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Abstract: We consider estimation of covariance matrices of stationary processes.

Under a short-range dependence condition for a wide class of nonlinear processes,

it is shown that the banded covariance matrix estimates converge in operator norm

to the true covariance matrix with explicit rates of convergence. We also establish

the consistency of the estimate of the inverse covariance matrix. These results are

applied to a prediction problem, and error bounds for the finite predictor coeffi-

cients are obtained. A sub-sampling approach is proposed to choose the banding

parameter, and simulation results reveal its satisfactory performance for linear and

certain nonlinear processes as the procedure is solely based on the second-order

characteristics of the underlying process. Selection of the band parameter for non-

linear processes remains an open problem.
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1. Introduction

Nonstationary covariance estimators by banding a sample covariance matrix
or its Cholesky factor have been proposed by Wu and Pourahmadi (2003) and
Bickel and Levina (2008) in the context of longitudinal and multivariate data,
and their consistency was established under some regularity conditions when
m,n → ∞ and m−1 log n → 0, where m and n are the number of subjects and
variables, respectively. The requirement of m being large (m → ∞) is not always
feasible, as for example when one has only one realization (m = 1) in the setup
of univariate time series and the number of subjects is small. See for instance Li,
Wang, Hong, Turner, Lupton and Carroll (2007) and Hall, Marron and Neeman
(2005) for examples of high dimension, low sample size data.

The idea of banding a stationary covariance matrix or limiting moving aver-
age (MA) and autoregressive (AR) model fitting dates back at least to the 1920’s
and the works of Slutsky and Yule. Its genesis and later reincarnations, in spec-
tral density estimation via smoothing the periodogram, Burg’s spectral density
estimator, and prediction based on fitting increasing-order AR and MA mod-
els (Berk (1974), Brockwell and Davis (1988), and Ing and Wei (2003)), can be
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traced to the implicit and heuristic regularizing assumption that measurements
far apart in time are weakly correlated. Given a realization X1, . . . , Xn of a mean-
zero stationary process {Xt}, its autocovariance function γk = cov(X0, Xk) can
be estimated by

γ̂k =
1
n

n−|k|∑
i=1

XiXi+|k|, k = 0,±1, . . . ,±(n − 1), (1.1)

and it is known that for fixed k ∈ Z, under the ergodicity condition, γ̂k → γk

in probability. However, entry-wise convergence does not automatically imply
that Σ̂n = (γ̂i−j)1≤i,j≤n is a good estimate of Σn = (γi−j)1≤i,j≤n (Hannan and
Deistler (1988, Sec. 5.3)). Indeed, though Σ̂n is positive definite (see Chapter
5 in Pourahmadi (2001)), it is not uniformly close to the population covariance
matrix Σn, in the sense that the largest eigenvalue or the operator norm of
Σ̂n − Σn does not converge to zero; see Theorem 1 in Section 2. Such uniform
convergence is important when studying the rate of convergence of the finite
predictor coefficients and performance of various classification methods in time
series.

Our, not necessarily positive-definite, covariance matrix estimator is of the
form

Σ̂n,l = (γ̂i−j1|i−j|≤l)1≤i,j≤n, (1.2)

where l ≥ 0 is an integer. It is a truncated version of Σ̂n, preserving the diagonal
and the 2l main sub-diagonals; note that if l ≥ n− 1, then Σ̂n,l = Σ̂n. Following
Bickel and Levina (2008), we call Σ̂n,l the banded covariance matrix estimate and
l its band parameter. The motivation for banding comes from the fact that, for a
large lag k, either γk is close to zero or γ̂k is an unreliable estimate of γk. Thus,
prudent use of banding may bring considerable computational economy in the
former case, and statistical efficiency in the latter, by keeping small or unreliable
γ̂k out of the calculations.

There are important differences between our setup and results and those in
Wu and Pourahmadi (2003) and Bickel and Levina (2008). Here, we work with
only one (m = 1) realization and establish consistency by banding the sample
autocovariance matrix. This is attractive in time series analysis and application
situations where typically only one realization is available. Also we impose very
mild moment and dependence conditions on the underlying process.

The rest of the paper is organized as follows. Section 2 introduces a class
of nonlinear processes and, using a new concept of short-range dependence (Wu
(2005)), convergence properties of the banded covariance matrix and its inverse
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are established. Section 3 presents an application of banding to a prediction
problem and provides error bounds for the finite predictor coefficients. The
selection of the band parameter, discussed in Section 4, is an adaptation of a
resampling and risk-minimization approach due to Bickel and Levina (2008). Its
performance is assessed via simulations for linear and nonlinear processes. The
results are more satisfactory for linear processes, since the procedure relies solely
on the second-order characteristics of the underlying processes; its extension to
nonlinear processes remains an open problem. The findings confirm our intuition
that the optimal band depends on the characteristics of the underlying model
and that the faster the autocorrelation functions decay the smaller is the optimal
band. Surprisingly, this conclusion is in agreement with that in Bickel and Levina
(2008) in spite of the differences in the two setups.

2. Main Results

We introduce some structural assumptions on the process {Xt} and work
within the framework of nonlinear stationary processes that includes the standard
linear processes (Brockwell and Davis (1991), and Ing and Wei (2003)). Hannan
and Deistler (1988) have considered certain linear ARMA processes and obtained
the uniform bound ‖Σ̂n,` −Σn‖∞ = O (

√
log log n/

√
n), ` ≤ (log n)α, α < ∞; see

Theorem 5.3.2 therein. Here we obtain comparable results for nonlinear processes
and allow a wider range of `, see Theorem 2 below.

Let εi, i ∈ Z, be independent and identically distributed (iid) random vari-
ables. Assume that {Xi} is a causal process of the form

Xi = g(. . . , εi−1, εi), (2.1)

where g is a measurable function such that Xi is well-defined and E (X2
i ) < ∞.

Many stationary processes fall within the framework of (2.1); see Tong (1990) and
Wu (2005). To introduce the dependence structure, let (ε′i)i∈Z be an independent
copy of (εi)i∈Z and ξi = (. . . , εi−1, εi). Following Wu (2005), for i ≥ 0 let
ξ′i = (. . . , ε−1, ε

′
0, ε1, . . . , εi−1, εi) and X ′

i = g(ξ′i). For α > 0 define the physical
dependence measure

δα(i) = ‖Xi − X ′
i‖α. (2.2)

Here, for a random variable Z, we write Z ∈ Lα, if ‖Z‖α := [E (|Z|α)]1/α < ∞,
and write ‖ ·‖ = ‖ ·‖2. Observe that X ′

i = g(ξ′i) is a coupled version of Xi = g(ξi)
with ε0 in the latter replaced by an iid copy ε′0. The quantity δp(i) measures
the dependence of Xi on ε0. We say that {Xi} is short-range dependent with
moment α if

∆α :=
∞∑
i=0

δα(i) < ∞. (2.3)
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Namely, the cumulative impact of ε0 on future values of the process or {Xi}i≥0 is
finite, thus suggesting a short-range dependence. In many applications it is easy
to work with δα(i) which is directly related to the data generating mechanism of
the underlying process, as indicated in the next two examples.

Example 1. Let Xj = g(
∑∞

i=0 aiεj−i), where ai are real coefficients with∑∞
i=0 |ai| < ∞, εi are iid with εi ∈ Lα, α ≥ 1, and g is a Lipschitz continuous

function. Then
∑∞

i=0 aiεj−i is a well-defined random variable and δα(i) = O(|ai|).
Hence we have (2.3).

Example 2. Let εi be iid random variables and set Xi = g(Xi−1, εi), where g is a
bivariate function. Many nonlinear time series models follow this framework. Let
Lε = supx 6=x′ |g(x, ε) − g(x′, ε)|/|x − x′|. Assuming that E (Lα

ε0
) < 1, α > 0, and

for some x0, g(x0, ε0) ∈ Lα. Then δα(i) = O(ri), 0 < r < 1, so (2.3) follows, see
Theorem 5.1 in Shao and Wu (2007). The latter paper also gives more examples.

In the sequel, for an n×n matrix A with real entries the operator norm ρ(A)
is defined by ρ(A) = maxx∈Rn:|x|=1 |Ax| where, for an n-dimensional real vector
x = (x1, . . . , xn)′, |x| = (

∑n
i=1 x2

i )
1/2. Hence ρ2(A) is the largest eigenvalue of

A′A, where ′ denotes the matrix transpose. Theorem 1 below shows that Σ̂n

is not a consistent estimate of Σn in the sense that the operator norm or the
largest eigenvalue of Σ̂n − Σn does not converge to zero. On the positive side,
we are able to show the convergence to zero and obtain an explicit upper bound
for ρ(Σ̂n,l − Σn) for the banded estimate Σ̂n,l in our Theorem 2. We define the
projection operator Pk as Pk· = E(·|ξk) − E (·|ξk−1), k ∈ Z.

Theorem 1. Assume that the process {Xt} in (2.1) satisfies

∞∑
i=0

‖P0Xi‖ < ∞. (2.4)

If ‖
∑∞

i=0 P0Xi‖ > 0, then, ρ(Σ̂n − Σn) 6→ 0 in probability.

Proof. By (2.4), σ := ‖
∑∞

i=0 P0Xi‖ < ∞. Let c = (1, . . . , 1)′/
√

n. Then |c| = 1
and

|c′(Σ̂n − Σn)c| ≤ ρ(Σ̂n − Σn). (2.5)

Under (2.4), since Pk, k ∈ Z, are orthogonal projections, we have Xk =
∑

j∈Z
PjXk and

γ(k) = E
[ ∑

i∈Z
PiX0

∑
j∈Z

PjXk

]
=

∑
i∈Z

E
[
(PiX0)(PiXk)

]
.
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Let ∆ =
∑∞

i=0 ‖P0Xi‖. By Schwarz’s inequality and stationarity,∑
k∈Z

|γ(k)| ≤
∑
k∈Z

∑
i∈Z

‖PiX0‖‖PiXk‖ = ∆2 < ∞.

We also have σ2 =
∑

k∈Z γ(k) ≤ ∆2. Hence, as n → ∞,

c′Σnc = γ(0) + 2
n∑

i=1

(
1 − i

n

)
γ(i) → σ2. (2.6)

On the other hand, let Si = X1 + . . . + Xi, then

c′Σ̂nc =
n−1∑

i=1−n

γ̂(i) − 2
n

n−1∑
j=1

jγ̂(j)

=
S2

n

n
− 2

n2

n−1∑
j=1

Xj+1

j∑
i=1

(j + 1 − i)Xi

=
S2

n

n
− 2

n2

n−1∑
j=1

(Sj+1 − Sj)
j∑

i=1

Si

=
S2

n

n
+

2
n2

n∑
j=1

S2
j − 2

n2
Sn

n∑
j=1

Sj .

Under (2.4), by Hannan (1979) (see also Wu (2005)), we have the invariance
principle {

Sbnuc√
n

, 0 ≤ u ≤ 1
}

⇒ σ{IB(u), 0 ≤ u ≤ 1}, (2.7)

where IB is the standard Brownian motion. With elementary manipulations, we
have by (2.7) and the Continuous Mapping Theorem that

c′Σ̂nc

σ2
⇒ IB2(1) + 2

∫ 1

0
IB2(t)dt − 2IB(1)

∫ 1

0
IB(t)dt.

Hence, by (2.5) and (2.6),

c′(Σ̂n − Σn)c
σ2

⇒
∫ 1

0

{
IB2(t) + [IB(1) − IB(t)]2

}
dt − 1 =: Z0. (2.8)

So the theorem follows and, asymptotically, ρ(Σ̂n − Σn)/σ2 has a lower bound
which is distributed as Z0.
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It is very difficult to find the asymptotic distribution of the largest eigenvalue
ρ(Σ̂n−Σn). Recently, Bryc, Dembo and Jiang (2006) studied spectral measures of
Toeplitz matrices with sub-diagonals being independent. In our case the matrix
Σ̂n − Σn is Toeplitz where the sub-diagonals are dependent, so their results are
not directly applicable. For other contributions to inconsistency of the largest
eigenvalues of sample covariance matrices see Johnstone (2001) and El Karoui
(2007), and references therein.

The following result is needed in the proof of Theorem 2.

Lemma 1. Assume that {Xi} in (2.1) satisfies (2.3) with 2 < α ≤ 4. Then, for
any j ∈ Z,

‖
∑n

i=1 XiXi+j − nγj‖α/2 ≤ 2Bα/2n
1/q‖X1‖α∆α,

where Bq =

{
18q3/2

(q−1)1/2 , if q 6= 2;

1, if q = 2.

(2.9)

Proof. Let q = α/2. Without loss of generality assume j ≥ 0, and write
Tn =

∑n
i=1 XiXi+j − nγj . By Theorem 1 in Wu (2007),

‖Tn‖q ≤ Bqn
1/q

∞∑
i=−j

‖P0XiXi+j‖q. (2.10)

Recall that X ′
i = g(ξ′i) and, for i < 0, we have X ′

i = Xi and E (XiXi+j |ξ−1) =
E (X ′

iX
′
i+j |ξ−1) = E (X ′

iX
′
i+j |ξ0). By Jensen’s and Schwarz’s inequalities,

‖P0XiXi+j‖q = ‖E (XiXi+j − X ′
iX

′
i+j |ξ0)‖q

≤ ‖XiXi+j − X ′
iX

′
i+j‖q

≤ ‖Xi(Xi+j − X ′
i+j)‖q + ‖(Xi − X ′

i)X
′
i+j‖q

≤ ‖Xi‖α‖Xi+j − X ′
i+j‖α + ‖Xi − X ′

i‖α‖X ′
i+j‖α

which, by (2.10), implies (2.9) since Xi − X ′
i = 0 if i < 0.

Theorem 2. Let 2 < α ≤ 4 and q = α/2. Assume (2.3) and 0 ≤ l < n − 1.
Then

‖ρ(Σ̂n,l − Σn)‖q ≤ cα(l + 1)n1/q−1‖X1‖α∆α +
2
n

l∑
j=1

j|γj | + 2
n∑

j=l+1

|γj |, (2.11)

where cα > 0 is a constant depending only on α.
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Proof. By Lemma 1, for i ≥ 0, ‖γ̂i−E γ̂i‖q ≤ cq(n−i)1/q‖X1‖α∆α/n. Note that
Σ̂n,l −Σn is a symmetric Toeplitz matrix. From Golub and Van Loan (1989), we
have

ρ(Σ̂n,l − Σn) ≤ max
1≤j≤n

n∑
i=1

|γ̂i−j1|i−j|≤l − γi−j |

≤
n−1∑

i=1−n

|γ̂i1|i|≤l − γi| ≤ 2
l∑

i=0

|γ̂i − γi| + 2
n∑

i=1+l

|γi|.

So the theorem follows since the bias |E γ̂i − γi| ≤ i|γi|/n.

If γm = O(θm) for some θ ∈ (0, 1), by letting l = bc log nc for sufficiently large
c > 0, elementary calculations show that the bound in (2.11) is O(n1/q−1 log n).
If γm = O(m−β) with β > 1, we similarly have the bound O(n(1/q−1)(1/β−1)) by
letting l = bn(1/q−1)/βc.

Next, we turn to the convergence properties of the inverse Σ̂−1
n,l .

Corollary 1. For 2 < α ≤ 4, assume (2.3), l → ∞, and l = o(n1−2/α). Further
assume that f(θ) = (2π)−1

∑
k∈Z γke

ikθ, the spectral density of {Xt}, satisfies
0 < c1 ≤ f(θ) ≤ c2 < ∞ for some positive constants c1 and c2.

(i) Σ̂n,l is positive definite with probability approaching to 1 and

ρ(Σ̂−1
n,l − Σ−1

n ) = Op(rn), where rn = ln2/α−1 +
∞∑
j=l

|γj |. (2.12)

(ii) Let K(λ) = {l : 1 ≤ l ≤ n, Σ̂n,1 − λIn ≥ 0}, where 0 < λ < 2πc1 and In is the
n × n identity matrix. For q = α/2,

‖ρ(Σ̂−1
n,l − Σ−1

n )1l∈K(λ)‖q = O(rn). (2.13)

Proof. (i) By Theorem 2, ρ(Σ̂n,l − Σn) = Op(rn), which converges to 0 in
probability. Note that all eigenvalues of Σn lie in the interval [2πc1, 2πc2] (cf
Section 5.2 in Grenander and Szegö (1958)) which is both bounded from above
and below. Hence the probability that Σ̂n,l is positive definite tends to 1. Let
An = Σ−1/2

n and Γn = AnΣ̂n,lAn. Then ρ(Γn − In) = Op(rn) and, since rn → 0,
we have ρ(Γ−1

n −In) = Op(rn). So (2.12) follows. To prove (ii), we note that K(λ)
is asymptotically nonempty by Theorem 2. Let d1 ≥ . . . ≥ dn be eigenvalues of
Γn, then using Theorem 2, we obtain E [maxi≤n |di − 1|q] = O(rq

n). If l ∈ K(λ),
then dn ≥ t0 > 0 for some constant t0. So |d−1

i − 1| ≤ |di − 1|/t0 and (ii) follows
after elementary manipulations.



1762 WEI BIAO WU AND MOHSEN POURAHMADI

3. Banding and the Finite Predictor Coefficients

It is known that computing the linear least squares predictor of a future value
of a stationary process {Xt}, based on the knowledge of its infinite past and the
covariance matrix Σ = (γi−j), amounts to replacing Σ by Σn = (γi−j)1≤i,j≤n and
then studying the effect of such truncation (Pourahmadi (2001, pp.69-71)). In
this section, we propose an even simpler approximation where instead of Σn, its
banded version is used. The impact of this simplification on reducing the com-
putational complexity of, say, the Durbin-Levinson algorithm due to sparseness
is evident. Here, we study the impact of banding on the accuracy of the finite
predictor coefficients.

Let an = (a1n, . . . , ann)′ be the coefficients of the finite predictor of length n

and γn = (γ1, . . . , γn)′. Then, an satisfies the Yule-Walker equations

Σnan = γn or an = Σ−1
n γn. (3.1)

Since the γk’s are unknown, one resorts to solving the sample version of the
Yule-Walker equations (3.1), i.e., ân = Σ̂−1

n γ̂n where γ̂n = (γ̂1, . . . , γ̂n)′. It turns
out that ân may perform poorly both statistically and numerically due to poor
quality of γ̂k for k large. One remedy is to regularize or use a banded covariance
matrix estimate

ân,l = Σ̂−1
n,l γ̃n, where γ̃n = (γ̃1, γ̃2, . . . , γ̃n)′ and γ̃i = γ̂i1|i|≤l. (3.2)

Here ân,l can be viewed as a shrinkage or regularized estimate of an replacing
(γ̂i)|i|>l in ân by 0. Surprisingly, this simple regularization could improve its
performance without sacrificing numerical accuracy of the predictor coefficients,
as we indicate next.

Corollary 2. Let 2 < α ≤ 4. Assume that the conditions of Corollary 1 are
satisfied. Then |ân,l − an| = Op(rn).

Proof. Let q = α/2. By Lemma 1, maxi≤n ‖γ̃i − E γ̃i‖q = O(n1/q−1) and

|γ̃n − E γ̃n|2 =
l∑

i=1

(γ̂i − E γ̂i)2 ≤
( l∑

i=1

|γ̂i − E γ̂i|
)2

= Op

[
(ln1/q−1)2

]
. (3.3)

Then |γ̃n − E γ̃n| = Op(ln1/q−1). From Corollary 1(i), the largest eigenvalue of
Σ̂−1

n,l is bounded by ρ(Σ−1
n ) + Op(rn). Observe that |E γ̃n|2 ≤

∑∞
i=1 γ2

i < ∞.
Hence we have

|Σ̂−1
n,l γ̃n − Σ−1

n E γ̃n| ≤ |Σ̂−1
n,l (γ̃n − E γ̃n)| + |(Σ̂−1

n,l − Σ−1
n )E γ̃n|

≤ ρ(Σ̂−1
n,l )|γ̃n − E γ̃n| + ρ(Σ̂−1

n,l − Σ−1
n )|E γ̃n|

=
[
ρ(Σ−1

n ) + Op(rn)
]
Op(rn) + Op(rn) = Op(rn). (3.4)
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On the other hand, since E γ̂i = γi(n − |i|)/n,

|γn − E γ̃n|2 =
l∑

i=1

(E γ̂i − γi)2 +
n∑

i=l+1

γ2
i

≤ n−2
l∑

i=1

i2γ2
i + r2

n = O(n−2l2) + r2
n = O(r2

n).

Since the eigenvalues of Σn are bounded from above and below, we have |Σ−1
n (γn−

E γ̃n)| = O(rn) which, together with (3.4) implies that |ân,l − an| = Op(rn).

Analogues of Corollary 2 can be proved for the coefficients of the multi-
step ahead predictors and interpolators of stationary processes, see Pourahmadi
(2001, p.232).

4. Band Selection and A Simulation Study

The selection of the band ` is intuitively related to order selection for fitting
MA models to the data (Brockwell and Davis (1988)). It is also related to estimat-
ing the spectral density function at zero, or the quantity σ2 =

∑+∞
k=−∞ γk by σ̂2

n =∑n−1
k=−(n−1) γ̂k, which is known to be inconsistent, while the banded/truncated

estimate σ̂2
n,l =

∑l
k=−l γ̂k with l = ln → ∞ and l/n → 0 can be consistent

(Politis, Romano and Wolf (1999, Chap. 9)).

4.1. Band selection

Our Theorem 2 suggests that l should satisfy

l → ∞, ln1/q−1 → 0, or ln1/q−1 ³
∞∑

j=l+1

|γj |. (4.1)

As a data-driven choice of l, one could propose the following naive algorithm.

1. Choose l such that
∑l

k=−l γ̂(k) is a “good” estimate of σ2

2. Check whether Σ̂n,l is positive definite. If so, let l∗ = l.

3. Otherwise, let l∗ = l − 1 and go to Step 2.

With the chosen band l∗, Σ̂n,l∗ is positive definite. The finer details for
implementing this method is worked out in this section using the idea of resam-
pling and risk-minimization as in Bickel and Levina (2008, Sec. 5). While they
show that “nonoverlapped” splitting of the data works well for band selection in
the multivariate data framework, our preliminary numerical experiments showed
this scheme to be unsatisfactory for time series data. Instead, the technique of
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subsampling (Politis, Romano and Wolf (1999)) that amounts to “overlapped”
splitting of the data proved to be more suitable.

For linear processes, a natural way to select the band parameter l in (1.2) is
to minimize the risk

R(l) = E ‖Σ̂n,l − Σn‖(1,1), (4.2)

where for two n × n matrices A and B, ‖A − B‖(1,1) = maxi
∑n

j=1 |aij − bij |
is the norm used in Bickel and Levina (2008). Here the “oracle” l is given by
l0 = arg minl R(l). The following subsampling scheme will be used to estimate
the risk in (4.2), and hence l0. An asymptotic justification for it can be found
by focusing on the estimation of the vector of parameters θ = (γ0, . . . , γK)′,
K ≥ 1, for a stationary process, and using Theorem 3.3.1 and the results related
to Example 3.3.4 in Politis, Romano and Wolf (1999, pp.83-85)).

Given the stationary, centered time series data X1, X2, . . . , Xn of length n,
the γ̂k in (1.1) is usually computed for k = 0, 1, . . . ,K; the choice of K is impor-
tant in practice, since γ̂k is not a good estimate of γk for k large. A useful guide
that is part of the folklore of time series analysis is to use K ≤ n/4 (Box and
Jenkins (1976, p.33)), but the default value in the SAS software is K = 24, and
in R it is K = 10 log(10n). In our calculations we fix it at K = 30, and when
using subsampling to estimate (4.2), the unknown Σn is replaced by the K × K

sample autocovariance matrix Σ̂K as the “target” and the whole data X1, . . . , Xn

is used to estimate its entries. The Σ̂n,l is replaced by the K ×K banded matrix
Σ̂b,l,ν whose entries are computed using the νth block (subseries) of length b, i.e.
{Xν , . . . , Xν+b−1}, ν = 1, . . . , n − b + 1. Finally, (4.2) is estimated by

R̂(l) =
1

n − b + 1

n−b+1∑
ν=1

‖Σ̂b,l,ν − Σ̂K‖(1,1), (4.3)

and l̂ is selected to minimize R̂(·). Note that whereas l0 is the best choice in
terms of the risk (4.2), l̂ tries to adapt to the time series data at hand via (4.3).
The optimal choice of the block size b plays a crucial role in selecting the band l.
As a general guide, Politis, Romano and Wolf (1999, Chaps 3, 9) show that for
consistency in estimation of a parameter, the block size b must grow to infinity
while b/n → 0 with a rate like n1/3. Note that this requirement is similar to
(4.1), corresponding to the choice of q = 3/2 or α = 3 in Theorem 2. For the
computations here, we take b > K, and it is fixed at b = 40.

Only in a simulation setup where Σn is known, it is possible and useful to
compare l̂ from above to the best band choice for the time series data, i.e.,

l1 = arg min
l

‖Σ̂K,l − ΣK‖(1,1), (4.4)
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Table 1. MA(1): Oracle and estimated l and the corresponding loss values.

Mean (SD) Losses

n l0 l1 l̂ l1 − l̂ Σ̂l̂ Σ̂l0 Σ̂l1 Σ̂K Σ̂n

250 1 1(0) 1.2(0.8) -0.2(0.8) 2.7 2.7 0.2 2.4 15.4
500 1 1(0) 1(0) 0(0) 2.2 2.2 0.2 1.8 22.3
750 1 1(0) 1(0) 0(0) 1.9 1.9 0.1 1.4 27.5

where ΣK is the first K×K principal minor of Σn and Σ̂K,l is the l-banded version
of Σ̂K in (4.3). Also, the losses of the K × K and n × n sample autocovariance
matrices, i.e., ‖Σ̂K −ΣK‖(1,1) and ‖Σ̂n−Σn‖(1,1), do serve as useful guides on the
merits of these estimators and the relevance of (4.2)−(4.4) for band selection.

4.2. Simulations

We have investigated the performance of the above band estimators through
a simulation study for several simple linear and nonlinear stationary time series
of lengths n = 250, 500 and 750; the number of replications used to estimate the
risk in (4.2) via (4.3) was N = 100. Our simulations below show that l1 and l̂

generally agreed very well with the oracle l0 whenever it existed for the underlying
model. Surprisingly, our findings for linear models are similar to those in Bickel
and Levina (2008, Sec. 6.1), in spite of the differences in the setups. However,
the situation for nonlinear models is different and requires more research, and
possibly a different predictor-based procedure for band selection.

Example 3. The MA(1) Model: The autocovariance matrix Σn of the MA(1)
model Xt = εt + θεt−1 is banded, and the oracle l0 = 1 for all n. We take θ = 0.5
and, throughout this section, {εt} is an iid N(0, 1) sequence. In Table 1, we
present the oracle values l0, l1, and the estimated l̂, and their losses, along with
the losses of the sample autocovariance matrices Σ̂K and Σ̂n. In this case, the
estimation procedure based on (4.3) picks the right banding parameter l = 1
more often for larger n, and performs nearly as well as the oracle. The K × K

sample autocovariance matrix does better than Σ̂l̂; this can be explained partially
by our choice of K which is far smaller than n. However, this gain disappears
for the n × n sample autocovariance matrix Σ̂n.
Example 4. The AR(1) Model: The autocovariance matrix Σn of the AR(1)
model Xt = φXt−1+εt is not sparse as that in Example 3, but since γi−j = φ|i−j|,
its entries decay exponentially as |i − j| gets large. The results (not shown)
corresponding to φ = 0.1, 0.5, and 0.9, show that the oracle l0 and other band
estimators were smaller for the smaller values of φ, as expected. We note that
l1 generally overestimated l0, but l̂ stayed much closer to the oracle, and the
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The ‘absolute’ AR(1): Estimated band l̂ and its loss.

n φ l̂(SD) Σ̂l̂

250 0.1 0.2 (0.6) 1.7
250 0.5 0.8 (0.7) 2.2
250 0.9 4.9 (2.6) 14.3
500 0.1 0.0 (0.0) 1.3
500 0.5 0.8 (0.4) 1.8
500 0.9 4.8 (1.4) 13.4
750 0.1 0.0 (0.0) 1.1
750 0.5 0.8 (0.4) 1.5
750 0.9 4.8 (1.2) 14.6

variability of l̂ and l1 increased when the true autocovariance matrix was far
from being banded.

For the stationary and invertible ARMA (1, 1) model Xt = φXt−1+εt+θεt−1,
our simulation results (not shown here) corresponding to φ = 0.9 and θ = 0.5
confirm that the band selectors for this more general model mimicked more closely
those of the AR(1) model with φ = 0.9 than the MA(1) model with θ = 0.5
discussed in Example 3.

Example 5. Nonlinear MA(1) and AR(1) Models. As a way to assess
the suitability and performance of our band selection procedure for nonlinear
time series models, we repeated the earlier simulation design for the following
nonlinear MA(1) models: Xt = εt + θ|εt−1|, Xt = εt + θεt−1|εt−1| with θ = 0.5,
and the ‘absolute’ AR(1) model (Tong (1990, p.140)) Xt = φ|Xt−1| + εt for
φ = 0.1, 0.5, 0.9. Note that these are mildly nonlinear versions of the models
in Examples 3 and 4, where the first two processes are 1-dependent but the
successive values of the first process are uncorrelated when εt has a symmetric
distribution with finite second moment. In fact, in this case γk = cov(Xt+k, Xt) =
(1+θ2)δk,0, so that Σn is a diagonal matrix. However, Σn for the second process is
tridiagonal, just like the covariance matrix of a linear MA(1) model, with diagonal
entries equal to 1 + 3θ2 and the first subdiagonal entries equal to 4θ/

√
2π. Our

simulation results for the first nonlinear MA(1) model (not reported here) were
similar to those in Table 1, and the selected band based on (4.3) was always l̂ = 0
(which is smaller than the intuitively appealing band l0 = 1 for this case). The
simulation results for Xt = εt + 0.5εt−1|εt−1| were similar to those for the linear
MA(1) model in Table 1, except that the losses were larger for the former model.

For the ‘absolute’ AR(1) process, its autocovariance function does not have
a simple closed form so that (4.2) and (4.4) cannot be minimized. However, the
selected bands l̂, their standard deviations and losses, based on (4.3) for various
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values of φ and n presented in Table 2 were smaller than their counterparts for
the linear AR(1) models. This might be due to the ‘smoothness’ of the time
series plot of the former.
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