estimator for \(\mu \).
2. \(\text{Var}(\bar{X}_n) = \sigma^2/n \). The larger \(n \) is, the less variable \(\bar{X}_n \) is.
3. Weak Law of Large Numbers: As \(n \) gets large
 \[\bar{X}_n \rightarrow \mu. \]
 Intuitively, this is clear from the mean and the variance of \(\bar{X}_n \); the “center” of the distribution \(\bar{X}_n \) is \(\mu \), and the “spread” around it becomes smaller and smaller as \(n \) grows.
4. The distribution of \(\bar{X}_n \), called the sampling distribution of the sample mean, depends on the distribution of \(X_i \).
 - hard to find in general, except for a few cases
 - When \(n \) is large, we have Central Limit Theorem!

Lecture 14&15 - 15

Central Limit Theorem (CLT)

Let \(X_1, X_2, \ldots \) be a sequence of i.i.d. random variables (discrete or continuous) with mean \(\mu \) and variance \(\sigma^2 \). Then, when \(n \) is large,

- the distribution of the sample mean
 \[\bar{X}_n = \frac{1}{n}(X_1 + X_2 + \cdots + X_n) \]
 is approximately
 \[N \left(\mu, \frac{\sigma^2}{n} \right). \]
- the distribution of the sum \(X_1 + X_2 + \cdots + X_n \) is approximately
 \[N(n\mu, n\sigma^2). \]

Lecture 14&15 - 16

If \(X_i \)'s are i.i.d., with the distribution

<table>
<thead>
<tr>
<th>value</th>
<th>1</th>
<th>2</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>probability</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Probability histogram for the distribution of \(X_1 \):

![Probability histogram for the distribution of \(X_1 \)](value of the sum of the draws)

If \(X_i \)'s are i.i.d., with the distribution

<table>
<thead>
<tr>
<th>value</th>
<th>1</th>
<th>2</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>probability</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Probability histogram for the distribution of \(S_{25} = X_1 + \cdots + X_{25} \):

![Probability histogram for the distribution of \(S_{25} \)](value of the sum of the draws)

If \(X_i \)'s are i.i.d., with the distribution

<table>
<thead>
<tr>
<th>value</th>
<th>1</th>
<th>2</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>probability</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Probability histogram for the distribution of \(S_{50} = X_1 + \cdots + X_{50} \):

![Probability histogram for the distribution of \(S_{50} \)](value of the sum of the draws)

If \(X_i \)'s are i.i.d., with the distribution

<table>
<thead>
<tr>
<th>value</th>
<th>1</th>
<th>2</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>probability</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Probability histogram for the distribution of \(S_{100} = X_1 + \cdots + X_{100} \):

![Probability histogram for the distribution of \(S_{100} \)](value of the sum of the draws)
Example: For the years of schooling example, it is known that the population distribution has mean $\mu = 11.8$ and variance is $\sigma^2 = 12.96$. For a sample of size 400, by CLT, the sample mean \overline{X}_n is approximately

$$N\left(11.8, \sqrt{\frac{12.96}{400}}\right) = N(11.8, 0.18).$$

- Find the probability that the sample mean is between 11.8 ± 0.36.

Lecture 14&15 - 19

Summary: Means and Sums of i.i.d. Random Variables

Suppose X_1, X_2, \ldots, X_n are i.i.d. random variables with mean μ and variance σ^2.

Let $S_n = X_1 + X_2 + \cdots + X_n$ and $\overline{X}_n = S_n/n$ be respectively the sum and the sample mean of X_1, X_2, \ldots, X_n.

So far we have shown that S_n and \overline{X}_n have the following properties

<table>
<thead>
<tr>
<th></th>
<th>S_n</th>
<th>\overline{X}_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>expected value</td>
<td>$\mathbb{E}(S_n) = n\mu$</td>
<td>$\mathbb{E}(\overline{X}_n) = \mu$.</td>
</tr>
<tr>
<td>variance</td>
<td>$\text{Var}(S_n) = n\sigma^2$</td>
<td>$\text{Var}(\overline{X}_n) = \sigma^2/n$</td>
</tr>
<tr>
<td>sampling distribution for small n</td>
<td>no general form</td>
<td>no general form</td>
</tr>
<tr>
<td>approximate sampling distribution for large n</td>
<td>$N(n\mu, \sqrt{n}\sigma)$</td>
<td>$N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$</td>
</tr>
</tbody>
</table>

Lecture 14&15 - 21

Bernoulli Random Variables (1)

A random variable X is said to be a Bernoulli random variable if it takes two values only: 0 and 1.

- $p = P(X = 1)$ is called the probability of success
- Then $P(X = 0)$ must be $1 - p$ since X is either 0 or 1.
- So the distribution of a Bernoulli random variable with probability p of success must be

<table>
<thead>
<tr>
<th>value of X</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>probability</td>
<td>$1 - p$</td>
<td>p</td>
</tr>
</tbody>
</table>

- Mean and variance:

$$\mathbb{E}(X) = 0 \cdot (1 - p) + 1 \cdot p = p,$$

$$\text{Var}(X) = 0^2 \cdot P(X = 0) + 1^2 \cdot P(X = 1) - \mathbb{E}(X)^2$$

$$= 0 \cdot (1 - p) + 1 \cdot p - p^2 = p(1 - p)$$

Lecture 14&15 - 22

Bernoulli Random Variables (2)

Bernoulli distribution arises when a random phenomenon has only two possible outcomes, e.g.,

- heads or tails in one coin tossing: $X = 1$ if heads, $X = 0$ if tails
- success or failure in a trial: $X = 1$ if success, $X = 0$ if failure
- whether a product is defected: $X = 1$ if defected, $X = 0$ if not
- whether a person uses iPhone: $X = 1$ if yes, $X = 0$ if not

Lecture 14&15 - 23

Binomial Distribution (1)

A random variable Y is said to have a Binomial distribution $B(n, p)$, denoted as $Y \sim B(n, p)$, if it is a sum of n i.i.d. Bernoulli random variables, X_1, X_2, \ldots, X_n, with probability p of success.

Binomial distribution arises when we count the number of “successes” in a series of n independent “trials”, e.g.,

- number of heads when tossing a coin n times (“success” = heads)
- # of defected items in a batch of size 1000 (“success” = defected)
- # of iPhone users in a SRS from a huge population (“success” = iPhone user)

Lecture 14&15 - 24
Mean and Variance of Binomial

Recall a Binomial random variable $Y \sim B(n, p)$ are sums of i.i.d. Bernoulli random variables X_1, X_2, \ldots, X_n, with probability p of success. The mean and variance of Y are thus

$$E(Y) = E(X_1) + E(X_2) + \cdots + E(X_n) = p + p + \cdots + p = np$$

$$\text{Var}(Y) = \text{Var}(X_1) + \text{Var}(X_2) + \cdots + \text{Var}(X_n) = p(1-p) + p(1-p) + \cdots + p(1-p) = np(1-p)$$

since X_i’s are i.i.d. with mean p and variance $p(1-p)$.

What about the distribution of Y? E.g., What is $P(Y = 3)$?

Lecture 14&15 - 25

Binomial Formula

The distribution of a Binomial distribution $B(n, p)$ is given by the binomial formula. If Y has the binomial distribution $B(n, p)$ with n trials and probability p of success per trial, the probability to have k successes in n trials, $P(Y = k)$, is given as

$$P(Y = k) = \binom{n}{k} p^k (1-p)^{n-k} \quad \text{for } k = 0, 1, 2, \ldots, n.$$

Why the binomial formula is true?
See the next slide for an example.

Lecture 14&15 - 27

Factorials and Binomial Coefficients

The notation $n!$, read n factorial, is defined as

$$n! = 1 \times 2 \times 3 \times \cdots \times (n-1) \times n$$

e.g.,

$$1! = 1, \quad 3! = 1 \times 2 \times 3 = 6, \quad 4! = 1 \times 2 \times 3 \times 4 = 24.$$

By convention, $0! = 1$.

The binomial coefficient:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- which is the number of ways to choose k items, regardless of order, from a total of n distinct items
- $\binom{n}{k}$ is read as “n choose k”.

e.g.,

$$\binom{4}{2} = \frac{4!}{2! \times 2!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1} = 6, \quad \binom{4}{4} = \frac{4!}{4! \times 0!} = \frac{4!}{4! \times 1} = 1$$

Lecture 14&15 - 26

Why is the Binomial Formula True? (Optional)

Let Y be the number of success in 4 independent trials, each with probability p of success. So $Y \sim B(4, p)$.

- To get 2 successes $(Y = 2)$, there are 6 possible ways:

 SSFF, SFSS, SFSF, FSSF, FSFS, FFSS

 in which “SSFF” means success in the first two trials, but not the last two, and so on.

 As trials are independent, by the multiplication rule,

 $$P(\text{SSFF}) = P(S)P(S)P(F)P(F) = p^2(1-p)^2$$

 $$P(\text{SFSS}) = P(S)P(F)P(S)P(F) = p(1-p)p(1-p) = p^2(1-p)^2$$

 Observe all 6 ways occur with probability $p^2(1-p)^2$, because all have 2 successes and 2 failures

 So $P(Y = 2) = (\# \text{ of ways}) \times (\text{prob. of each way}) = 6 \cdot p^2(1-p)^2$

Lecture 14&15 - 28

Example

Four fair dice are rolled simultaneously, what is the chance to get (a) exactly 2 aces? (b) exactly 3 aces? (c) 2 or 3 aces?

- A trial is one roll of a die. A success is to get an ace.
- Probability of success $p = 1/6$
- number of trials $n = 4$ is fixed in advance
- Are the trials independent? Yes!
- So Y # of aces got has a $B(4, 1/6)$ distribution

(a) $P(Y = 2) = \frac{4!}{2!2!} \left(\frac{1}{6}\right)^2 \left(1 - \frac{1}{6}\right)^2 = \frac{25}{216}$

(b) $P(Y = 3) = \frac{4!}{3!1!} \left(\frac{1}{6}\right)^3 \left(1 - \frac{1}{6}\right)^1 = \frac{5}{324}$

(c) $P(Y = 2 \text{ or } Y = 3) = P(Y = 2) + P(Y = 3) = \frac{25}{216} + \frac{5}{324} = 0.131$

Lecture 14&15 - 30
Requirements to be Binomial (1)
To be a Binomial random variable, check the following
1. the number of trials \(n \) must be fixed in advance,
2. \(p \) must be identical for all trials
3. trials must be independent

Q1: A SRS of 50 from all UC undergrads are asked whether or not he/she is usually irritable in the morning. \(X \) is the number who reply yes. Is \(X \) binomial?
- a trial: a randomly selected student reply yes or not
- prob. of success \(p \) = proportion of UC undergrads saying yes
- number of trials = 50
- Strictly speaking, NOT binomial, because trials are not independent
- Since the sample size 50 is only 1% of the population size (\(\approx 5000 \)), trials are nearly independent
- So \(X \) is approximately binomial, \(B(n = 50, p) \)

Lecture 14&15 - 31

Requirements to be Binomial (2)
Q2 John tosses a fair coin until a head appears. \(X \) is the count of the number of tosses that John makes. Is \(X \) binomial?
- one trial = one toss of the coin
- number of trials is not fixed
- NOT binomial
Q3 Most calls made at random by sample surveys don’t succeed in talking with a live person. Of calls to New York City, only \(1/12 \) succeed. A survey calls 500 randomly selected numbers in New York City. \(X \) is the number that reach a live person. Is \(X \) binomial?
- one trial = a call that reach a live person
- number of trials \(n = 500 \)
- probability of success \(p = 1/12 \)
- Independent trials? Huge population, so (nearly) independent
- \(X \sim B(500, 1/12) \)

Lecture 14&15 - 32

CLT for Counts and Proportion
Let \(X_1, X_2, \ldots \) be a sequence of i.i.d. Bernoulli random variables with probability \(p \) of success. So \(X_i \) has mean \(\mu = p \) and variance \(\sigma^2 = p(1-p) \). Then
- The sum \(S_n = X_1 + X_2 + \cdots + X_n \) now is the count of \(X_i \)'s that take value “1”, and has a binomial distribution \(B(n, p) \).
 As \(n \) gets large, the distribution of \(S_n \) is approximately
 \[N(n\mu, \sqrt{n}\sigma) = N(np, \sqrt{np(1-p)}) \].
- The sample mean \(\bar{X}_n = \frac{1}{n}(X_1 + X_2 + \cdots + X_n) \) is just the proportion of \(X_i \)'s that take value “1.” As \(n \) gets large, the distribution of \(\bar{X}_n \) is approximately
 \[N \left(\mu, \frac{\sigma}{\sqrt{n}} \right) = N \left(p, \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right) \].

Lecture 14&15 - 33

Example: Twitter Users
Suppose 20% of the internet users use Twitters. If a SRS of 2500 internet users are surveyed, what is the probability that the percentage of Twitter users in the sample is over 21%?