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S Á N D O R C S Ö R G Ő1,2† and W E I B I A O W U1

1 Department of Statistics, University of Michigan,

4062 Frieze Building, Ann Arbor, MI 48109–1285, USA

(e-mail: scsorgo@umich.edu, wbwu@umich.edu)

2 Bolyai Institute, University of Szeged,
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We consider graphs Gn generated by multisets In with n random integers as elements,

such that vertices of Gn are connected by edges if the elements of In that the vertices

represent are the same, and prove asymptotic results on the sparsity of edges connecting

the different subgraphs Gn of the random graph generated by ∪∞n=1In. These results are

of independent interest and, for two models of the bootstrap, we also use them here

to link almost sure and complete convergence of the corresponding bootstrap means

and averages of related randomly chosen subsequences of a sequence of independent

and identically distributed random variables with a finite mean. Complete convergence

of these means and averages is then characterized in terms of a relationship between a

moment condition on the bootstrapped sequence and the bootstrap sample size. While we

also obtain new sufficient conditions for the almost sure convergence of bootstrap means,

the approach taken here yields the first necessary conditions.

1. Introduction

Let {Xn}∞n=0 be a sequence of independent and identically distributed random variables

with a finite mean µ := E(X), where X = X0. Given the sample X0, . . . , Xn−1 for some

sample size n ∈ N, where N is the set of natural numbers, Efron’s [11] ordinary bootstrap

sample Yn,0, . . . , Yn,mn−1 of size mn ∈ N results from resampling mn times the sequence

X0, . . . , Xn−1 with replacement such that at each stage any one element has probability 1/n

of being selected; in other words, given X0, . . . , Xn−1, the random variables Yn,0, . . . , Yn,mn−1
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are conditionally independent and their common distribution is the sample distribution.

The bootstrap mean, then, is

µn(mn) := m−1
n

mn−1∑
j=0

Yn,j = m−1
n

mn−1∑
j=0

XZn,j ,

where {Zn,0, . . . , Zn,mn−1}∞n=1 is a triangular array of row-wise independent random variables,

given on the same probability space (Ω,A,P) where the sequence {Xn}∞n=0 is defined, such

that the sequence {Xn}∞n=0 and the whole array {Zn,0, . . . , Zn,mn−1}∞n=1 are independent and

P{Zn,j = k} = 1/n, k = 0, . . . , n − 1, for every j ∈ {0, . . . , mn − 1} and n ∈ N. Another

suggestive form is µn(mn) =
∑n−1

k=0 wn,k(mn)Xk , where the sequence of random weight

vectors wn(mn) = (wn,0(mn), . . . , wn,n−1(mn)) of frequencies wn,k = m−1
n

∑mn−1
j=0 I(Zn,j = k) is

independent of the basic sequence and mnwn(mn) has the Multinomial(mn; 1/n, . . . , 1/n)

distribution, where I(A) denotes the indicator function of an event A ∈ A.

The weak law of large numbers for the bootstrap mean, that is, when µn(mn) → µ in

probability, holds whenever mn → ∞. This goes back to [6]; there is a simpler proof in

[3], while the simplest proof is in [10] (cf. the third part of the theorem in [10]). (Here

and throughout, convergence and order relations are meant as n → ∞ unless otherwise

specified.) Concerning the problem of almost sure (a.s.) or strong convergence of µn(mn)

to µ, a matter of style should first be clarified. Let PX(H) := P{X ∈ H}, H ∈ B∞,

be the distribution of the sequence X := {Xn}∞n=0 over (R∞,B∞), where B is the class

of Borel sets in the real line R. Numerous papers state strong laws in the conditional

form, which for µn(mn) is some verbal equivalent of the equation PX(B) = 1, where

B = {x ∈ R∞ : P{A |X = x} = 1} for the event A = {µn(mn) → µ}. Since there exists

a unique Borel function pA : R∞ 7→ [0, 1] for which pA(X) is a version of P{A |X} and

P{A |X = x} is understood as pA(x) for each x ∈ R∞, we have {ω ∈ Ω: X(ω) ∈ B} = {ω ∈
Ω: pA(X(ω)) = 1} = {P{A |X} = 1} for this version, and hence it is easy to see, in fact for

any event A ∈ A, that the three statements P{P{A |X} = 1} = 1, PX({x ∈ R∞ : P{A |X =

x} = 1}) = 1 and P{A} = 1 are equivalent. Thus, although this is not always clear in the

literature, conditional and unconditional bootstrap strong laws are one and the same.

The problem of the strong law of large numbers for the bootstrap mean µn(mn) is

difficult. It is intuitively clear that the faster the bootstrap sample size mn grows with the

sample size n, the better is the chance of having µn(mn)
a.s.−→ µ because then µn(mn) will

probably be closer to the sample mean

µn := n−1
n−1∑
j=0

Xj.

Theorem 4.1 below shows that the condition lim infn→∞[log n]/mn = 0 is in fact neces-

sary for any bootstrap strong law in two reasonable models of the bootstrap if X is

nondegenerate.

Once mn → ∞ faster than log n, it turns out that the slower this happens, the stronger

the moment conditions beyond E(|X|) < ∞ needed to compensate. The relationship is

intricate, and the first necessary conditions are obtained in the present paper. Concerning

sufficient conditions, Athreya [2] achieved the first result and some improvements were

obtained in [3]. (Theorem 3.1 in [17], somewhat weaker than Theorem 2 in [3], is proved
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by a different method.) Hu [16] and Csörgő [10] aimed at some further improvements.

However, it was pointed out by Arenal-Gutiérrez, Matrán and Cuesta-Albertos [1] that

the second part of the proof for the first two statements of the theorem in [10] is in

error. It will follow from Theorem 4.2 below that part of the statements in [10] and

also of the statements in [16] are themselves incorrect. One of the best results to date

is in [1]: if E(|X|α) < ∞ and [n1/α log n]/mn → 0 for some α > 1, then µn(mn)
a.s.−→ µ. A

slight improvement of this result, requiring only that lim infn→∞ mn/[n1/α log n] > 0, and

a version with a logarithmic factor in the moment condition for X rather than in the

growth condition for mn, is in Theorem 4.4 below. This version allows the naive bootstrap,

in which the bootstrap sample size is the same as the sample size at each step: mn ≡ n.

Previously, Mikosch [20] obtained comparable results. While the direct technique in [1]

allows bootstrap strong laws for dependent variables as well (even the ergodic theorem

may be bootstrapped), the conditional arguments in [20] yield Marcinkiewicz–Zygmund-

type rates when E(|X|α) < ∞ for some α ∈ [1, 2], with α = 2 being the limitation of

this method. (In fact, Mikosch [20] obtains some strong laws for µn(mn)− µn even when

α ∈ (0, 1), so that µn diverges a.s.; we do not deal with such laws, or with rates, here.)

We emphasize that all results mentioned so far are universal for µn(mn) in that they

hold for every possible joint distribution of the row vectors Zn(mn) = (Zn,0, . . . , Zn,mn−1) of

the triangular array {Zn(mn)}∞n=1 as long as the latter is independent of {Xn}∞n=0. Since the

statistician usually analyses a single given data set, practical ideas about the bootstrap

do not specify such joint distributions. However, specifications become unavoidable when

aiming at necessary conditions for µn(mn)
a.s.−→ µ.

In this paper we consider two special models for the bootstrap. The first is a triangular

array situation with independent rows, in which the array {Zn,0, . . . , Zn,mn−1}∞n=1 is chosen

to be {bnUn,1c, . . . , bnUn,mnc}∞n=1, where bxc := max{l ∈ Z : l 6 x} is the usual integer

part of x ∈ R and Un,1, . . . , Un,mn for each n are independent random variables uniformly

distributed in the interval (0, 1) such that the row vectors (Un,1, . . . , Un,mn), n ∈ N, are also

independent. In other words, the whole array {Un,1, . . . , Un,mn}∞n=1 consists of independent

Uniform(0, 1) random variables, so that the model here is that each time n the statistician

obtains an additional observation, he will bootstrap the upgraded sample of size n+ 1 by

generating mn+1 random numbers anew, independently of all previous generations; the

corresponding bootstrap means will be denoted by

µ4n (mn) := m−1
n

mn∑
j=1

XbnUn,jc, n ∈ N.

The second model is induced by a single sequence U1, U2, . . . of independent Uniform(0, 1)

random variables such that the array {Zn,0, . . . , Zn,mn−1}∞n=1 is {bnU1c, . . . , bnUmnc}∞n=1. Here

the rows are far from being independent: the statistician stores U1, . . . , Umn and generates

only the new random numbers Umn+1, . . . , Umn+1
when the (n+ 1)st observation comes in,

and the bootstrap sample changes from XbnU1c, . . . , XbnUmn c to Xb(n+1)U1c, . . . , Xb(n+1)Umn+1
c;

the corresponding bootstrap means will be denoted by

µ?n(mn) := m−1
n

mn∑
j=1

XbnUjc, n ∈ N.
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Clearly,

µn(mn) = m−1
n

∑
k∈Zn(mn)

Xk,

where the random collection Zn(mn) := {Zn,0, . . . , Zn,mn−1} is a multiset of not necessarily

different nonnegative random integers. Our method is based on analysing the joint

structure of these multisets as n → ∞, for the two models above and mn ≡ bn1/αc for

some α > 1, by considering the random graphs gn(mn) generated by Zn(mn) in a natural

fashion: take mn (distinct) vertices representing the not necessarily different mn elements

of Zn(mn), and connect any two vertices by an edge if the numbers they represent are

the same. The problem then is about the sparsity of the edges connecting the different

subgraphs gn(mn) in the graph generated by ∪∞n=1Zn(mn), for the two basic models of the

bootstrap introduced above.

We are able to analyse this problem after a rarefying transformation that pertains

directly to the averages

a4n (α) := n−1
n∑
j=1

XbbnαcUn,jc and a?n(α) := n−1
n∑
j=1

XbbnαcUjc

for some α > 1, and in general to

an(mn) := n−1
n−1∑
j=0

XZmn,j
.

The results on the corresponding random graphs are in the next section. These are very

different from those in the existing standard theory, given in [8], and are of independent

interest. We shall point out their direct relevance in classical random allocation problems

and believe that they may be important in some recent branches of computer science. The

averages a4n (α) and a?n(α) may not be as well motivated from the statistical point of view

as their bootstrap-mean counterparts

µ4n (α) := µ4n (bn1/αc) =

bn1/αc∑
j=1

XbnUn,jc/bn1/αc

and

µ?n(α) := µ?n(bn1/αc) =

bn1/αc∑
j=1

XbnUjc/bn1/αc,

but they are just as interesting from the probabilistic point of view. Based on the results

for random graphs in Section 2, it is in fact easier to fully characterize the complete

convergence of a4n (α) to µ and, at least for α > 3, the almost sure convergence of both

a4n (α) and a?n(α), than to achieve corresponding statements for the bootstrap means µ4n (α)

and µ?n(α); the results for an(mn) are separated in Section 3, while the main results for

bootstrap means are in Section 4.

Following Hsu and Robbins [15] and Erdős [12, 13], we say that a sequence {ξn}∞n=1

of random variables converges completely to the random variable ξ, and write ξn
EHR−→ ξ if
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and only if
∞∑
n=1

P{|ξn − ξ| > ε} < ∞
for every ε > 0. So, ξn

EHR−→ ξ implies ξn
a.s.−→ ξ, but the converse is generally not true; in

fact, to fix ideas, the Erdős–Hsu–Robbins theorem (cf. [9], pp. 132, 375) says that µn
EHR−→ µ

if and only if E(X2) < ∞, and the extension by Baum and Katz [5] states that

∞∑
n=1

nθ−2P{|µn − µ| > ε} < ∞

holds for every ε > 0 for some θ > 1 if and only if E(|X|θ) < ∞. Now the intuitive

idea is that, if for the chosen model of the bootstrap the random subgraphs above are

almost surely asymptotically sparsely connected, then the members of the given sequence

of bootstrap means themselves become asymptotically independent, and hence the second

Borel–Cantelli lemma would suggest that the strong and complete convergence of these

means are equivalent. The complete convergence of them, in turn, is a universal distribu-

tional property, independent of the bootstrap model, which may be characterized by direct

probabilistic methods. We are unable to accomplish this program in its full generality:

conjectures arising from the work are discussed in Section 5. In each section the proofs

are deferred until after the statement and discussion of the main results in that section.

2. The sparsity of random graphs generated by random multisets

Given a finite or infinite multiset I of nonnegative integers, let S[I] be the base set of all

the different elements in I, that is, the set that keeps exactly one of each kind of elements

in I. For k ∈ I, let #(k,I) denote the multiplicity of k, so that #(k, S[I]) = 1 for every

k ∈ I and |I| :=
∑

k∈S[I] #(k,I) is the total number of elements in I, including all

multiplicities. Given now the multisets I1 and I2 of nonnegative integers, it is natural to

extend the usual set-theoretic notions and operations the following way: I1 ⊂ I2 if and

only if S[I1] ⊂ S[I2] and #(k,I1) 6 #(k,I2) for every k ∈ S[I1], so that I1 = I2 if

and only if S[I1] = S[I2] and #(k,I1) = #(k,I2) for every k ∈ S[I1]; the union I1 ∪I2

is a multiset with base set S[I1] ∪ S[I2] and multiplicity max(#(k,I1),#(k,I2)) for each

k ∈ S[I1]∪ S[I2], while the intersection I1 ∩I2 is a multiset with base set S[I1]∩ S[I2]

and multiplicity min(#(k,I1),#(k,I2)) for each k ∈ S[I1] ∩ S[I2]; finally, if I1 and I2

are both finite, the difference I1 \ I2 may be formed only if I2 ⊂ I1, in which case

S[I1 \ I2] := {k ∈ I1 : #(k,I1) > #(k,I2)} and the multiplicity of k ∈ S[I1 \ I2] in

I1 \ I2 is taken to be #(k,I1)− #(k,I2).

A multiset I of nonnegative integers generates a graph G(I), with |I| distinct vertices

v1, v2, . . . , with each vertex representing an element in I, such that there is an edge

connecting two vertices if and only if the numbers that the two vertices represent are

equal. Many graphs can be generated by a multiset, but one clearly sees that these graphs

are isomorphic.

Keeping the notation of the introduction throughout, let {Un,1, . . . , Un,n}∞n=1 be a trian-

gular array and U1, U2, . . . be a sequence of independent Uniform(0, 1) random variables.
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For some α > 1 and all n ∈ N, consider the random multisets

I4n (α) := {bbnαcUn,1c, . . . , bbnαcUn,nc} and I?n(α) := {bbnαcU1c, . . . , bbnαcUnc},
and let G4n (α) := G(I4n (α)) and G?n(α) := G(I?n(α)) be the corresponding generated graphs.

If Gn(α) is any one of them, then there is an edge between any of the
(
n
2

)
pairs of vertices

vi and vj , i, j = 1, . . . , n, i 6= j, with probability P{bbnαcUic = bbnαcUjc} = 1/bnαc. So,

when distributional matters are investigated, even asymptotically, for the isolated random

multiset I4n (α) or I?n(α) and the corresponding generated graph G4n (α) or G?n(α), and not

the joint behaviour of the whole sequence, the two constructions of the multiset may be

viewed as the same and the corresponding homogeneous random graphs may also be

taken to be the same. In such cases, when no distinction between the two scenarios is

needed, we shall use the single sequence U1, U2, . . . .

It follows from a well-known result of Barbour (see, for example, Theorem 5.G in

[4] for a general version) that, if α > 2, then the number of edges in Gn(α) has an

approximate Poisson distribution with mean 1/(2nα−2). However, the infinite graphs G4α :=

G
( ∪∞n=1 I4n (α)

)
and G?α := G

( ∪∞n=1 I?n(α)
)

are inhomogeneous in the sense that the

connecting probabilities between the vertices of corresponding subgraphs are no longer

the same. What we really need, in both cases, is not to have many edges between Gn(α)

and G
(∪∞j=n+1Ij(α)

)
, within Gα. Since I?1 (α),I?2 (α), . . ., are not independent, this problem

is clearly more difficult for G?α than for G4α . Theorems 2.1 and 2.2 provide the same result

for the two cases if α > 3. They say that, for every present state n, the number of edges

leading to the whole future n+ 1, n+ 2, . . . is bounded by the same finite number, almost

surely for all n large enough (the threshold depending on chance).

Theorem 2.1. If α > 3, then there is a finite constant K = K(α) > 0 such that

∞∑
n=1

P
{∣∣I4n (α) ∩ ( ∪∞j=n+1 I4j (α)

)∣∣ > K} < ∞.
Theorem 2.2. If α > 3, then there is a finite constant K = K(α) > 0 such that

∞∑
n=1

P
{∣∣I?n(α) ∩ ( ∪∞j=n+1 I?j (α)

)∣∣ > K} < ∞.
Although Theorem 2.2 is much harder to prove, even K(α) may be chosen as

K(α) =

{ d(α− 2)/(α− 3)e, if 3 < α 6 4,

1, if α > 4,
(2.1)

the same in both theorems, where dxe := min{l ∈ Z : x 6 l} for any x ∈ R, so that

eventually there will be no edges to the future if α > 4.

For any multiset I of nonnegative integers, let R[I] := R1[I] := {k : #(k,I) = 1} be

the ‘regular’ subset of its elements with multiplicity 1. The following result is about the

size of the regular subsets of a sequence of random multisets more general than above,

that is, about the number of isolated vertices in the graphs they generate, not connected

to any other vertices. As always, {mn}∞n=1 is a sequence of natural numbers.
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Theorem 2.3. If Imnn = {bmnU1c, . . . , bmnUnc} such that lim infn→∞ mn/n > c for some

c > 0, then

lim
n→∞P

{ |R[Imnn ]|
n

> e−1/c − ε
}

= 1

for every ε > 0.

For α > 1, now consider Jα
n := {bnU1c, . . . , bnUbn1/αcc}, so that, in particular, J1

n =

Inn = In(1) =: In, n ∈ N. The next two theorems are more precise extended versions

of Theorem 2.3 in more specific settings. They are not used for handling bootstrap

and other means in the present paper, but, as discussed in Section 5, they may have

a role in that theory as well. The results are about the number of elements in the set

Rk[Jα
n] := {0 6 i 6 n − 1 : #(i,Jα

n) = k}, that is, the number of elements in Jα
n with

multiplicity k = 0, 1, 2, . . . . The symbol
D−→ stands for convergence in distribution and

Poisson(λ) denotes the Poisson distribution with mean λ > 0.

Theorem 2.4. For every n ∈ N and H ⊂ {0} ∪N,

P

{∣∣∣∣∣∑
k∈H

( |Rk[In]|
n

− e−1

k!

)∣∣∣∣∣ > ε

}
6 2e
√
n e−2nε2

for every ε > 0.

Notice that, if l ∈ N, then in graph-theoretic language |Rl[In]| is nothing but the number

of subgraphs of G(In) = G({bnU1c, . . . , bnUnc}) that are isomorphic to the complete l-

graph Kl , as defined in [7, p. 3]. Hence the theorem is about these numbers and, in

particular, |Rl[In]|/n EHR−→ e−1/l! for every l ∈ N.

Theorem 2.5. Let α > 1 and consider an integer k ∈ {0} ∪N.

(i) If k ∈ [0, α/(α− 1)), then for every ε > 0 there exists an η(ε) > 0 such that

P

{∣∣∣∣∣ |Rk[Jα
n]|

n(bn1/αc/n)k −
e−bn1/αc/n

k!

∣∣∣∣∣ > ε

}
6 2ebn1/αc1/2e−η(ε)n(bn1/αc/n)k

for every n ∈ N.

(ii) If α/(α− 1) is an integer and k = α/(α− 1), then |Rk[Jα
n]| D−→Poisson(1/k!).

(iii) If k > α/(α − 1), then P{|Rk[Jα
n]| > ε} 6 n[α(1−k)−k]/α/k! for every ε > 0, where

n[α(1−k)−k]/α → 0.

If α > 1 and k ∈ [0, α/(α− 1)), then

∞∑
n=1

bn1/αc1/2e−η(ε)n(bn1/αc/n)k < ∞,

and so case (i) implies that

|Rk[Jα
n]|

n[α(1−k)+k]/α
EHR−→ 1

k!
for all α > 1 and k ∈ 0 ∪N for which 0 6 k < α

α−1
.
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Theorems 2.4 and 2.5 may also be interpreted as results for classical random allocation

problems, where the number of boxes is the original sample size n, while the resampling

size m = mn is the number of balls that are equiprobably allocated into the n boxes,

labelled 0, 1, . . . , n − 1. Then Rk(m, n) := |Rk[{bnU1c, . . . , bnUmc}]| is the number of boxes

containing k balls. Markov [19] was already aware, for example, that

P{R0(m, n) = i} =
1

nm

(
n

i

) n−i∑
j=0

(−1)n−i−j
(
n− i
j

)
jm.

Asymptotic normal and Poisson distributions have been derived for Rk(m, n) by many

authors, under various conditions concerning the relative size of m and n; see [18] for a

detailed description of the results and some of their applications. Theorems 2.4–2.5 are

different: the main point is to obtain strong laws for proportions. In principle it should

be possible to derive the case k = 0 of Theorem 2.4 from Markov’s formula, for example,

and the general case by more complicated methods used in [18]. However, our short proof

makes more combinatorial and probabilistic sense: Rk(n, n) is the number of complete

k-subgraphs in the random graph G(In) of order n, the degree of each vertex of which

is asymptotically Poisson with mean n(1/n) = 1 by the classical Poisson convergence

theorem, and so the result for the proportion Rk(n, n)/n may be viewed as the law of large

numbers obtained from averaging over the individual vertices.

Proof of Theorem 2.1. Let K = K(α) be as given in (2.1); consider the event An =

{bbnαcUn,1c, . . . , bbnαcUn,nc are different} = {|R[I4n (α)]| = n} and the index sets I = {i =

(i1, . . . , iK ) : 1 6 i1 < · · · < iK 6 n}, M = {m = (m1, . . . , mK ) : m1, . . . , mK > n} and

J(m) = {j = (j1, . . . , jK ) : 1 6 jl 6 ml, l = 1, . . . , K}. By sequential conditioning it is easy

to see that

P{An} =

n−1∏
k=1

(
1− [k/bnαc]),

whence P{Acn} = O(1/nα−2). Also, notice that

P
{
An ∩ [ ∩Kk=1

{bbnαcUn,ikc = bbmαkcUmk,jkc
}]}

= 0

if (mk1
, jk1

) = (mk2
, jk2

) for some k1, k2 such that 1 6 k1 < k2 6 K , since then bbnαcUn,ik1
c =

bbnαcUn,ik2
c necessarily. Therefore,

p4n (α) := P
{
An ∩ [ ∪i∈I ∪m∈M ∪j∈J(m) ∩Kk=1

{bbnαcUn,ikc = bbmαkcUmk,jkc
}]}

6
∑
i∈I

∑
m∈M

∑
j∈J(m)

P
{
An ∩ [ ∩Kk=1

{bbnαcUn,ikc = bbmαkcUmk,jkc
}]}

6
∑
i∈I

∑
m∈M

K∏
k=1

mk

K∏
k=1

1

bmαkc
= O(1) nK

( 1

nα−2

)K
=

O(1)

n(α−3)K
.
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Hence

P
{∣∣I4n (α) ∩ ( ∪∞j=n+1 I4j (α)

)∣∣ > K} 6 P{Acn}+ p4n (α) = O
(
1/nmin(α−2,(α−3)K)

)
,

proving the theorem.

Proof of Theorem 2.2. Keeping K = K(α) as in (2.1), consider the events

An = {bbnαcU1c, . . . , bbnαcUnc are different} = {|R[I?n(α)]| = n},
Bn =

⋃
m>n

⋃
16i1 6=i26n

⋃
16j1 6=j26m

[{bbmαcUj1c = bbnαcUi1c} ∩ {bbmαcUj2c = bbnαcUi2c}
]
,

Cn =
⋃

m2>m1>n

⋃
16j6m1

⋃
16i1 6=i26n

[{bbmα1cUjc = bbnαcUi1c} ∩ {bbmα2cUjc = bbnαcUi2c}
]
,

Dn =
⋃
m>n

⋃
16i6n

{bbmαcUic = bbnαcUic},

En =
{∣∣I?n(α) ∩ ( ∪∞j=n+1 I?j (α)

)∣∣ > K},
so that what we have to prove is

∑∞
n=1P{En} < ∞. Then

P{En} 6 P{Acn}+ P{Dn}+ P{An ∩ Bn ∩ Dcn}+ P{Cn ∩ Dcn}+ P{An ∩ Bcn ∩ Cc
n ∩ Dcn ∩ En},

and since we already know from the proof of Theorem 2.1 that P{Acn} = O(1/nα−2), the

theorem follows from Lemmas 2.10, 2.11 and 2.12 below.

Lemma 2.6 below is essential for Lemma 2.7, and Lemmas 2.11 and 2.12 both require

Lemma 2.7, while Lemmas 2.8 and 2.9 are needed for Lemma 2.10. Throughout these seven

lemmas U1, U2, . . . are independent Uniform(0, 1) random variables, U is a Uniform(0, 1)

variable, α > 1 and K ∈ N is arbitrary; so the choice K = K(α) in (2.1) is permissible if

α > 3. The events Bn, Cn, Dn and En are those in the proof of Theorem 2.2. Lemma 2.7

requires the notion of a special kind of a bipartite graph ([7], pp. 4–5, where the notion

of a connected graph and of a circuit may also be found). For some k ∈ N, consider two

sets {i1, . . . , ik} and {j1, . . . , jk} of positive integers, such that i1, . . . , ik are all different and

j1, . . . , jk are all different, but il = jm is possible, 1 6 l, m 6 k. Let G∗(i1, . . . , ik; j1, . . . , jk) be

the (bipartite) graph generated by the multiset {i1, . . . , ik, j1, . . . , jk}, the latter taken with

the given order of its elements as listed, in which we require that, besides the existing

edges between vertices that represent equal numbers, the vertices representing il and jl
are always connected, even if il 6= jl , l = 1, . . . , k. Such a special bipartite graph, a diagram

depending upon the listing order in the generating special multiset, will be called here a

bigram.

Lemma 2.6. For any integers k ∈ {1, . . . , K} and mj > n > 1, j = 1, . . . , k,

pα(n, m1, . . . , mk) := P
{ ∩kj=1 {bbnαcUjc = bbmαj cUj+1c}} = O

(
1

mα1 · · ·mαk
)
.
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Proof. For integers l1, . . . , lk we have

pα(n, m1, . . . , mk) =

bnαc−1∑
l1=0

∑
06l2 ,...,lk6bnαc−1

P
{ ∩kj=1 {bbnαcUjc = bbmαj cUj+1c = lj}}.

For a fixed l1, if bbmα1cU2c = l1, then l1/bmα1c 6 U2 < (l1 + 1)/bmα1c, and so bnαcU2 ∈[bnαcl1/bmα1c, bnαc(l1 + 1)/bmα1c
)
. Since the length of this interval is bnαc/bmα1c < 1, the

random integer bbnαcU2c can take at most two values, that is, for a given l1, the number

of possible values of l2 = bbnαcU2c = bbmα2cU3c is at most two. Consequently, continuing

the argument, for any given l1 and j = 2, . . . , k the number of values of lj for which the

probability under the sum is nonzero is at most 2j−1. Since

P
{ ∩kj=1 {bbnαcUjc = bbmαj cUj+1c = lj}}
6 P

{{bbnαcU1c = l1} ∩ [ ∩kj=1 {bbmαj cUj+1c = lj}]} =
1

bnαcbmα1c · · · bmαkc
for any choice of the integers l1, . . . , lk ∈ [0, bnαc), this observation yields the inequality

pα(n, m1, . . . , mk) 6

bnαc−1∑
l1=0

21+2+···+(k−1)

bnαcbmα1c · · · bmαkc
=

21+2+···+(k−1)

bmα1c · · · bmαkc
,

which (an empty sum understood as zero) is an equality for k = 1, proving the lemma.

Lemma 2.7. Let {i1, . . . , iK} and {j1, . . . , jK} be two sets of positive integers such that il 6= jl ,

l = 1, . . . , K . If the bigram G∗ = G∗(i1, . . . , iK ; j1, . . . , jK ) has no circuit, then for arbitrary

integers mj > n > 1, j = 1, . . . , K ,

P
{ ∩Kl=1 {bbnαcUilc = bbmαl cUjlc}

}
= O

(
1

mα1 · · ·mαK
)
.

Proof. Clearly, G∗ can be decomposed into k ∈ {1, . . . , K} connected bigrams G∗r =

G∗r (il1 , . . . , ilq(r)
; jl1 , . . . , jlq(r)

), none of which has a circle, such that jls = ils+1
for every

s = 1, . . . , q(r)− 1 and jlq(r)
6= il1 , for some q(r) ∈ N for every r = 1, . . . , k, and there are no

edges between G∗r and G∗t if r 6= t, r, t = 1, . . . , k. Consider

F(G∗r ) = ∩q(r)
s=1

{bbnαcUils
c = bbmαlscUjls

c},
an event associated with the bigram G∗r , r = 1, . . . , k. Then the events F(G∗1), . . . , F(G∗k) are

independent, owing to the lack of edges between any two of the bigrams G∗1, . . . , G∗k , and

we have

∩Kl=1{bbnαcUilc = bbmαl cUjlc} = ∩kr=1F(G∗r ).
Applying Lemma 2.6 to each of the events F(G∗r ), r = 1, . . . , k, and using independence,

the lemma follows.

Lemma 2.8. If α > 1, then

un :=

∞∑
m=n+1

1

mα − nα = O

(
log n

nα−1

)
.
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Proof. We have

un =
1

(n+ 1)α − nα +

∞∑
m=n+2

1

mα − nα = O(1)

[
1

nα−1
+

∞∑
m=n+2

∫ m

m−1

1

tα − nα dt
]

= O(1)

[
1

nα−1
+

1

nα−1

∫ ∞
(n+1)/n

1

xα − 1
dx

]

= O(1)
1

nα−1

[
1 +

∫ ∞
1

1

(1 + y)α − 1
dy +

∫ 1

1/n

1

(1 + y)α − 1
dy

]

= O(1)
1

nα−1

[
1 +

∫ 1

1/n

1

y
dy

]
,

which gives the statement.

Lemma 2.9. If α > 1, then for all integers m > n > 1,

pmn (α) := P
{bbnαcUc = bbmαcUc} =

bbnαc/(bmαc−bnαc)c∑
k=0

[
k + 1

bmαc −
k

bnαc
]

=

{
O
(

1
mα−nα

)
, if m 6 21/αn,

O
(

1
mα

)
, if m > 21/αn.

Proof. We have

pmn (α) =

bnαc−1∑
k=0

P
{bbnαcUc = bbmαcUc = k

}
=

bnαc−1∑
k=0

P
{
k 6 bnαcU < k + 1, k 6 bmαcU < k + 1

}
=

bnαc−1∑
k=0

P

{
k

bnαc < U <
k + 1

bmαc
}
.

Since k/bnαc < (k + 1)/bmαc if and only if k < bnαc/(bmαc − bnαc), this yields the sum

formula in the first statement.

As to the asymptotic behaviour of this sum, consider first the case when m 6 21/αn.

Since the terms of the sum are decreasing in k, we obtain

pmn (α) 6

{
1 +

⌊ bnαc
bmαc − bnαc

⌋}
1

bmαc = O

(
1

mα − nα
)
.

On the other hand, if m > 21/αn, then bnαc/(bmαc − bnαc) 6 1, and hence the sum has only

the terms for k = 0 and k = 1. Thus, in this case, pmn (α) < 3/bmαc, completing the proof.

Lemma 2.10. If α > 2, then P{Dn} = O
(
[log n]/nα−2

)
.



326 S. Csörgő and W. B. Wu

Proof. By Lemma 2.9,

P{Dn} 6
∞∑

m=n+1

n∑
i=1

P
{bbnαcUic = bbmαcUic}

= O(1)

∞∑
m=n+1

n

[
I(n < m 6 21/αn)

mα − nα +
I(m > 21/αn)

mα

]
= O

(
log n

nα−2

)
,

where the last step is due to Lemma 2.8.

Lemma 2.11. If α > 3, then P{An∩Bn∩Dcn} = O
(
1/n2α−5

)
and P{Cn∩Dcn} = O

(
1/n2α−5

)
.

Proof. Let P
{{bbmαcUj1c = bbnαcUi1c}∩{bbmαcUj2c = bbnαcUi2c}∩An∩Dcn

}
be denoted

by pn,mi1 ,i2 ,j1 ,j2 (α). Then, again by the subadditivity of P,

qn(α) := P{An ∩ Bn ∩ Dcn} 6
∞∑

m=n+1

∑
16i1 6=i26n

∑
16j1 6=j26m

p
n,m
i1 ,i2 ,j1 ,j2

(α).

If j1 = i1, then {bbmαcUj1c = bbnαcUi1c} ⊂ Dn, and if j2 = i2, then also {bbmαcUj2c =

bbnαcUi2c} ⊂ Dn. If (j1, i1) = (i2, j2), then on the intersection of the first two events in

p
n,m
i1 ,i2 ,j1 ,j2

(α) we have

bbnαcUi1c = bbmαcUj1c > bbnαcUi2c = bbmαcUj2c > bbnαcUi1c,
implying that

[{bbmαcUj1c = bbnαcUi1c} ∩ {bbmαcUj2c = bbnαcUi2c}] ⊂ Acn.
Hence pn,mi1 ,i2 ,j1 ,j2 (α) = 0 for any one of these three cases. Thus, introducing the set

Hm
n :=

{
(i1, i2, j1, j2) : 1 6 i1 6= i2 6 n, 1 6 j1 6= j2 6 m, j1 6= i1, j2 6= i2, (j1, i1) 6= (i2, j2)

}
and using Lemma 2.7 with K = 2, applicable since none of the bigrams G∗(i1, i2; j1, j2)

has a circuit if (i1, i2, j1, j2) ∈ Hm
n , we obtain

qn(α) 6
∞∑

m=n+1

∑
(i1 ,i2 ,j1 ,j2)∈Hm

n

P
{{bbmαcUj1c = bbnαcUi1c

}∩{bbmαcUj2c = bbnαcUi2c
}}

= O(1)

∞∑
m=n+1

∑
(i1 ,i2 ,j1 ,j2)∈Hm

n

1

m2α
= O(1) n2

∞∑
m=n+1

1

m2α−2

= O

(
1

n2α−5

)
.

Now let P
{{bbmα1cUjc = bbnαcUi1c} ∩ {bbmα2cUjc = bbnαcUi2c} ∩ Dcn

}
be denoted by

pj,i1 ,i2n,m1 ,m2
(α) for the proof of the second statement, consider the set

Mn :=
{

(i1, i2, j, m1, m2) : n < m1 < m2, 1 6 i1 6= i2 6 n, i1 6= j 6= i2, 1 6 j 6 m1

}
,
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and put

pk1 ,k2
n,m1 ,m2

(α) := P
{bbmα1cU3c = bbnαcU1c = k1, bbmα2cU3c = bbnαcU2c = k2

}
.

Then

P{Cn ∩ Dcn} 6
∑

m2>m1>n

m1∑
j=1

∑
16i1 6=i26n

pj,i1 ,i2n,m1 ,m2
(α)

=
∑

(i1 ,i2 ,j,m1 ,m2)∈Mn

pj,i1 ,i2n,m1 ,m2
(α)

6
∞∑

m1=n+1

∞∑
m2=m1+1

m1n
2

bnαc−1∑
k1 ,k2=0

pk1 ,k2
n,m1 ,m2

(α)

=

∞∑
m1=n+1

∞∑
m2=m1+1

m1n
2

bnαc2
bnαc−1∑
k1 ,k2=0

P
{bbmα1cUc = k1, bbmα2cUc = k2

}
,

since {bbmα1cUjc = bbnαcUi1c} ∩ {bbmα2cUjc = bbnαcUi2c} ⊂ Dn if either i1 = j or i2 = j,

so nonzero terms in the first bound can result only from summing over Mn. As in the

proof of Lemma 2.6, if m2 > m1 and bbmα2cUc = k2, then bbmα1cUc can take at most two

different values because, necessarily, bmα1cU ∈
[
k2bmα1c/bmα2c, (k2 + 1)bmα1c/bmα2c

)
and the

length of this interval is bmα1c/bmα2c < 1. Therefore,

P{Cn ∩ Dcn} 6 2

∞∑
m1=n+1

∞∑
m2=m1+1

m1n
2

bnαc2
bnαc−1∑
k2=0

P
{bbmα2cUc = k2

}
= 2

∞∑
m1=n+1

∞∑
m2=m1+1

m1n
2

bnαc2
bnαc
bmα2c

=
O(1)

nα−2

∞∑
m1=n+1

1

mα−2
1

= O

(
1

n2α−5

)
,

finishing the proof.

Lemma 2.12. If α > 3, then

p?n(α) := P{An ∩ Bcn ∩ Cc
n ∩ Dcn ∩ En} = O

(
1/n(α−3)K

)
for any K ∈ N in the definition of En.

Proof. Put

p
n,α
i,m,j := P

{
An ∩ Bcn ∩ Cc

n ∩ Dcn ∩
[ ∩Kk=1

{bbnαcUikc = bbmαkcUjkc
}]}

and introduce the index sets

I = {i = (i1, . . . , iK ) : 1 6 i1 < · · · < iK 6 n},
M = {m = (m1, . . . , mK ) : m1, . . . , mK > n},
M∗ = {m = (m1, . . . , mK ) : m1, . . . , mK > n and m1, . . . , mK are different},
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J(m) = {j = (j1, . . . , jK) : 1 6 jl 6 ml, l = 1, . . . , K},
J(m, i) = {j = (j1, . . . , jK) : 1 6 jl 6 ml, l = 1, . . . , K; j1, . . . , jK are different;

jl 6= il , l = 1, . . . , K; the bigram G∗(i1, . . . , iK; j1, . . . , jK )

has no circuit}.
Then

p?n(α) 6
∑
i∈I

∑
m∈M

∑
j∈J(m)

p
n,α
i,m,j =

∑
i∈I

∑
m∈M∗

∑
j∈J(m,i)

p
n,α
i,m,j,

because all other probabilities under the first sum are zero.

To see the latter claim, note first that, if ml1 = ml2 for some l1, l2 ∈ {1, . . . , K}, l1 6= l2,

then either En,αi,m,j := ∩Kk=1{bbnαcUikc = bbmαkcUjkc} ⊂ Acn or En,αi,m,j ⊂ Bn, where the first

subcase occurs if jl1 = jl2 , since then bbnαcUil1
c = bbnαcUil2

c, while the second subcase

occurs if jl1 6= jl2 . Second, if jl = il for some l ∈ {1, . . . , K}, then E
n,α
i,m,j ⊂ Dn. Third, if

ml1 6= ml2 and jl1 = jl2 for some l1, l2 ∈ {1, . . . , K}, l1 6= l2, then En,αi,m,j ⊂ Cn. Finally, suppose

without loss of generality that the first three cases so far discussed do not occur, but there

is a circuit in the bigram G∗(i1, . . . , iK ; j1, . . . , jK ). Then, again without loss of generality,

the vertices connected by a circuit of edges must represent a circuit of equations of the

form jl = il+1, l = 1, . . . , t− 1, and jt = i1, for some t ∈ {1, . . . , K}, which implies

bbnαcUi1c = bbmα1cUj1c > bbnαcUi2c = bbmα2cUj2c > · · · > bbnαcUitc = bbmαkcUjtc
> bbnαcUi1c,

and hence also that En,αi,m,j ⊂ Acn. These considerations prove the claim.

Therefore, by a final application of Lemma 2.7, we obtain

p?n(α) 6
∑
i∈I

∑
m∈M∗

∑
j∈J(m,i)

P
{ ∩Kk=1

{bbnαcUikc = bbmαkcUjkc
}}

= O(1)
∑
i∈I

∑
m∈M∗

∑
j∈J(m,i)

K∏
k=1

1

mαk

= O(1) nK
∑

m∈M∗

K∏
k=1

mk

K∏
k=1

1

mαk

= O(1) nK

( ∞∑
m=n

1

mα−1

)K

= O

(
1

n(α−3)K

)
,

completing the proof.

Proof of Theorem 2.3. Let Gnmn := G(Imnn ) be the random graph generated by Imnn =

{bmnU1c, . . . , bmnUnc}, with the vertex vi representing bmnUic and having degree di := d(vi),

the number of edges connecting vi, i = 1, . . . , n. Hence the random variables d1, . . . , dn are

identically distributed and |R[Imnn ]| = ∑n
i=1 I(di = 0).
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We have pn := E(I(di = 0)) = P{di = 0} = [(mn − 1)/mn]
n−1 and

qn := E(I(di = 0)I(dj = 0)) = P{di = 0, dj = 0} = [(mn − 2)/mn]
n−2[(mn − 1)/mn]

if i 6= j. Hence, for any η > 0, by the Markov inequality,

P

{∣∣∣∣ |R[Imnn ]|
n

− pn
∣∣∣∣ > η

}
6

1

n2η2
E

([
n∑
i=1

{
I(di = 0)− pn}]2)

6
1

n2η2

[
n+

∑
i6=j
E
(
[I(di = 0)− pn][I(dj = 0)− pn])]

=
1

n2η2

[
n+ n(n− 1)

{
E(I(d1 = 0)I(d2 = 0))− p2

n

}]
=

n+ n(n− 1){qn − p2
n}

n2η2

6
C

n

for some constant C = C(η) > 0. Since, by the condition on {mn}, for any given ε > 0 the

inequality pn > e−1/c − ε holds for all n large enough, the theorem follows.

Proof of Theorem 2.4. Consider the counts Mi = |{1 6 j 6 n : bnUjc = i − 1}|,
i = 1, . . . , n, and notice that the vector (M1, . . . ,Mn) has the Multinomial(n; 1/n, . . . , 1/n)

distribution. Hence, if N1, . . . , Nn are independent Poisson(1) random variables, then

(M1, . . . ,Mn)
D
= (N1, . . . , Nn |N1 + · · ·+Nn = n), (2.2)

i.e., the distribution of (M1, . . . ,Mn) is the same as the conditional distribution of the

vector (N1, . . . , Nn), given N1 + · · ·+Nn = n. Therefore,

pn(ε) := P

{∣∣∣∣∣∑
k∈H

[ |Rk[In]|
n

− e−1

k!

]∣∣∣∣∣ > ε

}

= P

{∣∣∣∣∣∑
k∈H

1

n

n∑
i=1

[
I(Mi = k)− e−1

k!

]∣∣∣∣∣ > ε

}

= P

{∣∣∣∣∣∑
k∈H

1

n

n∑
i=1

[
I(Ni = k)− e−1

k!

]∣∣∣∣∣ > ε

∣∣∣∣∣N1 + · · ·+Nn = n

}

6
1

P{N1 + · · ·+Nn = n} P
{∣∣∣∣∣1n

n∑
i=1

[
I(Ni ∈ H)− P{Ni ∈ H}]

∣∣∣∣∣ > ε

}

6
n!

(n/e)n
2e−2nε2 ,

where the last step is due to the exponential Chebyshev inequality in the theory of large

deviations (cf. Shiryaev [21, p. 69]), sometimes also referred to as the Chernoff bound.

Routine calculation in an induction shows that n! 6 e n1/2(n/e)n for all n ∈ N, proving the

theorem. In fact, the stated inequality holds for all n large enough for any C > 2(2π)1/2

replacing 2e, as Stirling’s formula shows.
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Proof of Theorem 2.5. We fix α > 1 and use the notation m = bn1/αc throughout.

(i) Considering first the case k = 0 separately, we have∣∣∣∣ |R0[Jα
n]|

n
− e−m/n

∣∣∣∣ 6 ∣∣∣∣n− |R0[Jα
n]|

n

∣∣∣∣+
∣∣1− e−m/n∣∣ 6 2m

n
→ 0,

so that the claimed bound follows in a trivial fashion.

Now let k > 0. Redefining the counts Mi = |{1 6 j 6 m : bnUjc = i − 1}|, i = 1, . . . , n,

the vector (M1, . . . ,Mn) is now Multinomial(m; 1/n, . . . , 1/n), and if N1, . . . , Nn are now

independent Poisson(m/n) random variables, so that N1 + · · ·+Nn is Poisson(m), we have

(M1, . . . ,Mn)
D
= (N1, . . . , Nn |N1 + · · · + Nn = m) as a version of (2.2). Therefore, denoting

the probability of being estimated by pk,αn (ε), proceeding as in the previous proof and using

the inequality e|x| 6 ex + e−x, x ∈ R, for every ε > 0 and tε > 0, we have

pk,αn (ε) = P

{∣∣∣∣∣1n
n∑
i=1

I(Mi = k)− e−m/n

k!

(m
n

)k∣∣∣∣∣ > ε
(m
n

)k}

= P

{∣∣∣∣∣1n
n∑
i=1

[
I(Ni = k)− P{Ni = k}]∣∣∣∣∣ > ε

(m
n

)k ∣∣∣∣∣N1 + · · ·+Nn = m

}

6
m!

(m/e)m
inf

0<t6tε

[
exp

{
− tnε

(m
n

)k − fkn (t)}+ exp

{
− tnε

(m
n

)k
+ fkn (t)

}]
6 2e

√
m exp

{
inf

0<t6tε

[
− tnε

(m
n

)k
+ max

(
fkn (t),−fkn (t)

)]}
,

where

fkn (t) = n logE
(
etI(N1=k)

)− tnP{N1 = k} = n log
(
1 + (et − 1)P{N1 = k})− tnP{N1 = k}.

Hence, choosing tε := log(1 + ε), by elementary considerations we obtain

pk,αn (ε) 6 2e
√
m exp

{− ηk,αn (ε)n(m/n)k
}
,

where ηk,αn (ε) = min
(
η
k,α
n,+(ε), ηk,αn,−(ε)

)
, and where, using the inequality log(1 +x) 6 x, x > 0,

η
k,α
n,+(ε) = sup

0<t6tε

{
tε− (et − 1− t) e

−m/n

k!

}
> sup

0<t6tε

{
εt− (et − 1− t)}

> εtε − [etε − 1− tε] = (1 + ε) log(1 + ε)− ε =: η+(ε) > 0,

and, by the inequality t = log(1 + [et − 1]) > [et − 1]/[1 + ε], 0 < t 6 tε,

η
k,α
n,−(ε) = sup

0<t6tε

{
tε−

[
t− et − 1

1 + ε

]
e−m/n

k!

}
> sup

0<t6tε

{
εt− t+

et − 1

1 + ε

}
> εtε − tε +

etε − 1

1 + ε
=

ε

1 + ε
− (1− ε) log(1 + ε) =: η−(ε) > 0,

proving the statement with η(ε) = min(η+(ε), η−(ε)).

(ii) We have k = α/(α− 1) > 1 since α > 1, and

e−m/n

k!

(
m

n

)k
=

1

k!

[
1 + O(n(1−α)/α)

]
.
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Hence by Theorem 2.3.3 in [18],

P
{|Rk[Jα

n]| = l
}

=
1

l!

(
1

k!

)l
e−1/k!

[
1 + o(1)

]
for each l ∈ {0} ∪N.

(iii) For every ε > 0,

P
{|Rk[Jα

n]| > ε
}
6 P

{|Rk[Jα
n]| > 1

}
6 E

(|Rk[Jα
n]|
)

= E

(
n∑
i=1

I(Mi = k)

)

= nP
{
M1 = k

}
= n

(
m

k

)(
1

n

)k(
1− 1

n

)m−k
6

1

k!

mk

nk−1
6
n[α(1−k)−k]/α

k!
,

completing the proof.

3. Averages of randomly rarefied sequences

Theorems 2.1 and 2.2 accommodate the proofs of the following results for averages of

rarefied sequences more directly than those for the corresponding bootstrap analogues in

the next section, the proof of which will be linked to the results here.

Theorem 3.1. If α > 3, then

a4n (α) =
1

n

n∑
j=1

XbbnαcUn,jc
a.s.−→ µ if and only if E(X2) < ∞ (3.1)

and

a?n(α) =
1

n

n∑
j=1

XbbnαcUjc
a.s.−→ µ if and only if E(X2) < ∞. (3.2)

The characterization of complete convergence can be achieved for very general rarefying

sequences {mn} which are, roughly speaking, at least as fast as {n}. Here joint distributions

for different n s are irrelevant and hence the statement may be made in terms of a general

triangular array {Zmn,0, . . . , Zmn,n−1}∞n=1 of row-wise independent variables such that the

sequence {Xn}∞n=0 and the whole array are independent and P{Zmn,j = k} = 1/mn,

k = 0, . . . , mn− 1, for every j ∈ {0, . . . , n− 1} and n ∈ N. Taking the special case mn ≡ bnαc
in the next theorem for some α > 3 and comparing that case to Theorem 3.1, it is of

general theoretical interest to point out that almost sure convergence of the means in

(3.1) and (3.2) implies their complete convergence.

Theorem 3.2. If lim infn→∞ mn/n > 0, then

an(mn) =
1

n

n−1∑
j=0

XZmn,j

EHR−→ µ if and only if E(X2) < ∞.
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In the proofs of most convergence theorems, here and in the next section, we assume

without loss of generality that µ = E(X) = 0, whenever the assumption is convenient.

Proof of Theorem 3.1. That E(X2) < ∞ is sufficient for both convergence statements in

(3.1) and (3.2) follows from the sufficiency half of Theorem 3.2.

To prove necessity, let µ = 0, let an(α) denote either a4n (α) or a?n(α), and let Iαn := In(α)
denote the corresponding choice of either I4n (α) or I?n(α) of Theorems 2.1 and 2.2, with

the corresponding regular sets

Rαn := R
[Iαn \ (Iαn ∩ [ ∪∞j=n+1 Iαj

])]
, n ∈ N.

For convenience we assume, without loss of generality, that the underlying probability

space (Ω,A,P) is rich enough to carry the sequence {Xz}z∈Z of independent and identically

distributed random variables, an extended version of the given sequence X0, X1, . . . .

With K = K(α) meant as in (2.1), define the integer-valued random variables Tn(j),

j = 1, . . . , n, n ∈ N, as follows: if |Rαn | 6 n − K , then Tn(j) := −(n2 + j), j = 1, . . . , n,

n ∈ N; while if |Rαn | > n − K , then Tn(1), Tn(2), . . . , Tn(n − K) are chosen to be the

n − K smallest distinct integers in Rαn , in the given order, and the remaining variables

Tn(n − K + 1), Tn(n − K + 2), . . . , Tn(n) are chosen arbitrarily from the multiset Hα
n :=

Iαn \ {Tn(1), Tn(2), . . . , Tn(n−K)}. Clearly, any two elements of the whole triangular array

{Tn(1), Tn(2), . . . , Tn(n−K)}∞n=K+1 are different. Since an(α)
a.s.−→ 0, we have

0 = P

{
lim sup
n→∞

|an(α)| > ε

}
> P

{
lim sup
n→∞

[{|an(α)| > ε
}⋂{|Rαn | > n−K}]}

> P

{
lim sup
n→∞

[{
1

n

∣∣∣∣∣
n−K∑
j=1

XTn(j)

∣∣∣∣∣ > 2ε

}⋂{1

n

∣∣∣∣∣ ∑
j∈Hα

n

Xj

∣∣∣∣∣ 6 ε
}⋂{|Rαn | > n−K}]}

for every ε > 0. Since E(|X|) < ∞, we also have

∞∑
n=K

P

{{
1

n

∣∣∣∣∣ ∑
j∈Hα

n

Xj

∣∣∣∣∣ > ε

}⋂{|Rαn | > n−K}} < ∞,

for the number of terms in
∑

j∈Hα
n
Xj is K if |Rαn | > n−K , whence

P

{
lim sup
n→∞

[{
1

n

∣∣∣∣∣
n−K∑
j=1

XTn(j)

∣∣∣∣∣ > 2ε

}⋂{|Rαn | > n−K}]} = 0.

Since P{Acn} = P{|R[Iαn]| < n} = O(1/nα−2) and so

∞∑
n=1

P
{|Rαn | 6 n−K} 6 ∞∑

n=1

P{Acn}+

∞∑
n=1

P
{|Iαn ∩ [∪∞j=n+1Iαj ]| > K

}
< ∞

by Theorems 2.1 or 2.2 for (3.1) or for (3.2), respectively, this implies that

P

{
lim sup
n→∞

1

n

∣∣∣∣∣
n−K∑
j=1

XTn(j)

∣∣∣∣∣ > 2ε

}
= 0.
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Since the indices {Tn(1), Tn(2), . . . , Tn(n − K)}∞n=K+1 are all different and their whole

set is independent of the sequence {Xz}z∈Z, the elements of the triangular array

{XTn(1), XTn(2), . . . , XTn(n−K)}∞n=K+1 are independent and all are distributed as X. There-

fore, by the second Borel–Cantelli lemma, it follows that

∞∑
n=K+1

P

{
1

n

∣∣∣∣∣
n−K∑
j=1

Xj

∣∣∣∣∣ > 2ε

}
< ∞,

which by Erdős’s half of the Erdős–Hsu–Robbins theorem implies that E(X2) < ∞.

The necessity part of Theorem 3.2 requires the following lemma for the compari-

son of nan(mn) and the partial sums of the underlying sequence with mean µ, the

proof of which invokes the notation of Theorem 2.3. Since the distributional equa-

tions a4n (mn)
D
= an(mn)

D
= a?n(mn) hold for a4n (mn) := n−1

∑n
j=1 XbmnUn,jc and a?n(mn) :=

n−1
∑n

j=1 XbmnUjc for each n ∈ N, the lemma is for all these averages; for the sake of nota-

tional simplicity the proof uses a?n(mn). Following this, Lemma 3.4 allows symmetrization

in the sufficiency part of the complete convergence theorems.

Lemma 3.3. If lim infn→∞ mn/n > c for some c > 0, then, for all ε > 0 and δ > 0,

pεn := P
{|an(mn)− µ| > ε

}
> (1− δ)P

{
1

n

∣∣∣∣∣
bne−1/c/3c∑

j=1

[
Xj − µ]

∣∣∣∣∣ > 3ε

}

for all n large enough.

Proof. Note that a?n(mn) = n−1
∑

j∈Imnn Xj . First we claim that

a�n(mn) :=
1

n

∑
j∈R[Imnn ]

Yj
P−→ 0, (3.3)

where Yj = Xj − µ, j ∈ {0} ∪N, and
P−→ denotes convergence in probability. Indeed,

setting Zk = Y1 + · · ·+ Yk , k ∈ N, and Z0 = 0, since |R[Imnn ]| ∈ {0, 1, . . . , n}, we have

P
{∣∣a�n(mn)∣∣ > ε

}
=

n∑
k=0

P

{
1

n

∣∣∣∣∣ ∑
j∈R[Imnn ]

Yj

∣∣∣∣∣ > ε

∣∣∣∣ |R[Imnn ]| = k

}
P
{|R[Imnn ]| = k

}
=

n∑
k=0

P

{ |Zk|
n

> ε

}
P
{|R[Imnn ]| = k

}
for all ε > 0. Since Sk/k

P−→ µ as k → ∞, it is easy to see that for every η > 0 there is an

nε,η ∈ N such that maxk=0,1,...,nP{n−1|Zk| > ε} 6 η if n > nε,η . This gives (3.3).

The third statement of the theorem in [10] is that µn(mn)
P−→ µ, and, by a version of the

easy proof, also an(mn)
P−→ µ. This and (3.3) imply that

1

n

∑
j∈Imnn \R[Imnn ]

Yj
P−→ 0.
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Using this relation and Theorem 2.3 and setting b := e−1/c and Kn := {k1, . . . , kn} for

typographical convenience, for any ε > 0 and η > 0 we obtain

pεn =

mn−1∑
k1 ,...,kn=0

P

{
1

n

∣∣∣∣∣ ∑
j∈R[Kn]

Yj +
∑

j∈Kn\R[Kn]

Yj

∣∣∣∣∣ > ε

}(
1

mn

)n

>
∑

|R[Kn]|>bnb/2c
P

{{
1

n

∣∣∣∣∣ ∑
j∈R[Kn]

Yj

∣∣∣∣∣ > 2ε

}⋂{
1

n

∣∣∣∣∣ ∑
j∈Kn\R[Kn]

Yj

∣∣∣∣∣ 6 ε
}}(

1

mn

)n

>
∑

|R[Kn]|>bnb/2c
min

bnb/2c6k6n
P

{ |Zk|
n

> 2ε

}
P

{
1

n

∣∣∣∣∣ ∑
j∈Kn\R[Kn]

Yj

∣∣∣∣∣ 6 ε
}(

1

mn

)n

> min
bnb/2c6k6n

P

{ |Zk|
n

> 2ε

}[
P

{
1

n

∣∣∣∣∣ ∑
j∈Imnn \R[Imnn ]

Yj

∣∣∣∣∣ 6 ε
}
− P

{ |R[Imnn ]|
n

<
b

2

}]

> min
bnb/2c6k6n

P

{{ |Zbnb/3c|
n

> 3ε

}⋂{ |Zk − Zbnb/3c|
n

< ε

}}(
1− η

2

)
=

(
1− η

2

)
P

{ |Zbnb/3c|
n

> 3ε

}
min

bnb/2c−bnb/3c6k6n−bnb/3c
P

{ |Zk|
n

< ε

}
>

(
1− η

2

)2

P

{ |Zbnb/3c|
n

> 3ε

}
for all large n, where the last step is again implied by the fact that Zk/k

P−→ 0 as k → ∞.

Lemma 3.4. Let {X ′0, X ′1, X ′2, . . .} be an independent copy of the basic underlying sequence

{X0, X1, X2, . . .} of independent and identically distributed random variables with mean µ ∈
R. Consider the differences X̃j = Xj − X ′j , j = 0, 1, . . ., symmetric about zero, and the

corresponding rarefied means

an(mn) = n−1
n−1∑
j=0

XZmn,j
, a ′n(mn) = n−1

n−1∑
j=0

X ′Zmn,j

and

ãn(mn) = n−1
n−1∑
j=0

X̃Zmn,j
= an(mn)− a ′n(mn)

and bootstrap means

µn(mn) = m−1
n

mn−1∑
j=0

XZn,j , µ ′n(mn) = m−1
n

mn−1∑
j=0

X ′Zn,j

and

µ̃n(mn) = m−1
n

mn−1∑
j=0

X̃Zn,j = µn(mn)− µ ′n(mn),
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along with the usual averages

µn = n−1
n−1∑
j=0

Xj, µ ′n = n−1
n−1∑
j=0

X ′j and µ̃n = n−1
n−1∑
j=0

X̃j = µn − µ ′n,

and suppose that mn → ∞. Then an(mn)
EHR−→ µ if and only if ãn(mn)

EHR−→ 0, µn(mn)
EHR−→ µ if

and only if µ̃n(mn)
EHR−→ 0 and µn

EHR−→ µ if and only if µ̃n
EHR−→ 0. Furthermore, if ξ1 and ξ2

are independent random variables that are symmetric about zero, then 2P{|ξ1 + ξ2| > ε} >
P{|ξ1| > ε}, ε > 0.

Proof. Let the triplet (Vn, V
′
n , Ṽn) be either of the triplets (an(mn), a

′
n(mn), ãn(mn)), (µn(mn),

µ ′n(mn), µ̃n(mn)) and (µn, µ
′
n, µ̃n), so that Vn and V ′n are independent and Vn

D
=V ′n for every

n ∈ N, and let vn := inf
{
x ∈ R : P{Vn 6 x} > 1

2

}
be the common median of Vn and V ′n .

Then Vn
P−→ µ, as pointed out in the previous proof, which trivially implies that vn → µ.

Clearly,

1

2
P{|Vn − vn| > ε}

=
1

2
P{Vn − vn > ε}+

1

2
P{Vn − vn < −ε}

6 P{Vn − vn > ε, V ′n − vn 6 0}+ P{Vn − vn < −ε, V ′n − vn > 0}
and

P{|Vn − V ′n | > ε} 6 P{{|Vn − µ| > ε/2} ∪ {|V ′n − µ| > ε/2}},
and |vn − µ| < ε for all n > n0(ε), for any ε > 0 for some n0(ε) ∈ N, and hence we obtain

1

2
P{|Vn − µ| > 2ε} 6 P{|Ṽn| > ε} 6 2P

{
|Vn − µ| > ε

2

}
, n > n0(ε),

implying all three versions of the first statement.

Similarly, we have

p{|ξ1 + ξ2| > ε} > P{ξ1 > ε, ξ2 > 0}+P{ξ1 < −ε, ξ2 6 0} > 1

2
P{ξ1 > ε}+

1

2
P{ξ1 < −ε},

so the second statement also follows.

Proof of Theorem 3.2. Without loss of generality we assume that µ = 0 and, by

Lemma 3.4, also that X is symmetric about zero.

Supposing then that an(mn)
EHR−→ 0, we pick a constant c > 0 so that lim infn→∞ mn/n > c,

again put b = e−1/c, and see for the partial sums S0 := 0 and Sk := X1 + · · ·+Xk , k ∈ N,

by Lemma 3.3 that
∞∑
n=1

P
{|Sbnb/3c| > 3nε

}
< ∞.

Then, with the subsequence n(k) := d3k/be we get

∞∑
k=1

P
{|Sk| > k(9e1/c + 3)ε

}
6

∞∑
k=1

P
{|Sbn(k)b/3c| > 3n(k)ε

}
< ∞,
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and so E(X2) < ∞ again by the Erdős–Hsu–Robbins theorem.

To prove sufficiency, suppose E(X2) < ∞, and introduce the truncated variables Vn,j :=

Wn,jI(|Wn,j | 6 n), with averages ᾱn := 1
n

∑n−1
j=0 Vn,j , where Wn,j = XZmn,j

, j = 0, 1, . . . , n− 1.

Then

∞∑
n=1

P{an(mn) 6= ᾱn} 6
∞∑
n=1

n−1∑
j=0

P{Wn,j 6= Vn,j} 6
∞∑
n=1

n−1∑
j=0

P{|X| > n}

=

∞∑
n=1

nP{|X| > n} < ∞.

Thus it suffices to prove that ᾱn
EHR−→ 0, which will follow by the Markov inequality if

we show that
∑∞

n=1E
(
ᾱ4
n

)
< ∞. In the rest of the proof the constants in the O(·) depend

only on infn>1 mn/n and the underlying distribution of X. We have

E
(
ᾱ4
n

)
=

1

n4

∑
16j1 , j2 , j3 , j46n

E
(
Vn, j1Vn, j2Vn, j3Vn, j4

)
=

1

n4

∑
16j1 , j2 , j3 , j46n

∑
06k1 , k2 , k3 , k46mn−1

E
(
Xn, k1

Xn, k2
Xn, k3

Xn, k4

)
p
k1 , k2 , k3 , k4

n, j1 , j2 , j3 , j4
,

where

p
k1 , k2 , k3 , k4

n, j1 , j2 , j3 , j4
= P{Zmn, j1 = k1, Zmn, j2 = k2, Zmn, j3 = k3, Zmn, j4 = k4}

and Xn,k = XkI(|Xk| 6 n). Since Xn,0, Xn,1, . . . , Xn,mn−1 are independent and identi-

cally distributed symmetric random variables for each n ∈ N, the expected value

E(Xn,k1
Xn,k2

Xn,k3
Xn,k4

) may differ from zero only if either k1 = k2 = k3 = k4, or

k1 = k2 6= k3 = k4, or k1 = k3 6= k2 = k4, or k1 = k4 6= k2 = k3. In the first case,

∑
16j1 , j2 , j3 , j46n

p
k1 , k2 , k3 , k4

n, j1 , j2 , j3 , j4
=

4∑
l=1

∑
|{j1 , j2 , j3 , j4}|=l

p
k1 , k2 , k3 , k4

n, j1 , j2 , j3 , j4
= O(1)

4∑
l=1

(
n

mn

)l
= O

(
n

mn

)
,

while in the second, third and fourth cases,

∑
16j1 , j2 , j3 , j46n

p
k1 , k2 , k3 , k4

n, j1 , j2 , j3 , j4
=

4∑
l=1

∑
|{j1 , j2 , j3 , j4}|=l

p
k1 , k2 , k3 , k4

n, j1 , j2 , j3 , j4
= O(1)

4∑
l=2

(
n

mn

)l
= O

(
n2

m2
n

)
,

whence

E
(
ᾱ4
n

)
=

O(1)

n4

[
mn−1∑
k=0

E
(
X4
n,k

) n
mn

+
∑

06j<k6mn−1

E
(
X2
n,j

)
E
(
X2
n,k

) n2

m2
n

]

=
O(1)

n4

[
nE
(
X4I(|X| 6 n))+ n2E

(
X2
)]

= O(1)

[
E
(
X4I(|X| 6 n))

n3
+

1

n2

]
.
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Since

∞∑
n=1

E
(
X4I(|X| 6 n))

n3
=

∞∑
n=1

1

n3

n∑
j=1

E
(
X4I(j − 1 < |X| 6 j))

6
∞∑
j=1

∞∑
n=j

j4

n3
P{j − 1 < |X| 6 j}

6 C

∞∑
j=1

j2P{j − 1 < |X| 6 j} < ∞

with a finite constant C > 0, we indeed have
∑∞

n=1E
(
ᾱ4
n

)
< ∞.

4. Bootstrap means

The first result shows that the condition lim infn→∞[log n]/mn = 0 for the bootstrap sample

size mn is necessary for any bootstrap strong law of large numbers in both of our models

when the trivial case of a degenerate underlying sequence is excluded. Some examples in

[1] and [20] do suggest the result, but even the main ingredient of the proof, Lemma 4.5

for classical averages, seems to be new and of independent interest.

Theorem 4.1. If mn = O(log n) and either µ4n (mn) = m−1
n

∑mn
j=1 XbnUn,jc

a.s.−→ µ or µ?n(mn) =

m−1
n

∑mn
j=1 XbnUjc

a.s.−→ µ, then X = µ almost surely.

The next result is a counterpart of Theorem 3.1 for bootstrap means, but, unfortunately,

only for necessity. Despite the apparent gap between this result and Theorem 4.4 below,

however, Theorem 4.2 is good enough to effectively rule out some erroneous statements

in the literature. It shows first of all that the second statement of the theorem in [10],

claiming that E(X2) < ∞ and mn ≡ blog1+δnc for any δ > 0 are sufficient for the

bootstrap strong law universally, is incorrect. Furthermore, Csörgő’s [10] first statement

and Hu’s [16] theorem claim the convergence in (4.1) below whenever E(|X|β) < ∞ for

β > 2 − 1
α

and β > 2α
1+α

, respectively, for any α > 1. However, both claims are incorrect

by Theorem 4.2 if α > 3 since in this case both 1 + α
3
> 2− 1

α
and 1 + α

3
> 2α

1+α
. (In Hu’s

[16] proof his inequalities (2.5)–(2.7) are clearly insufficient for his (2.8) and, even more

seriously, the algebraic Markov inequality in his (2.3) cannot yield his (2.2) in the stated

generality even for bounded variables.) The case with [10] is more interesting since the

proof there is correct for all geometrically increasing subsequences kn(γ) ≡ bγnc, γ > 1,

under the stated conditions (in particular, we have (4.1) below along all such kn(γ) in place

of n for any α > 1 if E(|X|(2α−1)/α) < ∞), but, as Theorem 4.2 shows, these conditions may

be insufficient to control the fluctuations in the gaps of these subsequences.

Theorem 4.2. If α > 3 and either µ4n (α) = bn1/αc−1
∑bn1/αc

j=1 XbnUn,jc
a.s.−→ µ or µ?n(α) =

bn1/αc−1
∑bn1/αc

j=1 XbnUjc
a.s.−→ µ, then E(|X|β) < ∞ for all β ∈ [1, 1 + α

3

)
.
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In the last two theorems we allow a general array {Zn,0, . . . , Zn,mn−1}∞n=1 of row-wise

independent variables, with P{Zn,j = k} = 1/n, k = 0, . . . , n−1, for every j ∈ {0, . . . , mn−1}
and n ∈ N, either with mn ≡ bn1/αc or with a general sequence of positive integers mn →∞
as the bootstrap sample size, the sequence {Xn}∞n=0 and the array being independent.

Theorem 4.3 gives a characterization of complete convergence.

Theorem 4.3. If α > 1, then

µn(α) :=
1

bn1/αc
bn1/αc−1∑
j=0

XZn,j

EHR−→ µ if and only if E(|X|1+α) < ∞.

Starting from Theorem 4.1 (and avoiding ‘irregular’ sequences such as when {mn}
is nondecreasing, lim infn→∞[log n]/mn = 0 and lim supn→∞[log n]/mn = ∞), the slowest

promising growth condition is when mn/ log n→∞. Indeed, a special case of Theorem 2.2

by Arenal-Gutiérrez, Matrán and Cuesta-Albertos [1] states that (4.1) below holds in

this case if X = X0 is almost surely bounded and X0, X1, X2, . . . are pairwise indepen-

dent, identically distributed random variables. Theorem 4.4 provides ‘universal’ sufficient

conditions for possibly unbounded variables. Part (ii) is a slight improvement of Theo-

rem 2.1 in [1], cited in the introduction. Our proofs follow their outline; the source of

the improvement is Lemma 4.7 below. The case α = 1 of part (ii) is the corresponding

slight improvement of Theorem 1.2 in [1]. The comparison shows that the technique of

Section 1 in [1] (which avoids truncation and uses the primary strong law for the original

sample directly) is suboptimal in general. Just as in Theorem 2.1 of Arenal-Gutiérrez,

Matrán and Cuesta-Albertos [1], Theorem 4.4 below requires only that the elements of the

basic sequence of identically distributed random variables be pairwise independent. This

is because, given {X0, X1, X2, . . .}, the elements of the bootstrap sample are conditionally

independent regardless of the joint distribution of X0, X1, X2, . . ., and the finiteness of

µ = E(X) ensures µn
a.s.−→ µ already for pairwise independent X0, X1, X2, . . . by Etemadi’s

[14] well-known theorem.

Theorem 4.4. Let X0, X1, X2, . . . be pairwise independent.

(i) If E([|X| log+|X|]α) < ∞ and lim infn→∞ mn/n1/α > 0 for some α > 1, then

µn(mn) :=
1

mn

mn−1∑
j=0

XZn,j

a.s.−→ µ. (4.1)

(ii) If E(|X|α) < ∞ and lim infn→∞ mn
/[
n1/α log n

]
> 0 for some α > 1, then (4.1) also

holds.

(iii) If E
(
etX
)
< ∞ for all t ∈ (−t∗, t∗) for some t∗ > 0 and mn/ log2n → ∞, then (4.1)

holds again.

Consider again the partial sums S0 = 0 and Sk = X1 + · · · + Xk , k ∈ N, of the basic

sequence {Xk} of independent variables with a finite mean µ = E(X).

Lemma 4.5. If mn = O(log n) and µmn = m−1
n Smn

EHR−→ µ, then X = µ almost surely.
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Proof. Without loss of generality we assume that µ = 0 and, by Lemma 3.4, also that

X is symmetric about zero. Suppose, contrary to the statement, that X is nondegenerate.

Then the condition about complete convergence implies mn →∞. Also, there is a constant

C > 0 such that mn 6 bC log nc for n > 3.

Since X1/mn
P−→ 0 and Smn/mn

P−→ 0, for every ε > 0 there exists an n0 = n0(ε) ∈ N such

that P{|Smn −X1|/mn 6 ε/C} > 1/2 for n > n0. Thus

∞ >

∞∑
n=n0

P

{∣∣Smn∣∣
mn

>
ε

C

}
>

∞∑
n=n0

P

{∣∣X1

∣∣
mn

>
2ε

C
,

∣∣Smn −X1

∣∣
mn

6
ε

C

}

>
1

2

∞∑
n=n0

P
{|X| > 2ε log n

}
,

which implies that φ(t) := E
(
etX
)
< ∞ for every t ∈ R. Then by standard large deviation

theory (see [22, p. 8] for the form we use), [P{Sn > nt}]1/n → ρ(t) := φ(ht)e
−htt for any

t > 0, where ht is the unique solution h of the equation t = φ′(h)/φ(h).

Note that φ(t) = φ(−t) = E
(
etX + e−tX

)
/2 > 1 for all t ∈ R because X is symmetric.

Put τ := min(log(10e/27), φ′(1)/φ(1)). The variable X being nondegenerate, the function

ψ(t) := (logφ(t))′ = φ′(t)/φ(t), t > 0, is strictly increasing, which implies 0 < hτ 6 1, and

hence also the inequality ρ(τ) = φ(hτ)e
−hττ > e−τ > 2.7

e
. Since ψ′(t) > 0, t > 0, it also

follows that ρ(ητ) > ρ(τ) if 0 < η < 1, and so by the large deviation theorem for every

η ∈ (0, 1) there exists an n∗ = n∗(η, τ) ∈ N such that

∞ =

∞∑
n=n∗

(
2.6

e

)log n

6
∞∑

n=n∗

ρmn(τ) 6
∞∑

n=n∗

P

{
Smn
mn

> ητ

}
< ∞,

where the last sum is finite in view of the assumption that µmn
EHR−→ 0. This contradiction

implies that X is degenerate.

Proof of Theorem 4.1. Again, we may and shall assume that µ = 0 and, by Lemma 3.4,

that X is symmetric about zero. Assuming

µ?n(mn) = m−1
n

mn∑
j=1

XbnUjc
a.s.−→ 0,

we first consider the single-sequence set-up and introduce the multiset Mn := In4

m
n4

=

{bn4U1c, . . . , bn4Um
n4
c} and the events

En :=
{∣∣Mn ∩ ( ∪∞j=n+1Mj

)∣∣ > 1
}

and An := {|R[Mn]| = mn4},
redefining the corresponding events in the proof of Theorem 2.2. Then

P{En} 6 E
(∣∣Mn ∩ ( ∪∞j=n+1Mj

)∣∣) 6 m
n4∑

i=1

∞∑
k=n+1

m
k4∑

j=1

P
{bn4Uic = bk4Ujc}

6

m
n4∑

i=1

∞∑
k=n+1

O(1)

[
mk4

k4
+
I(k 6 21/4n)

k4 − n4
+
I(k > 21/4n)

k4

]
= O(1)

log n

n2
(4.2)
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by applications of Lemmas 2.9 and 2.8, and

P{An} =

m
n4−1∏
j=1

(
1− j

n4

)
= 1 + O(1)

m2
n4

n4
= 1 + O

(
log2n

n4

)
,

whence
∑∞

n=1P{Acn ∪ En} < ∞.

Introducing now the integer-valued random variables

τn(j)(ω) :=

{ bn4Uj(ω)c, if ω ∈ An ∩ Ecn,
−(n2 + j), if ω 6∈ An ∩ Ecn, j = 1, 2, . . . mn4 ; n ∈ N,

and extending without loss of generality the sequence {Xk}∞k=0 to the sequence {Xz}z∈Z of

independent and identically distributed random variables, for every ε > 0 we obtain

0 = lim
n→∞P

{ ∞⋃
k=n

{
1

mk4

∣∣∣∣∣
m
k4∑

j=1

Xbk4Ujc

∣∣∣∣∣ > ε

}}

> lim sup
n→∞

P

{ ∞⋃
k=n

[{
1

mk4

∣∣∣∣∣
m
k4∑

j=1

Xτk(j)

∣∣∣∣∣ > ε

}
∩ Ak ∩ Eck

]}

> lim sup
n→∞

[
P

{ ∞⋃
k=n

{
1

mk4

∣∣∣∣∣
m
k4∑

j=1

Xτk(j)

∣∣∣∣∣ > ε

}}
−

∞∑
k=n

P{Ack ∪ Ek}
]

= lim sup
n→∞

P

{ ∞⋃
k=n

{
1

mk4

∣∣∣∣∣
m
k4∑

j=1

Xτk(j)

∣∣∣∣∣ > ε

}}
.

Since τn(j) 6= τn′(j
′) if (n, j) 6= (n′, j ′), the array {Xτn(1), . . . , Xτn(mn4 )}∞n=1 consists of inde-

pendent random variables, all of which are distributed as X, and hence by the second

Borel–Cantelli lemma

1

mn4

m
n4∑

j=1

Xj
EHR−→ 0.

Noting that mn4 = O(log n), the sequence version of the theorem now follows from

Lemma 4.5.

The triangular array version has exactly the same proof: replacing U1, . . . , Um
n4

by

Um
n4 ,1
, . . . , Um

n4 ,mn4
throughout, the only change is that the inequality in (4.2) simplifies to

P{En} 6
m
n4∑

i=1

∞∑
k=n+1

O(1)
1

k4
= O((log n)/n3).

Lemma 4.6. If α > 3 and E(|X|p) < ∞ for some p ∈ [1, α/3), then either

µ4n (α) =

bn1/αc∑
j=1

XbnUn,jc/bn1/αc a.s.−→ µ or µ?n(α) =

bn1/αc∑
j=1

XbnUjc/bn1/αc a.s.−→ µ

implies that E(|X|p+1) < ∞.
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Proof. Take µ = 0 again. First assuming µ?n(α)
a.s.−→ 0, consider the subsequences nl :=

blα/pc and rl := bn1/α
l c, the multisets I∗l := Inlrl =

{
nlU1, . . . , nlUrl

}
and corresponding

regular sets R∗l := R
[I∗l \ (I∗l ∩ [ ∪∞j=l+1 I∗j

])]
, l ∈ N. Since rl 6 l and α/p > 3, by

Theorem 2.2 we have
∞∑
l=1

P
{∣∣I∗l ∩ ( ∪∞j=l+1 I∗j

)∣∣ > K} < ∞
for some K = K(α/p) ∈ N. Furthermore,

P{|R[I∗l ]| < rl} = 1−
rl−1∏
k=1

(
1− k

nl

)
= O

(
1/l(α−2)/p

)
as l →∞, where (α−2)/p > 1 because α−2 > α/3 > p for α > 3. Also, having E(|X|p) < ∞
and the number of terms in

∑
j∈I∗

l
\R∗

l
Xj less than K if |R∗l | > l −K , it follows that

∞∑
l=K

P

{{
1

rl

∣∣∣∣∣ ∑
j∈I∗

l
\R∗

l

Xj

∣∣∣∣∣ > ε

}⋂{|R∗l | > l −K}} < ∞.

Thus, since finally µ?rl (α)
a.s.−→ 0 as l → ∞, we have the four basic ingredients to allow a

version of the proof of Theorem 3.1, which yields

1

rl

rl−K∑
j=1

Xj
EHR−→ 0, and hence µbl1/pc =

1

bl1/pc
bl1/pc∑
j=1

Xj
EHR−→ 0 as l →∞,

where, in the last implication, we again use that E(|X|p) < ∞. Spelling this out,

∞ >

∞∑
l=1

P
{
µbl1/pc > ε

}
=

∞∑
n=1

d(n+1)pe−1∑
l=dnpe

P
{
µn > ε

}
> Cp

∞∑
n=1

np−1P
{
µn > ε

}
for every ε > 0 and a finite constant Cp > 0. By the theorem of Baum and Katz [5] cited

at the end of the introduction, this implies that E(|X|p+1) < ∞.

The proof for µ4n (α) is the same, with reference to Theorem 2.1 instead of Theorem 2.2.

Proof of Theorem 4.2. Let µn stand for either µ4n (α) or µ?n(α), and consider the sub-

sequence n(l) := blαc, l ∈ N, for the given α > 3. Then µn(l)
a.s.−→ µ as l → ∞, and so

E(X2) < ∞ by an application of Theorem 3.1.

Now for each β ∈ (2, 1 + α
3

)
define Hβ :=

{
k ∈ N : k 6 bβc and E

(|X|k+{β}) < ∞},

where {β} := β − bβc is the fractional part of β. Notice that E
(|X|1+{β}) < ∞ since

E(X2) < ∞, so Hβ 6= ∅. We claim that kβ := max{k : k ∈ Hβ} = bβc. Indeed, if

kβ < bβc, then kβ + {β} 6 bβc + {β} − 1 = β − 1 < α
3
, and since µn

a.s.−→ µ, we have

E
(|X|kβ+1+{β}) < ∞ by Lemma 4.6, and hence kβ + 1 ∈ Hβ , contradicting the definition

of kβ . Therefore, E(|X|β) = E
(|X|bβc+{β}) < ∞ for any β ∈ [1, 1 + α/3).

Proof of Theorem 4.3. Assuming µn(α)
EHR−→ µ, first consider necessity. Introduce the se-

quence {mk}∞k=1 defined by mk = n if b(n − 1)1/αc < k 6 bn1/αc, n ∈ N. Then mk/k → ∞
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as k → ∞ and mbn1/αc = n for all n ∈ N. Thus µn(α) = abn1/αc(n) = abn1/αc(mbn1/αc), in the

notation of Theorem 3.2, and so, using the assumption and Lemma 3.3, we see that, for

every b = e−1/c ∈ (0, 1) and ε > 0,

∞ >

∞∑
n=1

P

 1

bn1/αc

∣∣∣∣∣∣
bbn1/αcb/3c∑

j=1

[
Xj − µ]

∣∣∣∣∣∣ > ε


>

∞∑
k=1

db3(k+1)/bcαe−1∑
n=dd3k/beαe

P

{
1

k

∣∣∣∣∣
k∑
j=1

[
Xj − µ]

∣∣∣∣∣ > 6ε

b

}
> Cb

α

∞∑
k=1

kα−1P

{∣∣µn − µ∣∣ > 6ε

b

}

for some constant Cb
α > 0. Thus E(|X|1+α) < ∞, again by the Baum–Katz theorem.

To prove sufficiency, suppose E(|X|1+α) < ∞ and, without loss of generality by

Lemma 3.4, also that X is symmetric about µ = 0. Since the case α = 1 is covered by the

special case mn ≡ n in Theorem 3.2, suppose that α > 1 and define kα := d(2+2α)/(α−1)e.
Using the notation of Theorem 2.5, let G(Jα

n) be the random graph generated by the mul-

tiset Jα
n = {bnU1c, . . . , bnUmnc}, with the vertex vj of degree dj = d(vj) representing nUj ,

j = 1, . . . , mn, where mn = bn1/αc. As in the proof of Theorem 2.3, the degrees d1, . . . , dmn
are identically distributed, but now

P{d1 = l} =

(
mn − 1

l

)(
1

n

)l(
1− 1

n

)mn−1−l
l = 0, 1, . . . , mn − 1.

For all n large enough, these probabilities decrease in l = kα, . . . , mn − 1, and so

P{d1 > kα} 6 mnP{d1 = kα} 6 mn
(
mn − 1

kα

)(
1

n

)kα
6

1

n(2α+1)/α
.

Hence, setting pαn(ε) := P{|µn(α)| > ε} and using also the last statement of Lemma 3.4,

pαn(ε) 6 P
{{|µn(α)| > ε} ∩ [ ∩mnj=1 {dj < kα}]}+ P

{ ∪mnj=1 {dj > kα}
}

6 P

{
1

mn

∣∣∣∣∣
kα∑
k=1

∑
j∈Rk[Jα

n]

kXj

∣∣∣∣∣ > ε

}
+ mnP{d1 > kα}

6
kα∑
k=1

P

{
1

mn

∣∣∣∣∣ ∑
j∈Rk[Jα

n]

Xj

∣∣∣∣∣ > ε

k2
α

}
+

mn

n(2α+1)/α

6
kα∑
k=1

mn∑
l=1

P

{
1

mn

∣∣∣∣∣ ∑
j∈Rk[Jα

n]

Xj

∣∣∣∣∣ > ε

k2
α

∣∣∣∣∣ ∣∣Rk[Jα
n]
∣∣ = l

}
P
{∣∣Rk[Jα

n]
∣∣ = l

}
+

1

n2

=

kα∑
k=1

mn∑
l=1

P

{
1

mn

∣∣Sl∣∣ > ε

k2
α

}
P
{∣∣Rk[Jα

n]
∣∣ = l

}
+

1

n2

6 2

kα∑
k=1

mn∑
l=1

P

{
1

mn

∣∣Sl + (Smn − Sl)
∣∣ > ε

k2
α

}
P
{∣∣Rk[Jα

n]
∣∣ = l

}
+

1

n2

6 2kαP

{ |Smn |
mn

>
ε

k2
α

}
+

1

n2
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for every ε > 0, where Sj = X1 + · · ·+Xj , j ∈ N. Since, for some constant Kα > 0,

∞∑
n=1

P

{ |Smn |
mn

>
ε

k2
α

}
=

∞∑
j=1

d(j+1)αe−1∑
n=djαe

P

{ |Sj |
j
>

ε

k2
α

}
6 Kα

∞∑
j=1

jα−1P

{ |Sj |
j
>

ε

k2
α

}
< ∞

on account of the finiteness of E(|X|1+α), as an application of the sufficiency half of the

Baum–Katz theorem, it follows that
∑∞

n=1P{|µn(α)| > ε} < ∞ for all ε > 0.

Lemma 4.7. If Y is a nonnegative random variable with E(Y ) < ∞, then there exists a

function r : [0,∞) 7→ [1,∞) such that r(·) is nondecreasing and x/r(x), 0 6 x < ∞, is

increasing, limx→∞ r(x) = ∞, limx→∞ x/r(x) = ∞ and
∫ ∞

0
P
{
Y > x/r(x)

}
dx < ∞.

Proof. Since E(Y ) < ∞, we have
∫ ∞

0 P{Y > x}dx < ∞, so for any k ∈ N there exists

a uk > 0 such that
∫ ∞
uk
P{Y > x}dx < 2−k . Clearly, {uk}∞k=1 can be taken to be strictly

increasing. Putting u0 := 0 and defining the continuous function

g(t) :=

{
k + 1, if t ∈ [u2k, u2k+1], k = 0, 1, 2, . . . ,

k + 1 + t−u2k+1

u2k+2−u2k+1
, if t ∈ [u2k+1, u2k+2], k = 0, 1, 2, . . . ,

we have∫ ∞
0

P
{
Y > t

}
g(t) dt =

∞∑
k=0

∫ u2k+2

u2k

P
{
Y > t

}
g(t) dt 6

∞∑
k=0

(k + 2)

∫ u2k+2

u2k

P
{
Y > t

}
dt

6 2u2 +

∞∑
k=1

k + 2

22k
< ∞.

Now let G(x) :=
∫ x

0 g(t)dt, 0 6 x < ∞, a monotone increasing, continuously differentiable

function with G(∞) = ∞. Hence its inverse function G−1(·), a one-to-one mapping of [0,∞)

onto [0,∞), also has these properties; note that G−1(x) = x, 0 6 x 6 u1. Thus, defining

r(x) := x/G−1(x), the function x/r(x), 0 6 x < ∞, is increasing to ∞. Furthermore,

r(x) = 1 if 0 6 x 6 u1, and r(x) ↑ ∞ as x → ∞ if and only if r(G(t)) = G(t)/t ↑ ∞ as

t → ∞, which obviously is the case by L’Hôpital’s rule; so r(·) in fact strictly increases

to ∞ on [u1,∞). Finally, we have
∫ ∞

0 P
{
Y > x/r(x)

}
dx =

∫ ∞
0 P
{
Y > t

}
g(t) dt < ∞ by

construction.

Proof of Theorem 4.4. (i) By Lemma 4.7 there exists a positive sequence {rn}n∈N such

that rn ↑ ∞, n/rn ↑ ∞ and

S(α) :=

∞∑
n=1

P

{
(|X| log+|X|)α > n

rn

}
< ∞.

For each n ∈ N, let tn > 1 be the unique solution x of the equation (x log+x)α =

(x log x)α = n/rn, x > 1. Setting t0 := t1, the sequence {tn}∞n=0 is necessarily nondecreasing,

tn ↑ ∞ and
∞∑
n=1

P{|X| > tn} 6 S(α) < ∞.
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For the truncated variables X∗n := XnI(|Xn| 6 tn), n ∈ {0} ∪ N, the latter implies that∑∞
n=0P{X∗n 6= Xn} < ∞ and hence, in particular, also that n−1

∑n−1
j=0 X

∗
j

a.s.−→ µ. Now,

returning to the notation at the beginning of the introduction, let Y ∗n,0, . . . , Y ∗n,mn−1 denote

the variables in the bootstrap sample corresponding to the truncated sample X∗0 , . . . , X∗n−1,

and for ε > 0 introduce the conditional probabilities

Pn(ε) := P

{∣∣∣∣∣ 1

mn

mn−1∑
j=0

Y ∗n,j − 1

n

n−1∑
j=0

X∗j

∣∣∣∣∣ > ε

∣∣∣∣∣X
}

=: QX

{∣∣∣∣∣
mn−1∑
j=0

Y ∗n,j − mn

n

n−1∑
j=0

X∗j

∣∣∣∣∣ > mnε

}
,

given the whole sequence X = {Xn}∞n=0. If we show that
∑∞

n=1 Pn(ε) < ∞ almost surely for

each ε > 0, then P{P{A |X} = 1} = 1 and so P{A} = 1, by a conditional application of

the Borel–Cantelli lemma, where

A =

{
m−1
n

mn−1∑
j=0

Y ∗n,j − n−1
n−1∑
j=0

X∗j → 0

}
.

Hence

m−1
n

mn−1∑
j=0

Y ∗n,j =

n−1∑
k=0

wn,kX
∗
k

a.s.−→ µ,

which by Lemma 2.1 in [1] implies that

µn(mn) = m−1
n

mn−1∑
j=0

Yn,j =

n−1∑
k=0

wn,kXk
a.s.−→ µ.

Since under QX(·) = P{· |X} the variables Y ∗n,0, . . . , Y ∗n,mn−1 are independent, for which

we almost surely have |Y ∗n,j | 6 tn, EQX
(Y ∗n,j) = n−1

∑n−1
i=0 X

∗
i and

VarQX
(Y ∗n,j) 6 EQX

([Y ∗n,j]2) 6 tnn
−1

n−1∑
i=0

|X∗i | 6 tnV , j = 0, 1, . . . , mn − 1,

where V is a proper (almost surely finite) positive random variable not depending on

n, copying the proof of Theorem 2.1 in [1] and so applying the Bernstein inequality

conditionally, we obtain

∞∑
n=1

Pn(ε) 6 2

∞∑
n=1

e−Wεmn/tn ,

where Wε = 3ε2/[6V + 4ε]. Since the asymptotic equality [xn log xn]/[tn log tn] ∼ α−αrn →
∞ holds for xn ≡ n1/α/ log n, we must have sn := n1/α/[tn log n] = xn/tn → ∞. Thus

mn/tn = wn log n, where wn = mnsn/n
1/α → ∞ by the condition on {mn}, and hence∑∞

n=1 Pn(ε) < ∞ almost surely for every ε > 0.

(ii) By Lemma 4.7 there exists a positive sequence {rn}n∈N such that rn ↑ ∞, n/rn ↑ ∞ and∑∞
n=1P

{|X|α > n
rn

}
< ∞. If we redefine the truncating sequence as tn := (n/rn)

1/α, n ∈ N,

then the proof of Theorem 2.1 in [1], i.e., a simplified version of the proof above, again
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gives that
∞∑
n=1

Pn(ε) 6 2

∞∑
n=1

e−Wεmn/tn

almost surely for each ε > 0. The last series is almost surely finite because mn/tn = yn log n

and yn = r
1/α
n mn/[n

1/α log n]→∞ by the present condition on {mn}.
(iii) Now using tn := t−1 log n for any fixed t ∈ (0, t∗), n > 2, and t1 := t2, we have

∞∑
n=1

P{|X| > tn} =

∞∑
n=1

P{et|X| > n} < ∞

by Lemma 4.7, as applied with Y = et|X| and r(·) = 1. Thus, with this {tn}, the proof

above and the condition on mn again yield

∞∑
n=1

Pn(ε) 6 2

∞∑
n=1

e−Wεmn/tn < ∞

almost surely for each ε > 0.

5. Remarks and conjectures

Let In(α) be either I4n (α) or I?n(α) from Theorems 2.1 and 2.2. Since the series

∞∑
n=1

n−min(α−2, (α−3)K) = ∞,

for α ∈ [1, 3] our present approach appears to be insufficient for the strong sparsity

property that
∞∑
n=1

P
{∣∣In(α) ∩ ( ∪∞j=n+1 Ij(α)

)∣∣ > K} < ∞
for some constant K = K(α) > 0; cf. the proofs of Theorem 2.1 and Lemma 2.12. (The

referee has kindly pointed out that, by a reasoning more elaborate than ours the term

P{Acn} = O
(
n−(α−2)

)
can be avoided in the proof of Theorem 2.1. Unfortunately, the

resulting bound on P
{∣∣I4n (α) ∩ ( ∪∞j=n+1 I4j (α)

)∣∣ > K
}

still remains O
(
n−(α−3)K

)
, and

hence we have kept our simpler proof.) However, we conjecture that a weaker sparsity

property still holds for α ∈ (2, 3]: it is that

∞∑
n=1

P
{∣∣In(α) ∩ ( ∪∞j=n+1 Ij(α)

)∣∣ > Kαn
3−α} < ∞

for some constant Kα > 0. If this were true, then we could follow the present proof to

show in the necessity direction that convergence in Theorem 3.1 for α ∈ (2, 3] also implies

E(|X|β) < ∞ for all β ∈ [1, 2). Similarly, Theorem 4.2 would then become true for α > 2

and the improved conclusion that E(|X|β) < ∞ for all β ∈ [1, 1 + α
2

)
.

We also believe that for α > 2 the conjecture above is a special case of an even more

challenging conjecture: the distribution of |In(α)∩ (∪∞j=n+1Ij(α))| is approximately Poisson
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with mean Cα/n
α−3, where the likely value of the constant Cα is 1/(α − 2). The main

difficulty is the inhomogeneity of the generated graph G(∪∞j=1Ij(α)).
Even if the first conjecture was true, however, it would still leave the gap α ∈ [1, 2]

in Theorem 3.1. Concerning bootstrap means, on the basis of Theorem 4.4 it appears to

be safe to conjecture for any α > 1 that if µ4n (α)
a.s.−→ µ or µ?n(α)

a.s.−→ µ, in the notation of

Theorem 4.2, then E(|X|α) < ∞. Theorem 4.2 and even its possibly improved form coming

from the conjecture above for α > 2 are quite far from this. And then we still would not

know whether or not the logarithmic factors in Theorem 4.4 are necessary.

The case of the naive bootstrap mn ≡ n is the most interesting special case: if µ4n (1)
a.s.−→ µ

or µ?n(1)
a.s.−→ µ, does it follow that E(|X| log+|X|) < ∞? Or, alternatively, is the finiteness

of E(|X|) sufficient for µ4n (1)
a.s.−→ µ and µ?n(1)

a.s.−→ µ, or for µn(n)
a.s.−→ µ universally? As a

more precise statement of Theorem 2.3, in this ‘naive’ case Theorem 2.4 suggests using

the decomposition
n∑
j=1

XbnUjc =

n∑
j∈In

Xj =

n∑
k=1

k
∑

j∈Rk[In]
Xj,

in which the inner sums over disjoint sets become asymptotically independent. The main

difficulty with this is the relationship between the random sets Rk[In] for different n.
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