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10.1 Simple Linear Regression
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Inference – Where We Are Now

◮ So far we have discussed inference for one- and two- sample

quantitative variables (e.g. t-tests, z-tests)

◮ Now consider inference where we have a single quantitative

response variable (Y ) and a single quantitative explanatory

(predictor) variable (X )

◮ In Chapter 2, we covered descriptive tools (scatterplots, least

squares regression and correlation)

◮ Now consider inference for regression
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From Two Sample Problems to Many-Sample Problems

Recall the statistical model for comparing the mean responses to
two treatments:

Example: randomized clinical trial comparing calcium versus
placebo for reducing blood pressure
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Statistical Model for Linear Regression (1)

An explanatory variable X can divide the whole population into

many sub-populations, one for each values of x .

◮ E.g., say X = father’s height, Y = son’s height.

Father-son pairs in which the father is 69 inches tall is a

sub-population.

Father-son pairs in which the father is 72 inches tall is another

sub-population.

In different sub-populations, the response variable Y can have
different means µY (x), different SDs σY (x), and different
distributions.
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Statistical Model for Linear Regression (2)
The simple linear regression (SLR) model assumes the following:

1. The means of Y is a linear function of X , i.e.,

µY (x) = β0 + β1x

2. The SD of Y does not change with x , i.e.,

σY (x) = σ for every x

3. (Optional) Within each subpopulation, the distribution of Y is

normal.
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Statistical Model for Linear Regression (3)
Equivalently, the SLR model asserts the values of X and Y for
individuals in a population are related as follows

Y = β0 + β1X + ε,

in which

◮ the values of β0 and β1 are fixed for all individuals, and

◮ the value of ε, called the error or the noise, will vary from

individual to individual. The distribution of ε’s for individuals

in a subpopulation follows a normal distribution

ε ∼ N(0, σ)

In the model, the line y = β0 + β1x is called the population

regression line.

◮ β0 is called the intercept

◮ β1 is called the slope, which describes the change in the mean

response (Y ) for a single unit increase in X
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Data for a Simple Linear Regression Model
Suppose we have a SRS of n individuals from a population. From
individual i we observe the response yi and the explanatory
variable xi :

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn)

The SLR model states that

yi = β0 + β1xi + εi

Recall in Chapter 2, the least square line of the data above is

y = b0 + b1x

in which

b1 = r
sy

sx
=

∑
i (xi − x)(yi − y)∑

i (xi − x)2
, b0 = y − b1x

We can use b1 to estimate β1 and b0 to estimate β0.
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Caution: Sample v.s. Population
Note the population regression line

y = β0 + β1x

is different from the least square regression line

y = b0 + b1x

we learned in Chapter 2.

◮ The latter is merely the least square line for a sample, while

the former is the least square line for the entire population.

◮ The values of b0 and b1 will change from sample to sample.

b1 =

∑
i (xi − x)(yi − y)∑

i (xi − x)2
, b0 = y − b1x

◮ We are interested in the population intercept and slope β0
and β1, NOT the sample counterparts b0 and b1
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Estimate of σ2

To estimate σ, SD of the errors εi , recall the residuals are the
difference between the observed yi and the predicted yi :

ei = yi − ŷi = yi − (b0 + b1xi )

The sample variance of the residuals ei is used to estimate σ2:

s2e =

∑
e2i

n − 2

se =
√
s2e is used as the regression standard error and it has

n − 2 degrees of freedom.

Why n − 2 degrees of freedom?

◮ We lose two degrees of freedom because we estimate two

parameters, β0 and β1.
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How Close Is b1 to β1?

Recall the slope of the least square line is

b1 =

∑
i (xi − x)(yi − y)∑

i (xi − x)2

Under the SLR model: yi = β0 + β1xi + εi , replacing yi in the
formula above by β0 + β1xi + εi , we can show after some algebra
that

b1 = β1 +

∑
i (xi − x)εi∑
i (xi − x)2

From the above, one can get the mean, the SD, and the sampling

distribution of b1.

◮ E(b1) = β1 . . . . . . . . . . . . . . . (b1 is an unbiased estimate of β1)

◮ SD(b1) = ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (See the next slide)
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The Standard Error of b1
One can show that

SD(b1) =
σ√∑

(xi − x)2
=

σ

sx
√
n − 1

,

where sx =
√∑

(xi−x)2

n−1 is the sample SD of xi ’s.

How to reduce the SD of b1 (and making b1 closer to β1):

◮ increase the sample size n

◮ increase the sample SD of xi ’s ⇒ Better to increase the range

of xi ’

As σ is unknown, we estimate it with se . The estimated SD of b1
is called the standard error (SE) of b1

SE (b1) =
se√∑
(xi − x)2
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Confidence Intervals for β1
The sampling distribution of b1 is normal

b1 ∼ N

(
β1,

σ√∑
(xi − x)2

)
⇒ z =

b1 − β1

σ/
√∑

(xi − x)2
∼ N(0, 1)

if

◮ either the errors εi are i.i.d. N(0, σ)

◮ or the errors εi are independent and the sample size n is large

As σ is unknown, if replaced with se , the t-statistic below has a
t-distribution with n − 2 degrees of freedom

T =
b1 − β1

se/
√∑

(xi − x)2
=

b1 − β1
SE (b1)

∼ tn−2,

Hence, the (1− α) confidence interval for β1 is given as

b1 ± t∗SE (b1)

where t∗ is the critical value for the t(n−2) distribution at
confidence level 1− α.

Lecture 27 - 12



Tests for β1
To test the hypothesis H0 : β1 = a, we use the t-statistic

t =
b1 − a

SE (b1)
∼ tn−2

The p-value can be computed using the t-table based on the
alternative hypothesis:

Ha β1 6= a β1 < a β1 > a

P-value

|t|−|t| t t

Observe that testing H0 : β1 = 0 is equivalent to testing whether x

is useful in predicting y linearly.

◮ This is different from using the correlation coefficient r . It is

possible that r is small but β1 is significantly different from 0.
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Inference for the Intercept β0
Though the population intercept β0 is rarely of interest, all the

results for the population slope β1 have their counterparts for β0.

◮ b0 = β0 + ε−
∑

i x(xi−x)εi∑
i (xi−x)2

◮ E(b0) = β0 . . . . . . . . . . . . . . (b0 is an unbiased estimate of β0)

◮ SD(b0) = σ
√

1
n
+ x2∑

(xi−x)2

◮ SE(b0) = se

√
1
n
+ x2∑

(xi−x)2

◮ The sampling distribution of b0 (when n is large) is

b0 ∼ N


β0, σ

√
1

n
+

x2∑
(xi − x)2




◮ (1− α) C.I. for β0: b0 ± t∗SE (b0)

◮ The test statistic for H0 : β0 = a is t =
b0 − a

SE (b0)
∼ tn−2 and

the P-value can be computed similarly as for β1
Lecture 27 - 14

Example: Fire Damage and Distance to Fire Station
Suppose a fire insurance company wants to relate the amount of
fire damage in major residential fires to the distance between the
burning house and the nearest fire station. The study is to be

conducted in a large suburb of a major
city; a sample of 15 recent fires in this
suburb is selected. The amount of
damage and the distance between the
fire and the nearest fire station are
recorded in each fire.
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Distance Damage
Obs. (mile) ($1000)
1 0.7 14.1
2 1.1 17.3
3 1.8 17.8
4 2.1 24.0
5 2.3 23.1
6 2.6 19.6
7 3.0 22.3
8 3.1 27.5
9 3.4 26.2
10 3.8 26.1
11 4.3 31.3
12 4.6 31.3
13 4.8 36.4
14 5.5 36.0
15 6.1 43.2
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> fire = read.table("fire.txt",header=T)

> lm1 = lm(damage ~ dist, data = fire)

> summary(lm1)

Call:

lm(formula = damage ~ dist, data = fire)

Residuals:

Min 1Q Median 3Q Max

-3.4682 -1.4705 -0.1311 1.7915 3.3915

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.2779 1.4203 7.237 6.59e-06 ***

dist 4.9193 0.3927 12.525 1.25e-08 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.316 on 13 degrees of freedom

Multiple R-squared: 0.9235, Adjusted R-squared: 0.9176

F-statistic: 156.9 on 1 and 13 DF, p-value: 1.248e-08
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How to Read R Outputs for Regression? (1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.2779 1.4203 7.237 6.59e-06 ***

dist 4.9193 0.3927 12.525 1.25e-08 ***

◮ The column “Estimate” gives the least square estimate for the
intercept b0 and the slope b1: b0 = 10.2779, b1 = 4.9193

◮ The column “Std. Error” gives SE(b0) and SE(b1):

SE (b0) = 1.4203, SE (b1) = 0.3927

So a 95% confidence interval for β1 is

b1 ± t∗SE (b1) = 4.9193± 2.160× 0.3927 ≈ 4.9193± 0.8482

df = 13 · · · 1.350 1.771 2.160 2.282 2.650 3.012 · · ·

· · · 80% 90% 95% 96% 98% 99% · · ·

Confidence level C

Conclusion: We have 95% confidence that every extra mile from
the nearest fire station increases the amount of damage by
4.9193± 0.8482 thousands of dollars.
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.2779 1.4203 7.237 6.59e-06 ***

dist 4.9193 0.3927 12.525 1.25e-08 ***

The two columns “t value” and “Pr(> |t|)” give the t-statistics
and two-sided P-values of testing

H0 : β0 = 0 and H0 : β1 = 0

◮ Note t-values bi/SE (bi ) are simply the ratio of the numbers
in the “Estimate” column and the numbers in the
“Std. Error” column, e.g.,

7.237 =
10.2779

1.4203
, 12.525 =

4.9193

0.3927
◮ Testing H0 : β1 = 0 is equivalent to testing whether the

damage is (linearly) related with the distance to the nearest
fire station. The small P-value 1.25× 10−8 asserts that the
distance to the nearest fire indeed has an effect on the
amount of damage.
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Example: Test for the Slope β1

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.2779 1.4203 7.237 6.59e-06 ***

dist 4.9193 0.3927 12.525 1.25e-08 ***

To test other values of β1, e.g, H0 : β1 = 4 v.s. H1 : β1 > 4, the
t-statistic is

t =
b1 − 3

SE (b1)
=

4.9193− 4

0.3927
= 2.3409

Looking at the t-table for the row with df = 13, the one-sided
P-value is between 0.01 and 0.02.

Upper-tail probability p
df · · · 0.10 0.05 0.025 0.02 0.01 0.005 · · ·

13 · · · 1.350 1.771 2.160 2.282 2.650 3.012 · · ·

Conclusion: At 5% level, the extra amount of damage for every
extra mile from the nearest fire station is significantly higher than
$4000.
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How to Read R Outputs for Regression? (2)

Residual standard error: 2.316 on 13 degrees of freedom

Multiple R-squared: 0.9235, Adjusted R-squared: 0.9176

F-statistic: 156.9 on 1 and 13 DF, p-value: 1.248e-08

◮ Residual standard error: 2.316 on 13 degrees of

freedom

This gives the estimate se of σ, which is 2.316. As there are

15 points, the degrees of freedom are thus 15− 2 = 13.

◮ Multiple R-squared gives r2, the square of the correlation

coefficient.

◮ Adjusted R-squared: Ignore this.

◮ F-statistic: 156.9 on 1 and 13 DF, p-value: 1.248e-08

See Section 10.2.
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Two Similar Problems

Q1 Given a specific value of X , say x∗, estimate the mean of Y

µy (x
∗).

Q1 Given a specific value of X , say x∗, predict Y .

Q1 is to estimate µy (x
∗) = β0 + β1x

∗, which is a parameter,
while Q2 is to predict Y = β0 + β1x

∗ + ε = µy (x
∗) + ε, which is a

random variable.

For Q1, µy (x
∗) is estimated by

µ̂y (x
∗) = b0 + b1x

∗,

while for Q2, Y is predicted by

Ŷ = µ̂y (x
∗) + ε̂ = b0 + b1x

∗ + 0

Though Q1 and Q2 end up with identical estimation or prediction,
we are less certain (larger standard error) about prediction because
of the error term ε.
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Confidence Intervals and Prediction Intervals
A 100(1− α)% confidence interval for µy (x

∗) is given by

b0 + b1x
∗ ± t∗ se

√
1

n
+

(x∗ − x̄)2∑
(xi − x̄)2

A 100(1− α)% prediction interval for Y is given by

b0 + b1x
∗ ± t∗ se

√
1+

1

n
+

(x∗ − x̄)2∑
(xi − x̄)2

In both intervals, the t∗ is the critical value for the t(n−2)

distribution at confidence level 1− α.,

◮ The prediction interval is wider than the confidence interval

◮ The closer x∗ to x̄ , the narrower the interval.

This is valid for both the confidence interval, and the

prediction interval
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Example: Fire Damage and Distance to Fire Station (1)
For houses 2 miles from the nearest fire station, what is the 95%
CI for mean the amount of damage?

Answer. Recall the fitted regression line is:

damage = 10.28 + 4.92 distance

1. The estimate is µ̂Y = b0 + b1x
∗ = 10.28 + 4.92× 2 = 20.12.

2. The critical value t∗ is t13,.025 = 2.16.

3. se = 2.316, x̄ = 3.28,
∑

(xi − x̄)2 = 34.78

4. The 95% confidence interval for µy when x∗ = 2 is

b0 + b1x
∗ ± t∗ se

√
1

n
+

(x∗ − x̄)2∑
(xi − x̄)2

=20.12± 2.16× 2.316

√
1

15
+

(2− 3.28)2

34.78

=20.12± 1.69 = (18.43, 21.80)
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Example: Fire Damage and Distance to Fire Station (2)
For a house located 2 miles from the nearest fire station, what is
the 95% prediction interval for the amount of damage if the house
is burned?

Answer.

1. The prediction is still b0 + b1x
∗ = 10.28 + 4.92× 2 = 20.12.

2. The critical value t∗ is t13,.025 = 2.16.

3. se = 2.316, x̄ = 3.28,
∑

(xi − x̄)2 = 34.78

4. The 95% prediction interval for Y when x∗ = 2 is

b0 + b1x
∗ ± t∗ se

√
1 +

1

n
+

(x∗ − x̄)2∑
(xi − x̄)2

=20.12± 2.16× 2.316

√
1 +

1

15
+

(2− 3.28)2

34.78

=20.12± 5.28 = (14.84, 25.40)
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Interpretations of the Prediction and Confidence Intervals

The prediction interval (14.84, 25.40) is for the fire damage for a

single house 2 miles from the nearest fire station

◮ If one has a house 2 miles from the nearest fire station, once

burned, we are 95% confident that the fire damage is between

$14,840 and $25,400.

The confidence interval (18.43, 21.80) is for the mean fire

damage for all houses 2 miles from the nearest fire station.

◮ For all houses 2 miles from the nearest fire station, if burned,

we are 95% confident that the mean fire damage per house is

between $18,430 and $21,800.
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Example: Fire Damage and Distance to Fire Station

95% Confidence Interval 95% Prediction Interval

●

● ●

●
●

●

●

●
● ●

● ●

● ●

●

1 2 3 4 5 6

15

20

25

30

35

40

Distance (miles)

D
a
m

a
g
e
 (

$
1
0
0
0
)

●

● ●

●
●

●

●

●
● ●

● ●

● ●

●

1 2 3 4 5 6

15

20

25

30

35

40

Distance (miles)

D
a
m

a
g
e
 (

$
1
0
0
0
)

◮ Observe the 95% prediction interval encloses (almost) all the

observations, but the 95% confidence interval does not
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