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Abstract. The paper aims to establish a new sharp Burkholder-type maximal

inequality in Lp for a class of stationary sequences that includes martingale
sequences, mixingales and other dependent structures. The case when the

variables are bounded is also addressed leading to an exponential inequality

for maximum of partial sums. As an application we present an invariance
principle for partial sums of certain maps of Bernoulli shifts processes.

1. Introduction

In this paper we obtain a new Burkholder-type inequality for the Lp-norm of
the maximum of partial sums of stationary sequences. The bound is expressed in
terms of the conditional expectation of sums with respect to an increasing field
of sigma algebras, a quantity that is tractable in many examples. The method of
proof is based on martingale approximation and diadic induction. We also ana-
lyze the bounded case and obtain an extension of Azuma’s exponential bound to
stationary and dependent sequences. When applied to mixingales the inequalities
presented in this paper improve on several known results. A Markov chain example
is constructed to comment on the sharpness of our Lp inequality. The applications
contain an invariance principle for Bernoulli shifts.

Throughout the paper we consider strictly stationary sequences. Let (Ω,A, P)
be a probability space, and T : Ω 7→ Ω be a bijective bi-measurable transformation
preserving the probability. Let F0 be a σ-algebra of A satisfying F0 ⊆ T−1(F0),
and define the nondecreasing filtration (Fi)i∈Z by Fi = T−i(F0). Let X0 be a F0-
measurable, centered real random variable. Define the strictly stationary sequence
(Xi)i∈Z by Xi = X0 ◦ Ti; let Sn =

∑n
k=1 Xk and S∗n = maxi≤n |Si|. For p ≥ 2, let

‖ · ‖p be the norm in Lp, and Cp ≥ 2 be the minimal constant such that

(1) E
[

max
1≤k≤n

|Z1 + . . . + Zk|p
]
≤ Cpn

p/2‖Z1‖p
p

holds for all n and stationary martingale differences {Zk}. It is known that Cp ≤ pp

by the Burkholder inequality (1973, 1988). For our particular setting (1) and
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p ≥ 4, a better constant Cp ≤ 4(2p)p/2 follows from Theorem 2.5 in Rio (2000)
combined with the Doob maximal inequality. Maximal inequalities of type (1) play
an important role in the theory of martingales.

The paper is structured as follows. Section 2 presents a generalization of (1) and
some of its consequences and applications. In particular, an invariance principle is
given for certain maps of Bernoulli shifts processes. Proofs are given in Section 3.

2. Main results

Recall S∗n = maxi≤n |Si|. We shall start by generalizing inequality (1) to sta-
tionary processes. To this end, we introduce the following two quantities

δn,p =
n∑

j=1

j−3/2‖E(Sj |F0)‖p and δ∞,p =
∞∑

j=1

j−3/2‖E(Sj |F0)‖p.

Theorem 1. (A Maximal Lp inequality) Assume that E(|X1|p) < ∞, p ≥ 2. Then

‖S∗n‖p ≤ C1/p
p n1/2(‖X1‖p + 80δn,p).(2)

In the special case in which (Xi) are martingale differences with respect to the
filter (Fi), then δn,p = 0 and the inequality (5) reduces to the the classical one
(1). It is immediate that ‖S∗n‖p = O(

√
n) if δ∞,p < ∞. In order to comment on

the minimality of the condition δ∞,p < ∞, we construct a Markov chain example,
showing that, if this condition is barely altered the result fails to hold.

Proposition 1. For any p > 2 and any non-negative sequence an → 0 as n →∞
there exists a stationary ergodic discrete Markov chain (Yk)k≥0 and a functional g
such that Xi = g(Yi); i ≥ 0, E(X1) = 0, E(|X1|p) < ∞ and

(3)
∞∑

n=1

ann−3/2‖E(Sn|Y0)‖p < ∞ but lim sup
n→∞

n−1/2‖S∗n‖p = ∞.

Motivated by Maxwell and Woodroofe (2000), who proved that condition δ∞,2 <
∞ is enough for the central limit theorem, Peligrad and Utev (2005) established
the L2-maximal inequality and used it to prove the invariance principle.

Since our method of proof for obtaining the maximal inequalities is based on
the martingale approximations, the dominant constant in all the inequalities are
going to be the best known constants for the martingales. For the bounded case the
optimal constants in the Lp-martingale inequalities imply the following extension
of Azuma’s exponential inequality.

Proposition 2. For t ≥ 0, we have

P(S∗n ≥ t) ≤ 4
√

e exp[−t2/2n(‖X1‖∞ + 80δn,∞)2].(4)

In the stationary case this bound improves upon several corresponding inequali-
ties established by Deddens, Peligrad and Yang (1987), Rio (2000) and also Dedecker
and Prieur (2005).

We refer to mixingales as to conditions imposed to the conditional expecta-
tion of individual variables Xj . Using the triangular inequality ‖E(Sk|F0)‖p ≤∑k

i=1 ‖E(Xi|F0)‖p and the elementary bound
∑∞

k=j k−3/2 ≤ 3j−1/2, valid for
j = 1, 2, . . ., we have the following inequality for mixingales:
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Corollary 1. Assume that E(|X1|p) < ∞, p ≥ 2. Then

‖S∗n‖p ≤ C1/p
p n1/2

[
‖X1‖p + 240

n∑
k=1

k−1/2‖E(Xk|F0)‖p

]
.(5)

The characteristics ‖E(Xk|F0)‖p can be estimated by using the covariance in-
equalities derived in Dedecker and Doukhan (2003), via the representation moti-
vated by Dedecker and Rio (2000), ‖E(Xk|F0)‖p

p = cov(Y,Xk), where

Y = |E(Xk|F0)|p−1[I(E(Xk|F0)>0) − I(E(Xk|F0)≤0)] .

Using Corollary 1 and the above observation, various maximal Lp inequalities are
easily derived for mixingale type examples, including mixing structures. In partic-
ular, our Corollary 1 allows to improve Corollary 4 in Dedecker and Prior (2005)
by relaxing their condition

∑∞
k=1 φ(k) < ∞ to

∑∞
k=1 φ(k)/

√
k < ∞. We direct

the reader to the book by Bradley (2002) and the paper by Dedecker and Prieur
(2005) for the corresponding definitions, a large number of examples and extensive
literature on the topic.

For so-called ρ-mixing sequences, defined by the coefficient

ρ(n) = sup{cov(X, Y )/(‖X‖2‖Y ‖2) : X ∈ L2(F0
−∞), Y ∈ L2(F∞n )} ,

we derive

Lemma 1. Let E(|X1|p) < ∞, p ≥ 2. If
∑∞

k=1 ρ2/p(2k) < ∞, then δ∞,p < ∞.

The condition
∑∞

k=1 ρ2/p(2k) < ∞, or equivalently
∑∞

n=1 ρ2/p(n)/n < ∞, re-
quires that ρ(n) → 0 at a logarithmic rate. However, for p > 2 the Burkholder-type
maximal inequality derived in this way is different from the Rosenthal-type inequal-
ities established in Peligrad (1985) and Shao (1995).

If the process (Xi) is stationary causal with the form Xi = g(. . . , εi−1, εi), where
εi are i.i.d. random variables and g is a measurable function for which E(Xi) = 0
and Xi ∈ Lp, then there exists a simple bound for ‖E(Xk|F0)‖p, where Fi =
(. . . , εi−1, εi). Let (ε′i) be an i.i.d. copy of (εi). For k ≥ 1, by Jensen’s inequality,

‖E(Xk|F0)‖p ≤ ‖g(Fk)− g(. . . , ε′−1, ε
′
0, ε1, . . . , εk−1, εk)‖p.(6)

The preceding bound is tractable since it is directly related to the data generating
mechanism of the process Xi. Wu and Shao (2004) showed that, for a variety of
nonlinear time series, the bound in (6) is O(rk) for some r ∈ (0, 1). See Wu and
Woodroofe (2000) and Dedecker and Prieur (2005) for more discussions.

Application. Let {εk; k ∈ Z} be an i.i.d. sequence of Bernoulli variables, that
is P(ε1 = 0) = 1/2 = P(ε1 = 1) and let Sn =

∑n
k=1 Xk, where

Xn = g(Yn)−
∫ 1

0

g(x)dx, Yn =
∞∑

k=0

2−k−1εn−k

and g ∈ L2(0, 1), (0, 1) being equipped with the Lebesgue measure. The transform
Yj is usually referred to as the Bernoulli shift of the i.i.d. sequence {εk; k ∈ Z} and
it satisfies the recursion Yn = (Yn−1+εn)/2. To apply our maximal inequalities, it is
necessary to bound δn,p. In the following lemma, we relate the condition δ∞,p < ∞
to the regularity properties of g.
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Lemma 2. Let p ≥ 2 and t > p/2 − 1. Assume that g ∈ Lp(0, 1) is a measurable
function and define the Bernoulli shift process as above. Then, there exists a positive
constant c = cp,t such that
(7)[

‖X1‖p +
∞∑

n=1

‖E(Xn|Y0)‖p

n1/2

]p

≤ c

∫ 1

0

∫ 1

0

|g(x)− g(y)|p

|x− y|

(
log

1
|x− y|

)t

dxdy .

As concrete examples of maps, we consider the example treated in Maxwell and
Woodroofe (2000),

(8) g(x) = x−α sin(x−1) , 0 < x < 1 and Sn(α) =
n∑

k=1

Xk , 0 ≤ α < 1/2.

Maxwell and Woodroofe (2000) proved that for each 0 ≤ α < 1/2, the normalized
sums Sn(α)/

√
n weakly converges to the normal distribution. We strengthen the

result by showing that Sn(α)/
√

n, α ∈ [0, b] converges as a process in C[0, b] for
each b < 1/2.

Proposition 3. Let Sn(α) be defined by (8) and b ∈ (0, 1/2). Then there exist real
positives p > 2 and γ > 1, and a positive constant c = cb,p,γ such that

(9) n−p/2E
[

max
1≤i≤n

|Si(α)− Si(β)|p
]
≤ c|α− β|γ

for all α, β ∈ [0, b]. Consequently, Sn(α)/
√

n weakly converges to a non-homogeneous
Brownian motion B on C[0, b].

3. Proofs

Proof of Theorem 1. Let n, r be integers such that n ≥ 1, 2r−1 ≤ n < 2r; let
K = 5/

√
2. As a matter of fact, we shall prove a slightly stronger inequality

‖S∗n‖q ≤ C1/q
p n1/2[‖X1 − E(X1|F0)‖p + K∆r,p],

where ∆r,p = ∆r,p(X,F) =
r−1∑
j=0

2−j/2‖E(S2j |F0)‖p.(10)

First, we notice that ∆r,p ≤ 9(
√

2 + 1)δn,p, which follows from the proof of Lemma
3.3 in Peligrad and Utev (2005) applied to the sub-additive sequence Vk = ‖E(Sk|F0)‖p

for k ≤ n and Vk = 0 for k > n. Then, Proposition 1 follows from (10) applied
with the inequality

‖X1 − E(X1|F0)‖p + K∆r,p ≤ ‖X1‖p + [K9(
√

2 + 1) + 1]δn,p,

which explains the constant K9(
√

2 + 1) + 1 ≤ 80.
We prove (10) by induction on n. For n = 1

‖X1‖p ≤ ‖X1 − E(X1|F0)‖p + ‖E(X1|F0)‖p = ‖X1 − E(X1|F0)‖p + ∆1,p.

Assume that the inequality holds up to n − 1 and we shall prove it for n. By the
triangle inequality

(11) S∗n ≤ max
1≤k≤n

∣∣∣∣∣
k∑

i=1

[Xi − E(Xi|Fi−1)]

∣∣∣∣∣+ max
1≤k≤n

∣∣∣∣∣
k∑

i=1

E(Xi|Fi−1)

∣∣∣∣∣ .
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By the Burkholder maximal inequality (1),

(12)

∥∥∥∥∥ max
1≤k≤n

∣∣∣∣∣
k∑

i=1

(Xi − E(Xi|Fi−1))

∣∣∣∣∣
∥∥∥∥∥

p

≤ C1/p
p

√
n‖X1 − E(X1|F0)‖p.

To estimate the impact of the second term in (11) we start by writing n = 2m, or
n = 2m + 1 according to a value odd or even of n. Notice that∥∥∥∥∥∥ max

1≤k≤n

∣∣∣∣∣∣
k∑

j=1

E(Xi|Fi−1)

∣∣∣∣∣∣
∥∥∥∥∥∥

p

≤

∥∥∥∥∥ max
1≤k≤m

∣∣∣∣∣
2k∑
i=1

E(Xi|Fi−1)

∣∣∣∣∣
∥∥∥∥∥

p

+
∥∥∥∥ max

0≤k≤m
|E(X2k+1|F2k)|

∥∥∥∥
p

.(13)

The second term in the right hand side of (13) is estimated in a trivial way:

(14)
∥∥∥∥ max

0≤k≤m
|E(X2k+1|F2k)|

∥∥∥∥
p

≤ p
√

m + 1‖E(X1|F0)‖p.

For the first term in the right hand side of (13) we apply the induction hypotheses
to the stationary sequence Y0 = E(X−1|F−2)+E(X0|F−1), the sigma algebra G0 =
F−1 and the operator T2. Notice that the new filtration becomes {Gi : i ∈Z} where
Gi = F2i−1. By the induction hypotheses we obtain∥∥∥∥∥ max

1≤k≤m

∣∣∣∣∣
2k∑
i=1

E(Xi|Fi−1)

∣∣∣∣∣
∥∥∥∥∥

p

≤ C1/p
p mp/2[E|Y1 − E(Y1|G0)|p + K∆r−1,p(Y,G)] .

Clearly, ‖Y1 − E(Y1|G0)‖p ≤ 2‖E(X1|F−1)‖p ≤ 2‖E(X1|F0)‖p and also

∆r−1,p(Y,G) =
r−2∑
j=0

2−j/2‖E(
2j+1∑
k=1

Yj |G0)‖p

=
r−2∑
j=0

2−j/2‖E(S2j+1 |F−1)‖p

=
√

2[∆r,p(X,F)− ‖E(X1|F0)‖p].

And so∥∥∥∥∥ max
1≤k≤m

∣∣∣∣∣
2k∑
i=1

E(Xi|Fi−1)

∣∣∣∣∣
∥∥∥∥∥

p

≤ C
1
p
p {4

√
m‖E(X1|F0)‖p

+
√

2mK[∆r,p(X,F)− ‖E(X1|F0)‖p]}.

This last relation, combined with (11), (12), (13), (14) and also with the fact that
for all m ≥ 1, we have p

√
m + 1 ≤

√
mC

1/p
p , (since Cp ≥ 2 for all p ≥ 2) leads to

‖S∗n‖p ≤ C1/p
p

{√
n‖X1 − E(X1|F0)‖p + 5

√
m‖E(X1|F0)‖p

+
√

2mK[∆r,p − ‖E(X1|F0‖p)
}

≤ C1/p
p

√
n[‖X1 − E(X1|F0)‖p + K∆r,p]

and so we take K = 5/
√

2 to guarantee the inequality. This completes the proof of
the theorem. �
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Remark 1. The proof of Theorem 1 is easily adapted to derive the following version
of inequality (10), which incorporates the Burkholder quadratic variation term

E
[

max
1≤i≤n

|Si|p
]
≤ pp

∥∥∥∥∥∥
(

n∑
i=1

(Xi − E(Xi|Fi−1))2
)1/2

∥∥∥∥∥∥
p

+
√

n(
5√
2
∆r,p)

p

,

where p ≥ 2. The key change to make in the proof is to replace the right hand side
of inequality (12) by the quadratic variation term and then carry on this term to
the end of the proof.

Proof of Proposition 2. We can follow the proof of the Lp inequality from Theorem
1 for the variables in L∞. Here we only point out the differences. Instead of
Burkholder-type bound (1) for Lp moments of martingales with differences in Lp

we shall use the following near optimal bound for martingales with differences in
L∞

E
[

max
1≤k≤n

|Z1 + . . . + Zk|p
]

≤ pp(p− 1)−pE[|Z1 + . . . + Zn|p]

≤ pp(p− 1)−p(E|η|p)np/2‖Z1‖p
∞(15)

valid for all p ≥ 2, integers n and stationary martingale differences {Zk}, where η
is a standard normal variable. The first part is the Doob maximal inequality. The
second part follows from the Eaton-Hoeffding argument (Eaton, 1974, pp. 612-613)
applied together with the Bentkus martingale generalization (2004, Lemma 4.3) of
the Hunt comparison (1955).

From (15), by using the approach of Proposition 1, since pp(p − 1)−p ≤ 4, for
p ≥ 2, we derive the inequality ‖S∗n‖p ≤ 41/p‖η‖p

√
n(‖X1‖∞ + 80δn,∞). To obtain

the exponential inequality it remains to combine this bound with the last part of
Theorem 2.4 in Rio (2000). �

Proof of Proposition 1. Let (Yk)k≥0 be a discrete Markov chain with the state space
Z+ = {0, 1, . . .} and transition matrix P = (pij) given by pk(k−1) = 1 for k ≥ 1 and
pj = p0(j−1) = P(τ = j), j = 1, 2, . . . (i.e. whenever the chain hits 0 it regenerates
with the probability pj). Notice that if pnj

> 0 along a subsequence nj →∞; then
the chain is irreducible. Moreover the stationary distribution exists if and only if
E(τ) < ∞ and it is given by

πj = π0

∞∑
i=j+1

pi , j = 1, 2 . . . , where π0 = 1/E(τ).

With this in mind, we shall construct first a stationary Markov chain (Yk)k≥0 by
specifying the sequence (pj)j≥1. We consider a non-negative sequence an → 0 and
define pi = cj/u

1+p/2
j , when i = uj for some j ≥ 1, and pi = 0, elsewhere, where

the sequence {uk; k = 1, 2, . . .} of positive integers satisfies

(16) u1 = 1, u2 = 2, u4
k + 1 < uk+1 for k ≥ 3 and at ≤ k−2 for t ≥ uk.

Notice that E(τ2) < ∞ but E(τp) = ∞. We start the chain with the stationary
distribution (πj)j≥0. Further, we take g(x) = I(x=0) − π0, where π0 = P(Y0 = 0).
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The stationary sequence is defined by Xj = I(Yj=0) − π0 so that Sn =
∑n

j=1 Xj =∑n
j=1 I(Yj=0) − nπ0. Let us denote by

ν = min{m ≥ 1 : Ym = 0}, An = E0(Sn), x ∧ y = min(x, y),

where, P0 and E0 denote the probability and the expectation operator when the
Markov chain is started at 0 i.e. P0(Y0 = 0) = 1. We shall check first the con-
vergence part in Proposition 1. Similarly to Proposition 3.1 in Peligrad and Utev
(2005) we notice that

‖E(Sn|Y0)‖p ≤ ‖ν ∧ n‖p + max
1≤i≤n

|Ai| = In + Jn (say), where ‖x‖p
p =

∞∑
k=0

|xk|pπk.

Clearly, up to a positive constant, the probabilities pi defined above are smaller
than those considered in Peligrad and Utev (2005), where the case p = 2 is dealt
with. Thus, immediately it follows that

∑∞
n=1 anJn/n3/2 < ∞. Furthermore,

the convergence
∑∞

n=1 anIn/n3/2 < ∞ is proved using similar computations as in
Peligrad and Utev (2005). This completes the convergence part of the example.

It remains to prove that

(17) lim sup
n→∞

n−p/2‖S∗n‖p
p = ∞.

With this aim we define

T0 = 0, Tk = min{t > Tk−1 : Yt = 0}, τk = Tk − Tk−1 ,k = 1, 2, . . . .

Then, {τj} are independent variables equally distributed as τ [see, for example,
Breiman (1968, p.146)]. Let ξj = 1 − π0τj and we introduce the stopping time
νn = min{j ≥ 1 : Tj ≥ n}. Clearly, STk

=
∑k

j=1 ξj = k − π0Tk, νn ≤ n, and since
E(τ) = 1/π0, it follows that E0(ξ1) = 0.

Notice that, for a positive integer K

max
0≤j≤Kn

|Sj | ≥ max
Tj≤Kn

|STj
| = π0 max

Tj≤Kn
|Tj − E(Tj)| ≥ π0|Tn − E(Tn)|I(Tn≤Kn).

Thus, in order to show (17), it is enough to prove that

(18) lim sup
n→∞

1
np/2

E
[
|Tn − E(Tn)|pI(Tn≤Kn)

]
= ∞.

We shall use a truncation argument. Starting with the decomposition

τi − E(τ) = {τiI(τi≤
√

n) − E[τI(τ≤
√

n)]} − E[τI(τ>
√

n)] + τiI(τi>
√

n)

and letting Xin = n−1/2{τiI(τi≤
√

n)−E[τI(τ≤
√

n)]}, Yin = n−1/2τiI(τi>
√

n)I(Tn≤Kn)

and Wn = X1n + . . . + Xnn, we write

n−1/2‖[Tn − E(Tn)]I(Tn≤Kn)‖p ≥

∥∥∥∥∥
n∑

i=1

Yin

∥∥∥∥∥
p

− n1/2E[τI(τ>
√

n)]− ‖Wn‖p.

Notice that n1/2E[τI(τ>
√

n)] ≤ E(τ2) < ∞, |Xin| ≤ 1 and Var(Wn) = nVar(Xin) ≤
E(τ2) < ∞. So, by independence and Rosenthal inequality, ‖Wn‖p = O(1). Thus,
the divergence (18) holds if

lim sup
n→∞

n−1/2

∥∥∥∥∥
n∑

i=1

τiI(τi>
√

n)I(Tn≤Kn)

∥∥∥∥∥
p

= ∞.
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Since (τn)n≥1 are independent and identically distributed and p > 2, we can write

E

∣∣∣∣∣
n∑

i=1

τiI(τi>
√

n)I(Tn≤Kn)

∣∣∣∣∣
p

≥
n∑

i=1

E[τp
i I(τi>

√
n)I(Tn≤Kn)]

≥ nE[τp
nI(

√
n<τn<n)I(Tn≤Kn)].

Since {τn ≤ n} ∩ {τ1 + . . . + τn−1 ≤ (K − 1)n} ⊂ {τ1 + . . . + τn ≤ Kn}, by using
again the independence of (τn)n≥1 we obtain

E
[
τp
nI(τn>

√
n)I(Tn≤Kn)

]
≥ E

[
τp
nI(τn>

√
n)I(τn≤n)I(τ1+...+τn−1≤(K−1)n)

]
= E[τp

nI(τn>
√

n)I(τn≤n)]P[τ1 + . . . + τn−1 ≤ (K − 1)n].

By the law of large numbers we have P[τ1 + . . . + τn−1 ≤ (K − 1)n] → 1 as n →∞
when K − 1 > E(τ). Overall, for all n sufficiently large

E
[
τp
nI(τn>

√
n)I(Tn≤Kn)

]
≥ 1

2
nE[τp

nI(τn>
√

n)I(τn≤n)]

=
1
2
nE[τp

nI(
√

n<τn≤n)].

So, it remains to prove that lim supn→∞ n1−p/2E[τpI(
√

n < τ ≤ n)] = ∞. To this
end, we observe that along the subsequence (uj)j≥1 defined by (16) and j →∞
uj

u
p/2
j

E[τpI(
√

uj < τ ≤ uj)] ≥ u
1−p/2
j up

jP(τ = uj) = u
1−p/2
j up

j cju
−1−p/2
j = cj →∞.

Therefore we established the desired result. �

Proof of Lemma 1. We first mention the following estimate of the absolute moments
of order p of the partial sums contained in papers by Peligrad (1985) or Shao (1995).
For a certain constant K depending only on p and A =

∑∞
j=0 ρ2/p(2j), we have

(19) ‖Sn‖p ≤ Kn1/2‖X‖p

By the triangular inequality and stationarity, we derive

(20) ‖E(S2n|F0)‖p ≤ ‖E(Sn|F0)‖p + ‖E(Sn|F−n)‖p

We combine now Lemma 4.3 and Theorem 4.12 in Bradley (2002) to obtain

‖E(Sn|F−n)‖p ≤ 21−2/pρ2/p(n)‖Sn‖p

and so, by (19), ‖E(Sn|F−n)‖p ≤ cρ2/p(n)n1/2 where c = 21−2/pK1/p‖X‖p. Thus,
by iterating (20), we have ‖E(S2k+1 |F0)‖p ≤ c

∑k
i=0 2i/2ρ2/p(2i). Hence∑

j≥0

2−j/2‖E(S2j |F0)‖p ≤ c
∑
j≥0

2−j/2

j−1∑
i=0

2i/2ρ2/p(2i) ≤ 4c
∑
i≥0

ρ2/p(2i) .

Since ‖E(Sn|F0)‖p is sub-additive, (see Peligrad and Utev (2005), Lemma 2.7), it
follows that

∑
r 2−r/2‖E(S2r |F0)‖p < ∞ is equivalent to

∑
n n−3/2‖E(Sn|F0)‖p <

∞ and the result follows. �

Proof of Lemma 2. Without loss of generality assume E[g(Y0)] = 0. Let Dk =
{j2−k : j = 0, . . . , 2k − 1}. Following Maxwell and Woodroofe (2000), we notice

E|E(g(Yk)|Y0)|p =
∫ 1

0

∣∣∣∣∣2−k
∑

z∈Dk

∫ 1

0

[g(x2−k + z)− g(y2−k + z)]dy

∣∣∣∣∣
p

dx.
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By Jensen’s inequality and change of measure

E|E(g(Yk)|Y0)|p ≤ 2−k
∑

z∈Dk

∫ 1

0

∫ 1

0

|g(x2−k + z)− g(y2−k + z)|pdydx

= 2k
∑

z∈Dk

∫ 2−k

0

∫ 2−k

0

|g(x + z)− g(y + z)|pdydx

≤ 2k

∫ 1

0

∫ 1

0

I(|x−y|≤2−k)|g(x)− g(y)|pdydx.

Let t > p/2− 1 and q = p/(p− 1). Then

Q :=
∞∑

k=0

(1 + k)tE|E(g(Yk)|F0)|p ≤
∫ 1

0

∫ 1

0

J(|x− y|)|g(x)− g(y)|pdydx,

where J(z) =
∑

k:2−k≥z 2k(1 + k)t ≤ Cz−1[log(1/z)]t for some constant C > 0.
Since t > p/2− 1, γ := −q(t/p + 1/2) < −1. By Hölder’s inequality,

‖g(Y1)‖p +
∞∑

n=1

n−1/2‖E(Xn|F0)‖p ≤
√

2
∞∑

k=0

(k + 1)−1/2‖E(Xk|F0)‖p

≤
√

2Q1/p

[ ∞∑
k=0

(k + 1)γ

]1/q

:= kt,pQ
1/p

for some kt,p < ∞. So the lemma follows. �

Proof of Proposition 3. First we notice that the weak convergence involved in this
proposition will immediately follow from the central limit theorem from Maxwell
and Woodroofe (2000) along with (9) and Theorem 12.3 in Billingsley (1968).

To prove (9), we apply the maximal inequality of Corollary 1 and Lemma 2 to
stationary sequence {gα(Yk) − gβ(Yk) − E[gα(Y0) − gβ(Y0)] ; k ∈ Z}. We choose
2 < p ≤ 3 such that pb < 1 and take γ = p/2, ε = (p/2 − 1)/4 > 0 so that
p− γ = p/2 = 1 + 4ε > 1 + 2ε.

To analyze the integral (7), we shall change the variables from x to 1/x and
from y to 1/y, and introduce the function G(x) = (xβ − xα) sin(x). Notice that
xy ≥ |x− y| for x, y ≥ 1. Then, the integral (7) is reduced to

(21) J =
∫ ∫

x>1,y>1

|G(x)−G(y)|p 1
xy|x− y|

log
(

xy

|x− y|

)
dxdy.

Next, without loss of generality we assume that β = α + δ with δ > 0. Since
|xβ − xα| = xβ(1 − e−δ ln(x)) ≤ xβδ| ln(x)|, we then derive that there exists a
positive constant c such that for all x, y ≥ 1 and all α, β with 0 ≤ α, β ≤ b,

|G(x)−G(y)|p ≤ cδγ min(|x− y|p−γ , 1)(xpb[ln(x)]p + ypb[ln(y)]p)

Since, for every ε > 0 there exists a positive non-decreasing function kε such that
ln(x) ≤ kεx

ε for all x ≥ 1, J in (21) is bounded by 2kεcδ
γI, where

I =
∫ ∫

x>1,y>1

min(|x− y|, 1)p−γ xu + yu

x2y2

(
xy

|x− y|

)1+ε

dxdy ,

u = (1 + pb)/2 , 0 < u < 1 and p − γ > 1 + ε. The fact that I < ∞ can be shown
in a similar way as it was indicated in Maxwell and Woodroofe (2000). �
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