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Regression, Residuals, Outliers
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Predicted Values and Residuals in R

It is better to save the model as an object.
> mymodel = lm(fatgain ~ NEA)

Then from the stored object mymodel, you can get the predicted
values y; (also called the "fitted values”):

> mymodel$fit # output omitted

and the residuals e; = y; — y;:

> mymodel$res # output omitted
Guess what we will get.

> fatgain - mymodel$fit - mymodel$res

How to add the regression line on the scatter plot?

> plot(NEA, fatgain) # scatter plot

> abline(mymodel) # add the regression line

Lecture 6 - 3

Properties of Residuals

If predicted with a LS regression line, the residuals have the
following properties
1. Residuals always sum to zero, 7 ; e = 0.
> If the sum > 0, can you improve the prediction?

2. Residuals and the explanatory variable x;'s have zero
correlation.

» If non-zero, the residuals can be predicted by x;'s, not the

best prediction.

» Residuals are the part in the response that CANNOT be
explained or predicted linearly by the explanatory
variables.

> sum(mymodel$res)
[1] 6.938894e-17
> cor (NEA,1l1$res)
[1] 5.786109e-17
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Regression in R

Regression in R is as simple as Im(y ~ x), in which “1m" stands
for linear model.

> NEA = c(-94,-57,-29,135,143,151,245,355,392,473,486,535,571,
580,620,690)

> fatgain = c(4.2, 3.0, 3.7, 2.7, 3.2, 3.6, 2.4, 1.3, 3.8, 1.7,
1.6, 2.2, 1.0, 0.4, 2.3, 1.1)

> 1m(fatgain ~ NEA)

Call:
Im(formula = fatgain ~ NEA)

Coefficients:
(Intercept) NEA
3.505123 -0.003441

Here you get the intercept to be 3.505 and slope to be —0.003441.
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Here is a more detailed output of the linear model

> summary (mymodel)
Call:
Im(formula = fatgain ~ NEA)

Residuals:
Min 1Q Median 3Q Max
-1.1091 -0.3904 -0.1039 0.4125 1.6439

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5051229 0.3036164 11.545 1.53e-08 *x*x*
NEA -0.0034415 0.0007414 -4.642 0.000381 *x*x*

Signif. codes: 0 “**x’ 0.001 ‘**x’ 0.01 ‘*x’ 0.05 .’ 0.1 ¢ 7 1

Residual standard error: 0.7399 on 14 degrees of freedom
Multiple R-squared: 0.6061, Adjusted R-squared: 0.578
F-statistic: 21.55 on 1 and 14 DF, p-value: 0.000381

We will get back to this summary in Chapter 10.
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Proofs of the Two Properties of Residuals (Optional)

Recall the intercept a and slope b of the LS line are the a and b
that minimize the sum of squares of errors

27:1()"' —a—bx)*.

Thus 3 and b satisfies the equations

d n 2 n
7a Do ima—ba)=-2%"" (yi—a—bx)=0

d n n
25— a= b= =23 0 xi(yi—a— bx) =0

ie.,
n o~ n o~
Zi:l(yi —a—bx;))=0 and Zi:l xi(yi —a— bx;)) =0.
—e; =e;
Thus,

So far we have proved residuals sum to zero.
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Proof Cont'd

Recall the formula of the correlation coefficient

A i = X) (i — )
a SxSy ’

Thus the correlation coefficient of explanatory variable

{x1,%2,...,xn} and the residuals {e;, e,...,e,} is
o) - BTl =R @)
) vy .

Thus to show r(x, e) = 0, we just need to show

Yoii(xi —X)(ej —€) =0.
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Coefficient of Determination R% = r?

So 2 i _ Variance of {1,y ¥n}
s2  Variance of {y1,...,yn}
y b b n

= fraction of variation in y;'s explained by x;'s

> In view of this property, the square of correlation coefficient
r2, is also called the coefficient of determination, and is often
denoted as R?

> In the R output on Slide “Lecture 6 - 4,” R? is shown as
“Multiple R-squared”
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Residual Plots — a Diagnostic Tool for Regression Model
A residual plot is a scatterplot of the residuals e; vs. the
explanatory variable x;. It is a diagnostic tool for the adequacy of a
regression model.

E.g. here is the residual plot of the fat gain and NEA example.
> plot (NEA,mymodel$res,xlab="NEA change (calories)",

ylab="Residuals (kg)",ylim=c(-2,2))

> abline(h=0) # add a zero line

o~
o]
—_ o )
< o o ) A good residual plot appears
3 o 0 “no pattern.”
2 o © @ ;
x o ° What does it mean by
"] © ° “pattern”?
o~ Let's look at a few examples.
|

0 200 400 600
NEA change (calories)
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Properties of Predicted Values
Observe the predicted value y;'s are a linear transformation of the
explanatory variable x;'s:

Vi = 3+ bx.
» What is the mean of y;'s? How is it related to the mean of of
X's? G—34b-x
=(y-b-X)+b-x (since 3=y —b-X)
=Yy
» The mean of the predicted value y;'s is simply the mean
of the observed y;'s.
» How is the SD of y;'s related to the SD of x;'s?

5y:|E|~sX: rY cse=|r|-sy.
Sx
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Yi = % + €
(observed) (predicted) (residual)

There is an important identity:
Var(y) = Var(y) + Var(e).

This identity is nontrivial since in general, if z; = x; + y; for all
i=1,2,...,n, then

Var(z) = Var(x) + Var(y) + ry+/ Var(x) - Var(y).
We can show that the residuals are uncorrelated with the predicted
variables, ye = 0.

Since Var(y) = r?Var(y), we have Var(e) = (1 — r?)Var(y), i.e.,

Var(e)  Variance of residuals 1.,
= =1—r
Var(y)  Variance of responses
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Example 1
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Based on the residual plot above, can you find ways to improve the
prediction?

Zero correlation # No association
It can be a non-linear association.
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Example 1 (Cont'd)

Residual Plot after fit
a quadratic model

Scatter Plot
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The straight line is the
LS regression line
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Example 3

Residuals

Can the linear prediction be improved in anyway?
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QOutliers and Influential Points

QOutlier: observation that lies outside the overall pattern of
observations.

Influential points: observation that markedly changes the

regression if removed. This is often an outlier on the x-axis.

120 Child 19 = outlier
in y direction

Child 19 is an outlier of
the relationship.

Child 18 is only an
outlier in the x
direction and thus
might be an influential
point.

40
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Age at first word (months)
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Example 2
Scatter Plot Residual Plot
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Can the linear prediction be improved in anyway?
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el

Are these points influential?

o ——All data
out!ler |p chilg) | W!thout ch!ld 18
120 -direction « —— Without child 19
E .
é 100 =
g
T
% 80
(]
60
influentialcmld -
%0 1 l Ll L 1 Ll
0 10 20 30 40 50

Age at first word (months)

Lecture 6 - 18



Example: Brain & Body Weights for Mammals How to Exclude Points In R?

S acancieprant|  The scatter plot shows the brain How to exclude the 2 elephants and human in regression?
o . .
~° Asian Gephant and body weights for 62 species > mylinel = lm(brain[brain<1000] ~ body[brain<1000])
g n of land mammals. > plot(body[brain<1000] ,brain[brain<1000],pch=20,
g §7 xlab="Body Weight (kg)", ylab="Brain Weight (g)")
% “ Large r = 0.934, > abline(mylinel) # add the regression line
g o’ . but this is suspicious. > # Residual plot
e Human
o 3 3 =
3 . . . > plot(body[brain<1000] ,mylinel$res,pch=20,
-~ . -
'3 At !east two influential Romts. xlab="Body Weight (kg)", ylab="Residuals (g)")
1 African elephant and Asian

\2

abline (h=0) # add a zero line

T \ ‘ ‘ ‘
0 2000 4000 6000 8000 glephant B
Body Weight (kg)

600
Il
300
Il

> mammals = read.table("mammals.txt",header=T)

> attach(mammals)

> cor(body,brain)

[1] 0.9341638

> cor(body [brain<2000], brain[brain<2000]) # exclude both elephants
[1] 0.6505592

> cor(body [brain<1000] ,brain[brain<1000]) # exclude 2 elephants & human

T T T T T T T T T T T
[1] 0.8884084 0 100 200 300 400 500 0 100 200 300 400 500
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Body Weight (kg) | ecture 6 - 20 Body Weight (kg)
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The equation for the LS regression in the previous slide is

> mylinel

Transforming the Variables

(Intercept)

36.572

body [brain < 1000]

1.228

ie.,
predicted brain weight = 36.6g + 1.23 x (body weight in kg).

Hence the predicted brain weights are at least 36.6 g for all
mammals. However, 35 out of 62 mammals in the data set have
brain weights far below 36.6g:

> sort(brain[brain < 36])

[1] 0.14 0.25 0.30 0.33 0.40 1.00 1.00 1.20 1.90 2.40
[11] 2.50 2.60 3.00 3.50 3.90 4.00 5.00 5.50 5.70 6.30
[21] 6.40 6.60 8.10 10.80 11.40 12.10 12.30 12.30 12.50 15.50
[31] 17.00 17.50 21.00 25.00 25.60

A prediction error of 10 gram is small for cows, but huge for
mouses with brain weight < 1 gram.
For this data set, the absolute size of errors is not important.

. . error
We care more about the relative size of errorr ————.
brain weight
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Residual plot
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Logarithm of Brain Weight

After taking log of both brain

weights and body weights, the
pattern is linear, with r = 0.96
(including elephants and human.)

The vertical scatter is
homogenous.

No influential points or outliers
now.

Logarithm of Body Weight

> cor(log(body) ,log(brain))

[1] 0.9595748

> myline2 = 1m(log(brain) ~ log(body))
> plot(log(body) ,log(brain) ,pch=20,

xlab="Logarithm of Body Weight", ylab="Logarithm of Brain Weight")

> abline(myline2)

Sometimes transforming the variables can solve the problems of

outliers or non-homogeneous scattering,
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Interpretation of the Log transformed Model

The LS regression equation in log scale is

> myline2
Call: Im(formula = log(brain) ~ log(body))

Coefficients:
(Intercept) log(body)
2.1348 0.7517

predicted log brain weight = 2.135 + 0.75 x (log body weight),
or
log brain weight = 2.135 + 0.75 x (log body weight) + residual.
or
brain weight = e213% x (body weight)®7® x eresidua!
= 8.455 x (body weight)?7® x eresidual

Observe that the error term is multiplicative, not additive.
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