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Exercise 7.4 [16 points]

a. [3 points]

(A: Age, G: Gestation, I: Infant Survival, S: Smoking.)

According to G? and degrees of freedom, the no-

Model G2 d.f 4-way-interaction model and the no-3-way-interaction
model are not significantly different from the saturated
(AGIS) 008~ 0 | 0 model. The subset of models that should be further
(AGI, AIS, AGS, GIS) 367 1 studied lies in between the independence model and the
(AG, AL, AS, GI, GS, IS) | 1.727 5 no-3-way-interaction model, such as (AG, S, I), (AS, G,
(A, G, S, 1) 377789 | 11 I)...(AG, AI, AS, GI, GS).
b. [7 points]
Model | G? p-value
(A,S) | 17.609 | .000
(A, G) | 7.023 .008
(Brown’s test for marginal association) | (A, ) | 10.125 | .002
(S, G) | .516 473
(S, 1) 2.391 122
(G, T) | 342.328 | .000

The goal of Brown’s test in marginal association is to test the 2-way associations that is as “the most complex
parameter in a simple model”. For instance, if collapsing over G&I. i.e. the model (A, S) is significantly unfit and
should be rejected, then we know the term (AS) has to be included in the eventual model (Age and Smoking show
a marginal association). Similarly, we find AG, AI, & GI as significant 2-way marginal associations. Data do not
provide evidence of marginal associations between Smoking and Gestation (SG) and Smoking and Infant Survival

(SI).

Therefore, the marginal association test suggest that the 2-way-associations involving Age, and the associations
between Gestation and Infant survival should be retained in the model (i.e. AG, AI, AS, GI)

(Brown’s test for partial association)

Model Term dropped | G2 significance?
(AG, Al AS, GI, GS, IS) 1.727

(AL, AS, GI, GS, IS) AG 4.703 n

(AG, AS, GI, GS, IS) Al 8.180 *

(AG, AT GI, GS, IS) AS 19.969 | *

(AG, AT AS, GS, IS) GI 339.336 | *

(AG, AL AS, GI, IS) GS 1.828 n

(AG, AI AS, GI, GS) IS 4.055 n

The goal of Brown’s test in partial association is to find the associations that can be dropped from the more
specified model in order to achieve parsimony. One can do so by detecting the G? difference to see if dropping a
certain terms results in significant unfit compared with the saturated model. For two nested models, we can use the
relative G2 to detect such a difference as well, e.g. dropping AG (Age and Gestation)

G2[(AI,AS,GI,GS,1S)|(AG, AI, AS,GI,GS, 18)] = 4.703 — 1.727 = 2.976 < G2_ 5 4—1 = 3.84

is not significant. Similarly, GS and IS were also found as terms that may be dropped from the model.
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Therefore, the partial association test suggest that within the no-3-way-interaction model, AI, AS, and GI should
be retained in the model, and AG, GS, and IS may be considered dropped. That is, the model to consider is (Al
AS, GI). However, According to Brown (1976), the term of either test in marginal or partial association is significant
should be included (more conservative). Hence, the model to consider according to Brown’s method is (AG, AI, AS,

GI).

c. [3 points]

count | Coef. Std. Err. z P>|z| [95% Conf. Intervall

. loglin count age smoke infant gesta, fit (age smoke infant gesta)
Variable age = A A2 | -.198451 .2106899 -0.942 0.346 -.6113957 .2144936
Variable smoke = B AB22 | -.6124792 .6367854 -0.962 0.336 -1.860556 .6355973
Variable infant = C AC22 | -.5636888 .2331685 -2.418 0.016 -1.020691 -.1066868
Variable gesta = D AD22 | -.3405454 .3968444 -0.858 0.391 -1.118346 .4372553
Margins fit: age smoke infant gesta ABC222 | .0836349 . 7289596 0.115 0.909 -1.3451 1.512369
Note: Regression-like constraints are assumed. The first level of each ABD222 | -.6402806 1.297197 -0.494 0.622 -3.18274 1.902179
variable (and all interactions with it) will be dropped from estimation. ACD222 | .1796424 .4102919 0.438 0.662 -.6245148 .9837997
ABCD2222 | .783399  1.348972 0.581  0.561 -1.860538 3.427336
Iteration 0: Log Likelihood = -46.179688 B2 | -1.714798 3620925 -4.736 0.000 -2.424487 -1.00511
Iteration 1: Log Likelihood = -45.988281 BC22 | -.3488946 .399106 -0.874 0.382 -1.131128 .4333388
BD22 | 3285041 .5826178 0.564 0.573 -.8134058 1.470414
Poisson regression Number of obs = 16 BCD222 | -.4328055 .6083141 -0.711 0.477 -1.625079 . 7594682
Goodness-of-fit chi2(0) = 0.008 Model chi2(15) =20311.062 c2 | 1.840549 .1622321 12.090 0.000 1.54218 2.138919
Prob > chi2 = . Prob > chi2 = 0.0000 cp22 | 3.278441 .2651284 12.850 0.000 2.778399 3.778484
Log Likelihood = -45.988 Pseudo R2 = 0.9955 D2 | -.7339692 2483277 -2.956 0.003 -1.220683 -.2472558
cons | 3.912023 .1414214 27.662 0.000 3.634842 4.189204

Goodman’s strategy for model building uses significantly non-zero standardized parameter estimates from the
saturated model. Give estimates from the saturated model satisfies such conditions (]z| > 1.96): AC22, B2, C2,
CD22, & D2, i.e., AL, S, G, GI, & T which simplifies to the model (AI, GI, S) as the starting point and build forward.

d. [3 points]

From the above, we know these strategies are consistent regarding which particular two-way associations should
be retained in the model, i.e., GI & AL In (a), we know the upper and lower limits of model building (no-3-way-
interaction model and independence model, respectively). Yet there is still a large subset of models in between that
need to be explored. Goodman’s method gives a good starting point, though the significance of the standardized
estimates at times depend on the higher order interactions. It is more reliable to supplement with Brown’s method
to examine both marginal and partial associations between any two variables. If either the marginal or conditional
association is significant, then it should be considered in a preliminary model. We then will have ample information
regarding which terms should be retained /dropped toward building a best fitting model for the data.

Exercise 7.12 [5 points]

Model G? d.f.
(ABCD) 0

(A: SexIQ, B: Residence, C: SES, D: Occ. Aspiration.) | (ABC, ABD, ACD, BCD) 3.730
(AB, AC, AD, BC, BD, CD) | 59.250 29
(A, B, C, D) 2626.371 | 40

Due to the limits of STATA, we recode the sex and IQ into one variable: SexIQ, where 1 and 2 stands more
male high and male low, and 3 and 4 stands for female high and female low, correspondingly. From the above, we
know the best fitting model will fall between the no-4-way-interaction model and the no-3-way-interaction model.
Therefore, we use the stepwise procedure to look for the best fitting model.

Using the backward-stepwise selection, we can first break down the no-4-way-interaction into a set of 3-way-
interaction models. At this stage, we find the model without the association between SexIQ, Residence, and SES
is the fitting model. It tells us that the association between those three variables is not important. We then break
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further into subsets of models, we find that the association between SexIQ, Residence, and Occupational Aspirations
is neither important. The model (AC, AB, AD, BCD) has a QTGT; ~ 1, so we should pay attention if there is any
better fitting model (otherwise we may stop here).

Although (AC, AB, AD, BCD) seems to be the best fitting model, (AC, AD, BCD) actually fit adequately
with a difference of 6 degrees of freedom. In order to answer the “best” model, these two models should both
be considered. Yet by examining the standardized parameter estimates for these two models, we find most of the
3-way-interaction terms are not significantly different from zero but one of the SexIQ, Residence, and Occupational
Aspiration interaction. We know there is evidence for BCD interaction, and (AC, AB, AD, BCD) is actually an
adequate model that is easier to interpret.

(A: SexIQ, B: Residence, C: SES, D: Occ. Aspiration.)

Model G? d.f. Best model
ABC, ABD, ACD, BCD) 3.730 6
ABC, ABD, ACD) 15.422 8
ABC, ABD, BCD) 13.977 9
ABC, ACD, BCD) 16.590 12
ABD, ACD, BCD) 5.715 12 *
AB, ACD, BCD) 20.602 18
AC, ACD, BCD) 16.059 15 *
19.691 14
AC, BC, CD, ABD) 29.662 17

AC, AB, AD, BCD)
ABD, BCD)

AB, AD, BCD)
AC, AD, BCD)

AB, AC, BCD)

AB, AC, AD, BC, BD)

29.324
153.762
169.816
42.617
635.484
59.250

18
24

24
29
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(
(
(
(
(
(
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Exercise 7.13 [3 points]

. gen sexig=2*sextiq Variable reside = B

Variable ses = C
Variable aspire = D

. xi: logit i.aspire i.sexiq i.reside i.ses [freg=count]

i.aspire Taspir_1-2  (naturally coded; Iaspir_1 omitted) Margins fit: sexiq reside ses, sexiq aspire, reside aspire, ses aspire
i.sexiq Isexiq_3-6 (naturally coded; Isexiq_3 omitted) Note: Regression-like constraints are assumed. The first level of each
i.reside Iresid_1-3  (naturally coded; Iresid_1 omitted) variable (and all interactions with it) will be dropped from estimation
i.ses Ises_1-2 (naturally coded; Ises_1 omitted)

Iteration 0:

Log Likelihood =-3057.4304

Iteration 0: Log Likelihood = -162.76953

Iteration 1: Log Likelihood

-162.13477

Iteration 1: Log Likelihood =-2238.8513 Tteration 2: Log Likelihood = -162.13281
Iteration 2: Log Likelihood =-2203.1737
Iteration 3: Log Likelihood =-2202.3948 Poisson regression Number of obs = 48
Iteration 4: Log Likelihood =-2202.3942 Goodness-of-fit chi2(17) = 37.266 Model chi2(30)  =3452.203
Prob > chi2 = 0.0031 Prob > chi2 = 0.0000
Logit Estimates Number of obs = 4511 Log Likelihood = -162.133 Pseudo R2 = 0.9141
chi2(6) =1710.07
Prob > chi2 = 0.0000

Log Likelihood = -2202.3942 Pseudo R2 = 0.2797 count | Coef. Std. Err. z P>zl [95% Conf. Intervall
A2 | -1.25947  .1404916 -8.965  0.000 -1.534829  -.9841116
Taspir_2 | Coef. Std. Err. z P>|z] [95% Conf. Intervall A3 | -.0691557  .1128544 -0.613  0.540 -.2903463 .1520349
A4 | -1.48299  .1447751  -10.243  0.000 -1.766744  -1.199236
Isexiq 4 |  1.828203 .109107 16.756  0.000 1.614357  2.042049 AB22 | -.2282514  .1560691 -1.463  0.144 -.5341412 .0776384
Isexiq 5 |  .3864962  .0962878 4.014  0.000 1977756 .5752168 AB23 | -.5201494  .2014464 -2.582  0.010 -.9149772  -.1253217
Isexiq 6 | 2.118888  .1097749 19.302  0.000 1.903734  2.334043 AB32 |  -.005287  .1290766 -0.041  0.967 -.2582726 2476985
Iresid_2 | ~-.3770257  .0857494 -4.397  0.000 -.5450913 -.20896 AB33 |  .0001114  .1518004 0.001  0.999 -.297412 2976348
Iresid 3 | -.52333  .1108982 -4.719  0.000 -.7406865  -.3059734 AB42 | -.2277835 .15866 -1.436  0.151 -.5387515 .0831844
Ises 2 | 1.701922 .0772408 22.034  0.000 1.550533 1.853311 AB43 | -.2902763 .1966152 -1.476  0.140 -.675635 0950824
_cons | -1.105538 .0977495 -11.310  0.000 -1.297123  -.9139526 AC22 | .5166361 .1671579 3.091 0.002 .1890127 . 8442596
AC32 | -.0035608  .1625337 -0.022  0.983 -.322121 .3149993
AC42 | .7222694  .1655914 4.362  0.000 3977163  1.046823
. loglin count sexiq reside ses aspire, fit(sexiq reside ses, sexiq aspire, reside aspire, ses aspiABF222 |  .2646456  .2084411 1.270  0.204 -.1438915 .6731826
Variable sexiq = A ABC232 | 1199704  .2911196 0.686  0.493 -.3708798 7702879
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ABC322 | -.2350197 .2072797 -1.134 0.257 -.6412804 .171241 BC22 | -.7242662 .1518347 -4.770 0.000 -1.021857 -.4266757
ABC332 | -.0328167 .2715123 -0.121 0.904 -.564971 .4993376 BC32 | -.9429092 .2009274 -4.693 0.000 -1.33672 -.5490987
ABC422 | .2261748 .20629 1.096 0.273 -.1781462 .6304958 BD22 | -.3770256 .0857494 -4.397 0.000 -.5450913 -.2089599
ABC432 | 3755039 2720379 1.380 0.167 -.1576807 .9086884 BD32 | -.5233299 .1108983 -4.719 0.000 -.7406865 -.3059732
AD22 | 1.828203 .109107 16.756 0.000 1.614358 2.042049 C2 | -.9003063 .1250007 -7.202 0.000 -1.145303 -.6553095
AD32 | 3864963 .0962878 4.014 0.000 .1977757 .575217 cD22 | 1.701922 .0772408 22.034 0.000 1.550533 1.853311
AD42 | 2.118889 .109775 19.302 0.000 1.903733 2.334044 D2 | -1.105538 .0977495 -11.310 0.000 -1.297124 -.9139527
B2 | 1.045257 0939646 11.124 0.000 .8610896 1.229424 _cons | 4.813911 .0817837 58.862 0.000 4.653618 4.974205

B3 | .2109859  .1101362 1.916 0.055 -.0048771 .4268488

We find the correspondence between the logit and loglinear models:

Logit model Loglinear Model  Coeflicient
Isexiql AD22 1.818
Isexiq2 AD32 .386
Isexiq3 AD42 2.119
Iresid2 BD22 -.377
Iresid3 BD32 -.523

Ises2 CD22 1.702
One can derive such a relationship from Agresti’s or the lecture notes. To interpret the coefficient, e.g. holding
other variables constant, people of lower SES are e!.702 = 5.48 times as likely to have lower occupational aspirations
(compared with those of high SES).

Exercise 8.1 [6 points]

. loglin count ses mental, fit(ses, mental) keep resid . gen v=mental-2.5
Variable ses = A . gen uv=ukv
Variable mental = B
Margins fit: ses, mental . poisson count A2-A6 B2-B4 uv
Note: Regression-like constraints are assumed. The first level of each
variable (and all interactions with it) will be dropped from estimation. Iteration 0: Log Likelihood = -77.143066
Iteration 1: Log Likelihood -77.03418
Iteration 0: Log Likelihood = -96.600586
Iteration Log Likelihood = -95.795898 Poisson regression Number of obs = 24
Iteration 2: Log Likelihood = -95.79541 Goodness-of-fit chi2(14) 9.896 Model chi2(9) = 207.505
Prob > chi2 0.7698 Prob > chi2 0.0000
Poisson regression Number of obs = 24 Log Likelihood = -77.034 Pseudo R2 = 0.5739
Goodness-of-fit chi2(15) = 47.418 Model chi2(8) = 169.982
Prob > chi2 = 0.0000 Prob > chi2 = 0.0000
Log Likelihood = -95.795 Pseudo R2 = 0.4701 count | Coef. Std. Err. z P>|z| [95% Conf. Intervall
A2 | -.0498916 .0890787 -0.560 0.575 -.2244827 .1246995
count | Coef. Std. Err. z P>z [95% Conf. Intervall A3 | .1169211 .085985 1.360 0.174 -.0516064 2854487
A4 | .4078719 .0808662 5.044 0.000 249377 .5663668
A2 | -.0670861 .0888731 -0.755 0.450 -.2412742 .1071019 A5 | 0278449 .0877785 0.317 0.751 -.1441978 .1998877
A3 | .0911379 0854466 1.067 0.286 -.0763343 2686101 A6 | -.1900174 .0925081 -2.054  0.040 -.37133  -.0087048
A4 | 3822983 .0801309 4.771  0.000 2252446 539352 B2 | .6963183 .0705891 9.864  0.000 .5579661 8346705
A5 | .0113854 .0871228 0.131 0.896 -.1693721 .1821429 B3 | .1895087 .0782725 2.421 0.015 .0360973 .3429201
A6 | -.188447 .0917883 -2.053 0.040 -.3683487 -.0085452 B4 | 2423034 .0770897 3.143 0.002 .0912104 .3933964
B2 | .6734098 .0701317 9.602 0.000 .5359541 .8108654 uv | .0906866 .0150061 6.043 0.000 .0612751 .1200981
B3 | .1647965 .0775871 2.124 0.034 .0127286 .3168645 _cons | 3.838777 .0792552 48.436 0.000 3.68344 3.994114
B4 | .2367316 .0763415 3.101 0.002 .087105 3863581
_cons | 3.880619 .080447 48.238 0.000 3.722946 4.038292 . predict linpred

. gen mhat=exp(linpred)

. gen ures=count-mhat

. tabdisp ses mental, c(stdres) £(%5.2f) - gen pres=ures/sqrt (mhat)

. tabdisp ses mental, c(pres) f(%5.2f)

| mental
ses | 1 2 3 4 | mental

ses | 1 2 3 4

1] 2.23 -0.10 0.11 -1.96
21 1.74 0.55 0.08 -2.30 11 -0.16 -1.02 1.11 0.59
3] 0.54 0.09 0.31 -0.88 2| 0.38 -0.10 0.58 -0.88
41 0.12 0.15 -0.74 0.42 3| 0.15 -0.21 0.42 -0.28
51 -1.86 0.09 -0.50 2.02 41 0.83 0.3¢ -1.01 -0.13
6 | -3.02 -0.87 0.97 2.83 51 -0.47 0.79 -0.99 0.39
61 -1.21 0.26 0.27 0.27

. gen u=ses-3.5

a. [2 points]

From the G? and residuals comparisons, we know that the uniform association model fits better than the independence
model. This tells us that nominal tests for independence are usually more conservative, and not well suited to
situations when ordinal variables are involved.
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a. [2 points]

The estimate the (3 is .091 with ASE=.015. The positive value indicates that mental healthy status tend to go
down as the level of parents’ SES goes down. The estimated uniform local odds ratio 6 = 091 = 1.01 That is, the
estimated odds ratio that mental health status is in category j+1 instead of j increases by a factor of 1.01 for each
category change in parents’ SES.

a. [2 points]

The difference in G? between the uniform association and the independence model is 47.418-9.896 ~ 37.52 based
on d.f.=1. Therefore, we can reject the hypothesis that the independence model is a better one. The z score on
[ = 6.043 is also highly significant, and thus we can reject the hypothesis that g = 0.

Exercise 8.10 [10 points]

a. [7 points]

. loglin count race edu job, fit(race, edu, job) 112 1 2 1 110.435 1.565 0.149
Variable race = A 81 1 2 2 84.922 -3.922 -0.426
Variable edu = B 16 1 2 3 14.450 1.550 0.408
Variable job = C 10 1 2 4 9.193 0.807 0.266
Margins fit: race, edu, job 48 2 1 1 46.435 1.565 0.230
Note: Regression-like constraints are assumed. The first level of each 46 2 1 2 49.922 -3.922 -0.555
variable (and all interactions with it) will be dropped from estimation. 21 2 1 3 19.450 1.550 0.351
7 2 1 4 6.193 0.807 0.324
Iteration 0: Log Likelihood = -49.94043 8 2 2 1 9.565 -1.565 -0.506
Iteration Log Likelihood -49.35791 14 2 2 2 10.078 3.922 1.235
Iteration 2: Log Likelihood -49.357422 1 2 2 3 2.550 -1.550 -0.971
[ 2 2 4 0.807 -0.807 -0.899
Poisson regression Number of obs 16
Goodness-of-fit chi2(10) 19.177 Model chi2(5) =1932.440 . gen rj=race*job
Prob > chi2 0.0381 Prob > chi2 = 0.0000 . gen ej=edu*job
Log Likelihood = -49.357 Pseudo R2 = 0.9514 . gen rjXej=race*edu*job

. poisson count A2 B2 C2-C4 AB22 rj ej rjXej

count | Coef. Std. Err. z P>|z]| [95% Conf. Intervall Iteration 0: Log Likelihood -46.285645
Iteration 1: Log Likelihood = -45.378418
A2 | -1.999614 .0884887 -22.597 0.000 -2.173049 -1.82618 Iteration 2: Log Likelihood = -45.350098
B2 | -1.392474 .0718257 -19.387 0.000 -1.533249 -1.251698
C2 | -.2108948 0627254 -3.362  0.001 -.3338343  -.0879552 Poisson regression Number of obs = 16
C3 | -1.562998 .1008163 -15.503 0.000 -1.760594 -1.365402 Goodness-of-fit chi2(6) = 11.162 Model chi2(9) =1940.455
C4 | -2.108015 1274885 -16.535 0.000 -2.357888 -1.858142 Prob > chi2 = 0.0835 Prob > chi2 = 0.0000
_cons | 5.993237 .0455656 131.530 0.000 5.90393 6.082544 Log Likelihood = -45.350 Pseudo R2 = 0.9553
. loglin count race edu job, fit(race edu, race job, edu job) keep resid count | Coef. Std. Err. z P>|z| [95% Conf. Intervall
Variable race = A
Variable edu = B A2 | -2.279729 .2212641 -10.303 0.000 -2.713398 -1.846059
Variable job = C B2 | -1.122783 .1739367 -6.455 0.000 -1.463692 -.7818728
Margins fit: race edu, race job, edu job C2 | -.3674873 .3991333 -0.921  0.357 -1.149774 .4147996
Note: Regression-like constraints are assumed. The first level of each C3 | -1.883148 7953456 -2.368 0.018 -3.441997  -.3242997
variable (and all interactions with it) will be dropped from estimation. ca | -2.59903 1.192107 -2.180 0.029 -4.935517 -.2625427
AB22 | -.0822611 5481477 -0.150 0.881 -1.156611 .9920886
Iteration 0: Log Likelihood = -42.991211 rj | .304929 3409258 0.894 0.371 -.3632733 .9731314
Iteration Log Likelihood -42.569336 ej | -.0186385 3296427 -0.057 0.955 -.6647263 .6274493
Iteration 2: Log Likelihood -42.566895 rjXej | -.1200851 2870627 -0.418 0.676 -.6827176 4425474
cons | 5.8149 .375491 15.486 0.000 5.078951 6.550849
Poisson regression Number of obs = 16
Goodness-of-fit chi2(3) 5.596 Model chi2(12) =1946.021
Prob > chi2 0.1330 Prob > chi2 = 0.0000 . display chiprob(6-3, 11.162-5.596)
Log Likelihood = -42.567 Pseudo R2 0.9581 13474394
. poisson count A2-BC24 rjXej
count | Coef. Std. Err. z P>|z]| [95% Conf. Interval.
Iteration 0: Log Likelihood = -42.999512
A2 | -2.157309 1469537 -14.680 0.000 -2.445333 -1.869285 Iteration 1: Log Likelihood -42.459473
AB22 | -.2890383 240586 -1.201 0.230 -.7605782 1825017 Iteration 2: Log Likelihood -42.445801
Ac22 | .3149542 .1975463 1.594 0.111 -.0722294 .7021378
Ac23 | .7117516 2753841 2.585 0.010 .1720087 1.251494 Poisson regression Number of obs = 16
Ac24 | .014013 4232366 0.033 0.974 -.8155155 .8435414 Goodness-of-fit chi2(2) = 5.354 Model chi2(13) =1946.263
B2 | -1.290939 1048053 -12.318 0.000 -1.496354 -1.085525 Prob > chi2 = 0.0688 Prob > chi2 = 0.0000
BC22 | -.0201457 .1546116 -0.130 0.896 -.3231789 .2828875 Log Likelihood = -42.446 Pseudo R2 = 0.9582
BC23 | -.4517713 .2821149 -1.601 0.109 -1.004706 .1011638
BC24 | -.4573135 3572385 -1.280 0.200 -1.157488 .2428611
C2 | -.2425491 .0744698 -3.257 0.001 -.3885072 -.096591 count | Coef. Std. Err. z P>zl [95% Conf. Interval]
C3 | -1.581965 .1195029 -13.238 0.000 -1.816186 -1.347743
C4 | -2.028717 1454273 -13.950 0.000 -2.31375 -1.743685 A2 | -2.024772 .3104868 -6.521 0.000 -2.633315 -1.416229
_cons | 5.995369 0496402 120.776 0.000 5.898076 6.092662 B2 | -1.147698 .3133037 -3.663 0.000 -1.761762 -.5336344
C2 | -.0925508 .3177012 -0.291 0.771 -.7152336 .5301321
C3 | -1.282224 6292847 -2.038 0.042 -2.5156 -.0488491
count race edu job cellhat resid  stdres C4 | -1.575537 .9457176 -1.666 0.096 -3.429109 .2780356
400 1 1 1 401.565 -1.565 -0.078 AB22 | -.0229927 .5909228 -0.039  0.969 -1.18118 1.135195
319 1 1 2 315.078 3.922 0.221 AC22 | 4953336 .4219786 1.174 0.240 -.3317293 1.322396
81 1 1 3 82.550 -1.550 -0.171 AC23 | 1.060361 .T676712 1.381 0.167 -.4442468 2.564969
52 1 1 4 52.807 -0.807 -0.111 AC24 | .5296205 1.135646 0.466 0.641 -1.696204 2.755445
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BC22 | .1471041 3782632 0.389 0.697 -.5942781 8884863

BC23 | -.1077845 .7602916 -0.142 0.887 -1.597929 1.38236

BC24 | .0372144 1.07399 0.035 0.972 -2.067767 2.142196 . display chiprob(6-2, 11.162-5.354)
rjXej | -.1530414 .3152663 -0.485 0.627 -.7709521 4648692 .21395314

_cons | 6.150516 3233923 19.019 0.000 5.516679 6.784354

By fitting the independence model and the partial association model, we know that the the independence model
doesn’t fit well (G? = 19.177,d.f. = 10), and the partial association model does (G? = 5.596,d.f. = 3). Thus, the
best fitting model must fall between these two models. Since we were asked to use the model discussed in Chapter
8 and the variables are ordered, we need to test the uniform association model and the uniform interaction model.
The uniform association model (G? = 10.604,d.f. = 5) and the uniform interaction model (G? = 11.162,d.f. = 6)
both fit adequately well, because their fits are not significantly from the saturated model. However, by comparing
with the partial association model, neither the uniform association model (G2 = 10.604 — 5.596,d.f. =5 — 3 = 2)
nor the uniform interaction model (G2 = 11.162 — 10.604, d.f. = 6 — 3) has a significant improvement in the model.
Therefore, we should conclude the data do not give evidence to models beyond the partial association model. By
examine the Pearson‘s residuals, there was no significantly large residuals in any cell. However, the coefficients on
high school degree and job satisfaction (BCs) are all non-significant. We should further explore if we had included
an irrelevant predictor in the study of question at hand.

b. [3 points]

. ologit job race edu [freg=count], table . ologit job race edu inter [freg=count], table
Iteration 0: Log Likelihood =-1354.0814 Iteration 0: Log Likelihood =-1354.0814
Iteration 1: Log Likelihood =-1350.7031 Iteration 1: Log Likelihood =-1350.7011
Iteration 2: Log Likelihood =-1350.7011 Iteration 2: Log Likelihood =-1350.6988
Iteration 3: Log Likelihood =-1350.7011 Iteration 3: Log Likelihood =-1350.6988
Ordered Logit Estimates Number of obs = 1216 Ordered Logit Estimates Number of obs = 1216
chi2(2) = 6.76 chi2(3) = 6.77
Prob > chi2 = 0.0340 Prob > chi2 = 0.0798
Log Likelihood = -1350.7011 Pseudo R2 = 0.0025 Log Likelihood = -1350.6988 Pseudo R2 = 0.0025
job | Coef. Std. Err. z P>zl [95% Conf. Intervall job | Coef. Std. Err. z P>zl [95% Conf. Intervall
race | 3448801 .1639127 2.104 0.035 .023617 .6661432 race | .3792014 .5285167 0.717 0.473 -.6566723 1.415075
edu | -.202547 1357431 -1.492 0.136 -.4685986 0635045 edu | -.1701436 .4934271 -0.345 0.730 -1.137243 . 7969557
inter | -.0290651 4255571 -0.068 0.946 -.8631417 .8050115
_cutl | .0098889 25643826 (Ancillary parameters)
_cut2 | 1.84938 .2617287 _cutl | .0482149 .6160232 (Ancillary parameters)
_cut3 | 2.96403 .2786193 _cut2 | 1.887733 .6194843
_cut3 | 3.002446 .6276322
job | Probability Observed
| job | Probability Observed
1 Pr( xb+u<_cut1) 0.4671 |
2| Pr(_cut1<xb+u<_cut?2) 0.3783 1 Pr( xb+u<_cutl) 0.4671
31 Pr(_cut2<xb+u<_cut3) 0.0979 21 Pr(_cuti<xb+u<_cut2) 0.3783
4 | Pr(_cut3<xb+u) 0.0567 3 | Pr(_cut2<xb+u<_cut3) 0.0979
4 | Pr(_cut3<xb+u) 0.0667

From the equation: Logit(m;) = aj+8;, we know that the output has presented cutl=ay, cut2=cay, cut3=c3 and
Brace&Bedn- One can derive log odds ratios, odds ratios, and estimated probability for each combination of categories,
and compare with 8.10. The insignificant coefficient of education (HS degree) corresponds to the 3 insignificant BC
coefficients in the no-3-way-interaction loglinear model. We also find the ologit model with race*edu interaction term
does not fit well, and it corresponds to the previous unfit uniform interaction loglinear model.



