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Regression, Residuals, Outliers
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Regression in R

Regression in R is as simple as lm(y ~ x), in which “lm” stands
for linear model.

> NEA = c(-94,-57,-29,135,143,151,245,355,392,473,486,535,571,

580,620,690)

> fatgain = c(4.2, 3.0, 3.7, 2.7, 3.2, 3.6, 2.4, 1.3, 3.8, 1.7,

1.6, 2.2, 1.0, 0.4, 2.3, 1.1)

> lm(fatgain ~ NEA)

Call:

lm(formula = fatgain ~ NEA)

Coefficients:

(Intercept) NEA

3.505123 -0.003441

Here you get the intercept to be 3.505 and slope to be −0.003441.
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Predicted Values and Residuals in R
It is better to save the model as an object.

> mymodel = lm(fatgain ~ NEA)

Then from the stored object mymodel, you can get the predicted
values ŷi (also called the “fitted values”):

> mymodel$fit # output omitted

and the residuals ei = yi − ŷi :

> mymodel$res # output omitted

Guess what we will get.

> fatgain - mymodel$fit - mymodel$res

How to add the regression line on the scatter plot?

> plot(NEA, fatgain) # scatter plot

> abline(mymodel) # add the regression line
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Here is a more detailed output of the linear model

> summary(mymodel)

Call:

lm(formula = fatgain ~ NEA)

Residuals:

Min 1Q Median 3Q Max

-1.1091 -0.3904 -0.1039 0.4125 1.6439

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.5051229 0.3036164 11.545 1.53e-08 ***

NEA -0.0034415 0.0007414 -4.642 0.000381 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7399 on 14 degrees of freedom

Multiple R-squared: 0.6061, Adjusted R-squared: 0.578

F-statistic: 21.55 on 1 and 14 DF, p-value: 0.000381

We will get back to this summary in Chapter 10.
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Properties of Residuals
If predicted with a LS regression line, the residuals have the

following properties

1. Residuals always sum to zero,
∑n

i=1
ei = 0.

◮ If the sum > 0, can you improve the prediction?

2. Residuals and the explanatory variable xi ’s have zero

correlation.

◮ If non-zero, the residuals can be predicted by xi ’s, not the

best prediction.
◮ Residuals are the part in the response that CANNOT be

explained or predicted linearly by the explanatory

variables.

> sum(mymodel$res)

[1] 6.938894e-17

> cor(NEA,l1$res)

[1] 5.786109e-17
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Proofs of the Two Properties of Residuals (Optional)
Recall the intercept â and slope b̂ of the LS line are the a and b

that minimize the sum of squares of errors
∑n

i=1
(yi − a− bxi )

2
.

Thus â and b̂ satisfies the equations

d

da

∑n

i=1
(yi − a− bxi )

2 = −2
∑n

i=1
(yi − a− bxi ) = 0

d

db

∑n

i=1
(yi − a− bxi )

2 = −2
∑n

i=1
xi (yi − a− bxi ) = 0

i.e.,
∑n

i=1
(yi − â− b̂xi︸ ︷︷ ︸

=ei

) = 0 and
∑n

i=1
xi (yi − â− b̂xi︸ ︷︷ ︸

=ei

) = 0.

Thus, ∑n

i=1
ei = 0 and

∑n

i=1
xiei = 0.

So far we have proved residuals sum to zero.
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Proof Cont’d
Recall the formula of the correlation coefficient

r =
1

n−1

∑n
i=1

(xi − x)(yi − y)

sxsy
.

Thus the correlation coefficient of explanatory variable
{x1, x2, . . . , xn} and the residuals {e1, e2, . . . , en} is

r(x , e) =
1

n−1

∑n
i=1

(xi − x)(ei − e)

sxse
.

Thus to show r(x , e) = 0, we just need to show∑n
i=1

(xi − x)(ei − e) = 0.

∑n

i=1
(xi − x)(ei −

=0︷︸︸︷
e ) =

∑n

i=1
(xi − x)ei

=
∑n

i=1
xiei

︸ ︷︷ ︸
=0

−x
∑n

i=1
ei

︸ ︷︷ ︸
=0

= 0
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Properties of Predicted Values
Observe the predicted value ŷi ’s are a linear transformation of the
explanatory variable xi ’s:

ŷi = â+ b̂xi .

◮ What is the mean of ŷi ’s? How is it related to the mean of of

xi ’s? ŷ = â+ b̂ · x

= (y − b̂ · x) + b̂ · x (since â = y − b̂ · x)

= y

◮ The mean of the predicted value ŷi ’s is simply the mean

of the observed yi ’s.

◮ How is the SD of ŷi ’s related to the SD of xi ’s?

sŷ = |b̂| · sx =

∣∣∣∣r
sy

sx

∣∣∣∣ · sx = |r | · sy .
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Coefficient of Determination R
2 = r

2

So r2 =
s2
ŷ

s2y
=

Variance of {ŷ1, . . . , ŷn}

Variance of {y1, . . . , yn}

= fraction of variation in yi ’s explained by xi ’s

◮ In view of this property, the square of correlation coefficient

r2, is also called the coefficient of determination, and is often

denoted as R2

◮ In the R output on Slide “Lecture 6 - 4,” R2 is shown as

“Multiple R-squared”
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yi = ŷi + ei
(observed) (predicted) (residual)

There is an important identity:

Var(y) = Var(ŷ) +Var(e).

This identity is nontrivial since in general, if zi = xi + yi for all
i = 1, 2, . . . , n, then

Var(z) = Var(x) +Var(y) + rxy
√

Var(x) ·Var(y).

We can show that the residuals are uncorrelated with the predicted
variables, rŷ ,e = 0.

Since Var(ŷ) = r2Var(y), we have Var(e) = (1− r2)Var(y), i.e.,

Var(e)

Var(y)
=

Variance of residuals

Variance of responses
= 1− r2
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Residual Plots — a Diagnostic Tool for Regression Model
A residual plot is a scatterplot of the residuals ei vs. the
explanatory variable xi . It is a diagnostic tool for the adequacy of a
regression model.

E.g. here is the residual plot of the fat gain and NEA example.

> plot(NEA,mymodel$res,xlab="NEA change (calories)",

ylab="Residuals (kg)",ylim=c(-2,2))

> abline(h=0) # add a zero line
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“no pattern.”
What does it mean by
“pattern”?
Let’s look at a few examples.
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Example 1
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Based on the residual plot above, can you find ways to improve the
prediction?

Zero correlation 6= No association
It can be a non-linear association.
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Example 1 (Cont’d)

Residual Plot after fit
Scatter Plot a quadratic model
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The straight line is the
LS regression line
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Example 2

Scatter Plot Residual Plot
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Can the linear prediction be improved in anyway?
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Example 3
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Can the linear prediction be improved in anyway?
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(a) Residuals randomly
scatter around the zero line
— good!

(b) Curved pattern —
means the relationship you
are looking at is not linear.

(c) A change in variability
across a plot — predictions
made in areas of larger
variability will not be as
good. May try weight
least-square method or
transforming the response.
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Outliers and Influential Points

Outlier: observation that lies outside the overall pattern of
observations.
Influential points: observation that markedly changes the
regression if removed. This is often an outlier on the x-axis.

  
Child 19 = outlier 

in y direction 

Child 18 = outlier in x direction 

Child 19 is an outlier 

of the relationship. 

Child 18 is only an 

outlier in the 

direction and thus 

might be an 

influential point. 

Child 19 is an outlier of
the relationship.

Child 18 is only an
outlier in the x

direction and thus
might be an influential
point.
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Are these points influential?

        All data 

        Without child 18 

        Without child 19 

outlier in 

y-direction 

   

influential 

Are these 

points 

influential? 
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Example: Brain & Body Weights for Mammals
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The scatter plot shows the brain
and body weights for 62 species
of land mammals.

Large r = 0.934,
but this is suspicious.

At least two influential points:
African elephant and Asian
elephant

> mammals = read.table("mammals.txt",header=T)

> attach(mammals)

> cor(body,brain)

[1] 0.9341638

> cor(body[brain<2000], brain[brain<2000]) # exclude both elephants

[1] 0.6505592

> cor(body[brain<1000],brain[brain<1000]) # exclude 2 elephants & human

[1] 0.8884084
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How to Exclude Points In R?
How to exclude the 2 elephants and human in regression?

> myline1 = lm(brain[brain<1000] ~ body[brain<1000])

> plot(body[brain<1000],brain[brain<1000],pch=20,

xlab="Body Weight (kg)", ylab="Brain Weight (g)")

> abline(myline1) # add the regression line

> # Residual plot

> plot(body[brain<1000],myline1$res,pch=20,

xlab="Body Weight (kg)", ylab="Residuals (g)")

> abline(h=0) # add a zero line
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The equation for the LS regression in the previous slide is

> myline1

(Intercept) body[brain < 1000]

36.572 1.228
i.e.,

predicted brain weight = 36.6g + 1.23× (body weight in kg).

Hence the predicted brain weights are at least 36.6 g for all
mammals. However, 35 out of 62 mammals in the data set have
brain weights far below 36.6g:

> sort(brain[brain < 36])

[1] 0.14 0.25 0.30 0.33 0.40 1.00 1.00 1.20 1.90 2.40

[11] 2.50 2.60 3.00 3.50 3.90 4.00 5.00 5.50 5.70 6.30

[21] 6.40 6.60 8.10 10.80 11.40 12.10 12.30 12.30 12.50 15.50

[31] 17.00 17.50 21.00 25.00 25.60

A prediction error of 10 gram is small for cows, but huge for
mouses with brain weight < 1 gram.
For this data set, the absolute size of errors is not important.

We care more about the relative size of error:
error

brain weight
.
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Transforming the Variables
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pattern is linear, with r = 0.96
(including elephants and human.)

The vertical scatter is
homogenous.

No influential points or outliers
now.

> cor(log(body),log(brain))

[1] 0.9595748

> myline2 = lm(log(brain) ~ log(body))

> plot(log(body),log(brain),pch=20,

xlab="Logarithm of Body Weight", ylab="Logarithm of Brain Weight")

> abline(myline2)

Sometimes transforming the variables can solve the problems of
outliers or non-homogeneous scattering.
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Residual plot
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Interpretation of the Log transformed Model
The LS regression equation in log scale is

> myline2

Call: lm(formula = log(brain) ~ log(body))

Coefficients:

(Intercept) log(body)

2.1348 0.7517
i.e.,

predicted log brain weight = 2.135 + 0.75× (log body weight),

or

log brain weight = 2.135 + 0.75× (log body weight) + residual.

or

brain weight = e2.135 × (body weight)0.75 × eresidual

= 8.455× (body weight)0.75 × eresidual

Observe that the error term is multiplicative, not additive.
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