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Exact Distribution of Edge-Preserving MAP
Estimators for Linear Signal Models with Gaussian
Measurement Noise

Jeffrey A. FessleMember, IEEEHakan Erdgan Member, IEEEand Wei Biao Wu

Abstract—We derive the exact statistical distribution of max- Gaussian measurements. Remarkably, this simple restriction al-
imum a posteriori(MAP) estimators having edge-preserving non-  |ows us to derive thexact(conditional) pdf for MAP estimators
Gaussian priors. Such estimators have been widely advocated for having a broad class of non-Gaussian priors. This explicit form

image restoration and reconstruction problems. Previous investi- for the pdf b ful | lvzing the statistical "
gations of these image recovery methods have been primarily em- or the pdr may be usetul in analyzing the statistical properties

pirical; the distribution we derive enables theoretical analysis. The Of MAP estimation methods. The pdf may also be useful for
signal model is linear with Gaussian measurement noise. We as- Bayesian techniques such as Gibbs sampling and Markov chain
sume that the energy function of the prior distribution is chosen Monte Carlo, e.g., [6] and [7].

to ensure a unimodal posterior distribution (for which convexity of This paper complements the work of Abbeyal. [8], [9],

the energy function is sufficient), and that the energy function sat- . . s
isfies a uniform Lipschitz regularity condition. The regularity con- who developed aapproximatepdf for maximum likelihood and

ditions are sufficiently general to encompass popular priors such MAP estimates under a generabnlinearsignal model. (See
as the generalized Gaussian Markov random field prior and the also [10].) By considerindjnear signal models, we obtain the
Huber prior, even though those priors are not everywhere twice exactpdf, even for non-Gaussian priors.

continuously differentiable.

Index Terms—Bayesian methods, image reconstruction, image
restoration. g ’ ’ Il. PROBLEM
Let X € IR™ denote the unknown image vector, and let
Y € IR™ denote the observed measurement vector (e.g. a noisy
blurry image inimage restoration, or a sinogram in image recon-

ANY papers have described edge-preserving methogiguction). We assume a linear Gaussian measurement model,
for image reconstruction and image restoration based pg., the conditional distribution df given X = z is normal
the Bayesian formalism with non-Gaussian priors. Recent ex-
amples in this journal include [1]-[4]. Maximum posteriori 1 1 P
(MAP) estimators for non-Gaussian priors are nonlinear and/ (¥1%) \/ﬁ exp <_§ (y — Az) II™"(y — Ax)
defined implicitly (lacking an explicit expression). Therefore, 1)

in virtually all such papers, the evaluation of therformance \hereA is a knownm x n system matrix an¢il| denotes the
of such methods has been investigated only empirically. Thigterminant of a known measurement noise covariance matrix
paper contributes a step toward amalyticalunderstanding of j7. assumed to be symmetric positive definite. Assume that the

edge-preserving MAP estimators by deriving their probabilityrior distribution forX has the usual Gibbs form
distribution functions (pdf’s).

We attempted to analyze the mean and covariance of such im- f(z) = co—R(@) )
plicitly defined estimators in [5] using linear approximations to

thg gradient of the objef:tive function. However, T’O”'GaU_SSiﬁymerec is a constant independent ofand R(x) is an energy
priors have nonquadratic energy functions that induce signiff;,tion that discourages image roughness. For edge-pre-
cant nonlinearities, rendering inaccurate the approximationssjgrving image recovery, typically?(z) is a nonquadratic

[5]. The mean and covariance analysis in [S] accommodales,ction [1]-{4], usually composed of functions that increase
general measurement models. In this paper, we focus on linpar, rapidly than quadratic functions [see (23)]Rifx) were

quadratic, then both the prior (2) fof and the measurement
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Huber Potential 3=1 Huber Influence Function

for (1), (2) minimizes the following regularized weighted leas s
squares objective function:

X = argmmin O(x),
®(x) = $(y — Av) I *(y — Az) + R(x) @) oo .

wit)
o/dt wit)
o

ignoring constants independentafwhere *” denotes matrix o, - - : ) — : : ,
or vector transpose. t t

Our goal is to characterize statistically the implicitly definec Generaized Gauss. Potential p-1.5 Gen. Gauss. Influence Func.
estimatorX = X(Y) defined in (3), even though there is no 1
explicit expression foi (-). There are two reasonable choice:
at this point. We could try to find the unconditional distributior _ !
f(&) or find the conditional distributiorf(z|%) for some true *=
imageX = & of interest. One can find the former (in principle) *° 0.5
from the latter by applying total probability

drdt w(t)
o

0
-2 -1 0 1 2 -2 -1 0 1 2

f(@) = / F(E)E) f() di.
Fig. 1. Huber and Generalized Gaussian potential functigfs), and

i i . ... derivativesy(t).

A devout Bayesian might focus on the unconditional distribd- Vesp(t)

tion f(z) but such a Bayesian would need to have faith thatthe . . _
prior distributionf(z) properly reflects thelobalprior charac- function is called thenfluence functionand plays a key role in
teristics of the unknown image. The fairly simple energy fundts edge-preserving properties and in our pdf formula. As illus-
tions R(x) that are typically used in practice generally only cagtated in Fig. 1mune:(t) is not differentiable at the two points
ture local properties of natural imagésSuch priors are useful t = 6, i.e., Ymune:(t) is not globally twice differentiable.
for MAP estimation, but may be ill-suited for global ensembi&imilarly, the generalized Gaussian prior [1] has a potential
statisticst Thus, we focus on the conditional pgf#|#). By function defined byj(t) = [¢["/2 for p € (1,2]. As illustrated
Studying th|S distribution for Various true imagKS: T Of in- in F|g 1, th|S fUnCtion iS not tWice diﬁerentiable at= 0 fOI‘
terest, one could examine analytically how MAP estimates vaby < 2

relative toz as a function of hyperparameters, system models,Rémarkably, despite these “irregularities” in the Huber po-
noise levels, etc. tential function and generalized Gaussian potential function, the

pdf result (12) is indeed applicable to MAP estimators having
priors based on these types of potential functions. However, rig-
orously proving that generality requires a more technical treat-
Our main result is the expression for the gfdf|) givenin - ment than would be needed if only globally twice continuously

(12) below. Our derivation is complicated by our goal of imgjfferentiable energy functions were of interest.
posing minimal restrictions on the nature of the energy function

R(z), so that the result is as widely applicable as possible 0 The Basic Idea
the cornucopia of priors that have been proposed. If we were,

. . . . Before delving into technicalities, we first present the gen-
to assume thaR(x) is strictly convex and twice continuously . . o . ;
eral idea behind the derivation. Under regularity assumptions

differentiable, then the proof of the main result (12) would b§2 and A3 below, the (unconstrained) MAP estimate is a sta-
i

I1l. SOLUTION

fairly straightforward. However, there are many energy fun _qnary point of the gradient of the objective functidnwhere

tions of interest for edge-preserving image recovery that do r} & column gradient ob is given by

satisfy those regularity conditions [1]-[4], so such a simpler
proof would be of less interest. For example, one popular prior "ol — — ATy — /
uses an energy function formed from Hulpetential functions Vie(z) = (y — Az) + V'R(z).

(see, e.g., [1] and (23)) defined by Thus, X is related implicitly to the measuremeyitvia

A t2/2 |t| <6 0_ A/H71 Y AX ! %
= ’ = = - - + V' R(X). 4
wHuber(t) {6|t| _ 62/2, |t| > S ( ) ( ) ( )
Rearranging (4) leads to the followitigainsformation
for some user-selected parametethat controls the degree ging (4) i
of edge preservation. This function is convex but not strictly 7 — h(f() (5)
convex (see Fig. 1). The derivativé(t) of the potential

whereZ € R", h: R" — IR™ and
1See [11] for an interesting exception.

2If the priors used in imaging were truly global priors, then conditional mean A é ATy (6)
estimation should be more appropriate than MAP estimation under a squared

error loss function. h(x) SAT Az + V'R(z). @)
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It follows from (6) and (1) that, conditioned oN = z, the generality afforded by these assumptions will be used in the
random vectoZ also has a Gaussian distribution, with the foleorollaries following the next theorem to address energy func-

lowing mean and covariance: tions that are not globally twice continuously differentiable,
such as those illustrated in Fig. 1.

Be)s 2 A’H‘luy|g~c (8) Theorem 2:Under assumptions A1-A5 above, the condi-
. A -ia ) ;tisonal pdf of the (unconstrained) MAP estimator defined by (3)

wherep, |5 2 Ai is the conditional mean af givenX = z. . |V2(2)| —q(&; &) F~q(2; &)

Equation (5) describes a functional relationship between the f(z]z) = o |F] ex 2

MAP estimateX and the random vectaZ having a known (12)

Gaussian pdff(z|z). The problem of findingf(Z|z) thus be- _

comes a “transformation of random variables” problem. The ror £ € V and is O elsewhere, where

mainder of this section deals primarily with the technical aspects 5 P 5

of showing that the transformation (5) leads to the p@#|i) Vio(z) = AU A+ V- E(x) (13)

in (12). is the Hessianof the objective function (defined ow),

B. General Transformations FA AT A (14)

To prove (12) under the general conditions of interest, we . . . _ o
need the following theorem, which generalizes the usual suihthe Fisher information matrix for estimating under the

formulas found in engineering probability texts. model (1), and
Theorem 1: (See [12] and [13] for proofs.) A e e o
Let ¢ IR® — IR"™ be one-to-one and assume that q(#;2) = A A2 — ) + V'R(2) (15)

g~ ! is continuous. Assume that, on an open set

h = . :
n . . . . whereV’R(z) is the column gradient aR(x).
C
Vv C ]RA, h is continuously differentiable with Jacobfan Proof: By A2 and A3, the MAP estimate (3) satisfies the
[Vh(x)| = |def{(9/0x;)hi(a)}-

transformation relationship given in (5). To apply (11) to (5) we
Suppose random vectaf has pdff(z) and must verify the conditions of Theorem 1.
Ignoring constants, we can write the objective function (3) in

P[Z € h(V°)] = f(z)dz=0 (10)  terms of the random vectdf defined in (6)
V(‘
— —1
whereV* denotes the set complementI®Y) of V, andh(A) = ®(z) = 5 o' AIl Ax — &' Z + R(w). (16)
{y € R": y = h(z),x € A}. Then, the pdf ofX = ¢(Z) is

By A2, for eachZ there is a singleX that minimizes®. Thus

given by there is an (implicit) functioy: R™ — IR™ for which

Vh@)|f(h(z)),  weV (11) % = g(2) = gAY, 17)

and is zero otherwise. We show thaty is one-to-one by contradiction. Suppose there

existsZ; # Z, such thaty(Z,) = g(Z;) = X. Then, by (5)

C. General Case for MAP pdf Zy = MX) = Zs, contradi(ctir?ng 7(é Zz. Furthermore, since
Now we apply Theorem 1 to findl(#|%). So that the problem ¢(h(X)) = X andh(g(Z)) = Z, h is one-to-one with inverse

is well defined and the analysis is tractable, we make the fgl= h~!. Although there is no explicit expression fgr= h—!

lowing assumptions. in general, we can nevertheless fififf;| Z) using Theorem 1.
A1) A has full column rank. By A3, h is continuous ovelR™. By A4, k is continuously
A2) The energy functior(«x) is chosen such that, for anydifferentiable over the open st Since the Lebesgue measure

y € IR™, the negative log posterick has a unique of (V) is zero by A5, and sincg has a Gaussian distribution,

stationary point that globally minimizek. P[Z € h(V°)]is zero. Thus, all the conditions of Theorem 1 are
A3) R(zx) is continuously differentiableon IR™. satisfied, and we can apply (11) to (5) to conclude
A4) R(z) is twice continuously differentiable on an open

setV C R™. f@]z) = |Vh@)| flzlz) (18)
A5) The Lebesgue measure bfV°) is zero, wheréh is F=hE)

defined in (7). for z € V and is zero elsewhere. Everything on the right hand

Assumptions A2)-A5) are trivially satisfied by all globallyside of (18) has an explicit expression, i.e., the dependence of
twice continuously differentiable convex energy function§l7) ong = h~! has disappeared in (18). In particular, since
R(z), such as the large family described in [14]. The addition&iom (7)

3We use| F| to denote the absolute value of the determinant of a métrix Vh(z) = AT AL VQR(‘I') = V2<I>(g:) (29)

4This condition precludes the absolute value potential function (Laplacian N
prior). V2 (a)]:; = (8%)0x,0a;)®@(x) forx € V.
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for z € V, we arrive at the pdf expression > |B(zi,m)| < e/Mg. Thus by (22) and by the subad-
ditivity of Lebesgue measure

2|3 = |V2e( 2|7
e =@l 19 _ ., If(A)IIIf(AﬂC)ISZIf(B(afi,n)ﬂC)l

V2P (i —q(&;3' I} q(3;%)
_ v2) exp< | ) (20) <3 1B/, Mer))

T Vg 2

for & € V, wherell ,; is defined in (9) [cf. (14))]V3®(%) is =M Z |B(f(x:), )| < e
defined in (13), and

A Sincee was arbitrary, this shows thaf(.4)| = 0.
q(#;2) = M@) — poa- The Lipschitz condition (21) applies to many energy func-
tions of interest, i.e.V’R(z) is often uniform Lipschitz over
Thus, (12) is the conditional pdf of the MAP estimator. T R™. The following Corollary, proven in Appendix A, special-
As a sanity check, one can consider the case ofjfs Theorem 2 to a fairly general form for the energy function
Gaussmn prior, for which the energy function is quadratighat covers many cases of interest.
R(z) = 1 2’Rz. In this case,X is linear inY, so ithas a  Corollary 1: Suppose A1) holds and that the energy function
Gaussian distribution with easily computed moments. Subsfias the following form:
tuting into (12) yields the expected Gaussian distribution for

X. K
z) =Y u([Cxly) (23)
D. Practical Special Cases k=1
In principle, we could leave it to the reader to verify conwhere
ditions A2)-Ab) for his or her own favorite energy functions.
However, establishing condition A5 is nontrivial in general for [Czx]i 2 Z ChjTj
energy functions of interest such as those based on the Huber j=1

prior or Generalized Gaussian prior. In this section, we pro-
vide corollaries that show that the conditions of Theorem 2 hoftf'd Where the potential functioris), } satisfy the following
under most cases of interest. conditions.

We first lay some groundwork that helps cover the case of in- * Each;. is convex and differentiable ol (and hence
fluence functions such as that of the Huber potential function ~ continuously differentiable).

shown in Fig. 1. The Huber influence function is continuous, * Eachiy is twice continuously differentiable everywhere

but not differentiable. Howevetupe: does satisfy &ipschitz on R exceptpossibly for a finite number;. of points,

condition a property that is stronger than continuity, but weaker ~ SaYtx,1, ", tx,n, , Where the second derivative ¢f.(t)

than differentiability. Fortunately, this weaker condition is ade- IS undefined. ,

quate to establish conditions A4)—A5). » Each influence functior);, satisfies a uniform Lipschitz
Definition 1: A function f: IR® — IR" is said to satisfy condition on any bounded intervigtc, ¢| for anyc > 0.

a uniform Lipschitz condition (of order one) on a compact sdthen all the conditions of Theorem 2 hold, and (12) is the con-

C C IR" if there exists a real numbéd: < oo such that ditional distribution of the MAP estimator.

The preceding Corollary covers cases such as the Huber po-
lf(w) — f(0)|| < Me ||u—v|, Yu,veC. (21) tential function, since the Huber influence function is differen-
tiable everywhere except at= +6§, and satisfies a uniform
Define B(z, ) to be the open ball ilR" of radiusr centered Lipschitz condition oveiR.

atz € IR™. It follows from the Lipschitz condition (21) oif ~ However, the proof of Corollary 1 is inapplicable to the Gen-
that eralized Gaussian prior. As illustrated in Fig. 1, the Generalized

Gaussian influence function is not uniform Lipshitz over any in-
f(B(z,7)NC) C B(f(z),Mcr), VzeC. (22) terval of the form[—c¢, ¢ since its derivative is unbounded near
t =0forp < 2.However, the Generalized Gaussian influence
The following Lemma will help establish A4. (See [15, Propfunctionis uniform Lipshitz over intervals of the forfa-c, —]
2.2] for a closely related argument for Hausdorff measures.) andfe, ¢] forc > e > 0. This turns out to be adequate regu-

Lemma 1:Let A C C C R" satisfy|A| = 0, where| - | larity to establish the conditions of Theorem 2, as shown by the
denotes Lebesgue measure, érisla compact set. If: R™ —  following Corollary, proven in Appendix B.
IR™ satisfies a uniform Lipschitz condition @¢h then|f(A)| =  Corollary 2: Suppose Al holds and that the energy function
0. Thus, functions satisfying uniform Lipschitz conditions mapas the form (23), where the potential functidrs, } satisfy the
zero measure sets into zero measure sets. following conditions.

Proof: Since.A has measure zero by assumption, for any < Eachzy is convex and continuously differentiable B
e > 0 there exists a countable covering of open balls with « Each(¢) is twice continuously differentiable every-
centers{z;} and radii{r;} such thatd C U,;B(z;,r;) and where onlR exceptpossibly att = 0.
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* Each influence functior‘d}k satisfies a uniform Lipschitz
condition on any bounded interval of the follm <] and
[—c,—¢] foranyc > e > 0.foranye > 0.

Then all the conditions of Theorem 2 hold, and (12) is the cor sl
ditional distribution of the MAP estimator.

We note without proof that one can combine the general a|
proach to the Proofs of Corollary 1 and 2 to formulate sufficien
conditions for they;’s that encompass an even wider class o
priors. For an energy function that has the form (23), it is suffi
cient that the potential functions, be convex and continuously o
differentiable ovetR, twice continuously differentiable every-
where except at a finite number of “problem” points, and that th
influence functiona/}k be Lipschitz on closed intervals that do
not contain those points. We are unaware of any differentiab
convex potential functions that fail to satisfy these conditions.

The Proofs of Corollary 1 and 2 do not use the fact that
is one-to-one, and only weakly use the fact théatis a collec-
tion of hyperplanes. We conjecture that if these properties we
used fully, then one could eliminate the Lipschitz conditions o 5
thei,’s and simply assume that eagh is convex and continu- -1.5
ously differentiable and twice differentiable almost everywhere.

Fig. 2. Contours of conditional pdf (12) of MAP estimator with generalized
IV. NON-GAUSSIAN MEASUREMENTS Gaussian prior. There is one mode near the true parameter[0 1]’, and a
second mode near the average parameter[0.5 0.5]’.
The above development relies fairly heavily on the assump-

tion that)” has a Gaussian distribution, since in the GaussianTg compute the pdf of the MAP estimator, note that
case we can easily find the pdf f= A’II 'Y for use in (18).

WhenY is non-Gaussian, (3) defines a penalized weighted V'R(z) =8 [ 1} Py — x2)
least-squares (PWLS) estimator, rather than a MAP estimator. -1
We can determine the pgfi(z|z) of this PWLS estimator even 2 . 1 -1+
for non-Gaussian meas%f(re!”nsant noisedifis invertible (and ViR(w) =5 [—1 1} s =),
hence square). Whed is invertible, we can rewrite (4) as Thus, from (13), the Hessian df is

Contours of pdf of MAP estimator, u=1 6=0.6 «=0.1 3=1.5

2.5

0.5+

Y = ho(X 17 -
2( ) VQ(I)(.’L') 20'72124-[3 |:_1 1:| ”(/)(.’L’l —.’L'Q)
where
/ L, 1 —1] -
ho(x) éAx—i—IIA_TV’R(x) =0 <12+CY {_1 1} P(xy —a?2)>
so similar arguments as above lead to wherea 2 802, and the determinant of that Hessian is

SGI) = V@) Sld)

Again all terms on the right hand side have explicit expressior¥s0, gz = [0 y1/0”] andIl .z = o~*I. Substituting into
(12) and simplifying
2)

V. SIMPLE 2-D EXAMPLE . 1+ 20”‘/}‘(@1 — &)
The simplest nontrivial example of (12) is wheh = I, f@lz) = 2702
IT = 5°I, wherel; is the2 x 2 identity matrix,& = p,; = 1 17+ 0
[0 ', and where 'eXP<—F $+@[_1}¢($1—$2)— LJ

B(z) = o — 22) As a numerical example, we computgdi|#) for the case
for some symmetric, convex potential functipnOne can con- ¢ = 0.6, 4 = 1, « = 0.1. We used a generalized Gaussian
sider this case as representing an image consisting of two neighergy function [1]%(¢) = %|t|1~5, so the above pdf is zero
boring pixels. If3 = 0, then the pixels are estimated indeperen V¢ = {z: &, = Z}. Fig. 2 shows contours of the pdf
dently byz; = y;, 7 = 1, 2. Including a prior with energy func- f(&|z). There is one mode of the pdf near the true vatue
tion R(x) yields MAP estimates for the two pixel values that arfd 1]’, indicated by the asterisk. Estimates that lie near this mode
encouraged to be similar. By choosingZ 0 we can study the correspond to “preserved edges,” since the pixel estimates are
case where the two pixels straddle an “edge,” since their megaoser to the truth than to each other. However, there is another
values differ, thereby investigating the edge-preserving propenede neaf = [0.5 0.5]’, because for measurement realizations
ties of the prior. for whichy; = y-, the energy function of the prior encourages

(24) V20 (2)| = o *[1 + 200p (a1 — ).
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Exact (-) and Gaussian fit (--}
T

The sefV¢ is a finite union of hyperplanes and thus is a closed

08 T T T T
set. Therefor@’ is an open set on whicR(z) is twice continu-
oer 1 ously differentiable, so A4) holds.
[ To complete the proof, we must establish A5) by showing
& that |o(V°)| = 0, whereh was defined in (7). Becausg®
U= 02r 1 is a finite union of hyperplaneg)©| = 0, so we can apply
o . . ‘ . Lemma 1. Defined; = Ve n [, I]* for I € N. Sinceh(V°) =
- - B & 1 : * U, h(A), by subadditivity of Lebesgue measyfg V)| <
" Exact and Gaussian it ooy |R(Ay)], so it suffices to show thah(A,)| = 0.
oo ' ' ‘ ' | For the energy functio®(x) given in (23) above, the func-
osh ] tion A has the form
o 04 E K .
& o . h(z) = Fr+V'R(x) =Fz+ Y a{(Calx)
:: 02 g =1
a1 4
o — - : : L . Wherec;, denotes the transpose of thita row of C, i.e.[Cz]i, =
Z2 ¢,x. Since eachyy, is uniform Lipschitz over bounded intervals,

' cond | ods of th o the function/ is uniform Lipschitz ovef—I, ], since forz €
Fig. 3. Marginal conditional pdfs of the components of the MAP estimatoy, A
computed numerically from the joint pdf shown in Fig. 2. These marginal pdg_lv 1", |[Cx]x| < ¢ = maxy Zj |exj|l. Thus by Lemma 1,

are surprisingly Gaussian, despite the highly non-Gaussian joint pdf. [h(A)] = 0. O
%3 andz, to be approximately equal. In fact, there is a ridge of APPENDIX B
higher relative probability near the liie = %, indicated by the PROOF OFCOROLLARY 2

dotted line in Fig. 2. This ridge is induced by the non-Gaussian cgnditions A2)-A4) hold as shown in the Proof of Corollary
prior; for a Gaussian prior the contours would be elliptical anfl\yith the sefv in this case defined by
centered at the conditional mean.

From the contours of the exact pdf shown in Fig. 2, it would
appear that simple characterizations (i.e., Gaussian approxima-
tions) of the joint pdf are nontrivial. Whether the covariance

matrix of X can be approximated analytically via extension% show A5, again defingl; 2 ven [—1,1]", so that again it

of [5] remains an open question. Fig. 3 shows the marginal dﬁ]ﬁices to show thah(A;)| = 0, noting that|.4;| = 0.
tributions of (2, |z) computed by numerical integration of the - | anyl C {1,---, K} denoteZ® — {1,-.-,K} —Tand
joint pdf. Despite the complicated structure of the joint pdf, thg. -y B
marginal pdfs are remarkably similar to Gaussian pdfs. Thus it

may be possible to find simple approximations for the marginal G (x) 2 Fx+ Z an([Cxlr) + Z cxtr (0)

K
Ve 2 U Hy, whereH, = {z € R™":[Cz]; = 0}.
k=1

means and variances. keTe keT
and
VI. CONCLUSION
Our main result is (12), an explicit exact expression for the Zr = ﬂ Hi
conditional pdf of MAP estimators for edge-preserving priors. kel

The expression is surprisingly simple given that edge-prenan oy 2;, clearlyh(z) = Gz(x).

serving MAP estimators are defined implicity and can be The functionG is uniform Lipschitz on the compact set
highly nonlinear. Limitations of the result include the restric-

tion to Gaussian measurements, and the regularity assumptions  ¢;(7, ¢) 2 ﬂ {z € R: |[Cx]s| = e} N [=1,1]"™

for the energy function. Nevertheless, the explicit expression keTe

may prove useful in better understanding the properties otf] b — oforall
edge-preserving image recovery methods. Thus, y Lemma 1z (AiN2zNG(Z,¢€))| = Oforalle > 0,
since|4;| = 0. But A4, N 2 NC(Z,e) C Z7,andh = Gz on

APPENDIX A 21,80 |h(A; N Zr NCy(Z,¢))| = 0. Defining

PrROOF OFCOROLLARY 1 A T
a@= | axi/m)

m=1

A2) holds by the assumption that the potential functions are
convex, sop is strictly convex. A3 holds by the assumption that o
the potential functions are continuously differentiable. For A4§hen by subadditivity of Lebesgue measure
considery C IR™ defined by oo
. [R(A N Z2 N (D) < Y (AN 22N C(T, 1/m))|
vee |

k=1

m=1

(G

6By convention, ifZ = ¢, then(, ., Hx = R™.

{z € R": [Cxlp = tr,i}
1

%
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which is zero. Finally, since [11] V.E.Johnson, “A model for segmentation and analysis of noisy images,”
J. Amer. Statist. Assqarol. 89, pp. 230-241, Mar. 1994.
C(T) = r e R™ |[[Cxl. olnIl—=1. 1™ [12] P.J.Bickel and K. A. DoksunMathematical Statistics Oakland, CA:
(D= () {we [Cale] > 0} N[=4]] Holden-Day, 1977.
keTe [13] J. A. Fessler, “On transformations of random vectors,” Commun. Signal
— ﬂ HE N [—l l]" Process. Lab., Dept. Elect. Eng. Comput. Sci., Univ. Michigan, Ann
k ’ Arbor, M, http://www.eecs.umich.edu/~fessler, Aug., 1998.

keTe [14] K. Lange, “Convergence of EM image reconstruction algorithms with

one can easily show that %t;t())s smoothing,1EEE Trans. Med. Imagvol. 9, pp. 439-446, Dec.

[15] K. J. FalconerfFractal Geometry: Mathematical Foundations and Ap-
U ZrnC(ZT)=[-LI". plications New York: Wiley, 1990.
IC(L,2,,K]} [16] K.Lange, “Corrections,lEEE Trans. Med. Imagvol. 10, p. 288, June
- 1991.

Thus, again by subadditivity,
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