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Problem 1 [12 points]

a. [3 points]

. tab years severity [freq=popl, all

pop | Coef. Std. Err. z P>zl [95% Conf. Intervall
| severity
years | 1 2 3 4 5 | Total Iyears_2 | 2.723486 .1884715 14.450 0.000 2.354089 3.092884
Iyears_3 | 3.436135 .1854893 18.525 0.000 3.072583 3.799688
11 0 1 6 11 12 | 30 Iyears_4 | 1.642228 .1994616 8.233 0.000 1.25129 2.033165
2 5 37 114 165 136 | 457 Iyears_5 | 1.343735 .2050097 6.554 0.000 .9419232 1.745546
3 29 155 299 268 181 | 932 Isever_2 | 1.774606 .1544939 11.487 0.000 1.471804 2.077409
4 | 11 35 48 33 28 | 155 Isever_3 | 2.338661 .1495883 15.634 0.000 2.045473 2.631849
5 4 61 41 7 21 115 Isever_4 | 2.290265 .1499142 15.277 0.000 1.996438 2.584091
Isever_5 | 1.991502 .15622947 13.077 0.000 1.69301 2.289994
Total | 49 289 508 484 359 | 1689 _cons | -.1388743 .2305416 -0.602  0.547 -.5907275 .312979
Pearson chi2(16) = 214.0613 Pr = 0.000
likelihood-ratio chi2(16) = .
Cramer’s V =  0.1780 : 2 Tats
om = -0.3702 ASE = 0.027 When the table is treated as a whole, a G* statistic of
fondall’s taub = -0.2832 ASE = 0.019 210.357 is obtained, along with a 2 statistic of 214.0613.

. Tename row years
. rename col severity

Both of these values, when compared to the Chi-square distri-
bution with 16 d.f., indicate we should reject the null hypoth-
esis of “no association” between attack severity and number

. xi: poisson pop i.years i.severity

i.years Iyears_1-5 (naturally coded; Iyears_i omitted)
1.severity Tsever_1-5  (naturally coded; Isever.i omitted) of years since vaccination (among those who have experienced
Poisson regression Number of obs = 25
Goodness-of-fit chi2(16) = 210.357 Model chi2(8) =2060.363 some form Of 8Jtta#c}{)‘ NOte’ hOWeVeI‘, that because the ages
Prob > chi2 = 0.0000 Prob > chi2 = 0.0000 3 3 :
T rkenino0d e e T e of the people are not given, there is confounding of age and
years-since-vaccination.
b. [3 points]
. tab years severity [freq=pop]
| severity . table years severity[iw=mhat],format(%6.2f
years | 1 2 3 4 5| Total
1] [ 1 6 11 12 | 30 | severity
2 5 37 114 165 136 | 457 years | 1 2 3 4 5
31 29 155 299 268 181 | 932
4 | 11 35 48 33 28 | 155 11 0.87 5.13 9.02 8.60 6.38
5 4 61 41 7 2| 115 2| 13.26 78.20 137.45 130.96 97.14
3 | 27.04 159.47 280.32 267.07 198.10
Total | 49 289 508 484 359 | 1689 4| 4.50 26.52 46.62 44 .42 32.95
5 | 3.34 19.68 34.59 32.95 24.44

. predict lmhat
. gen mhat=exp(lmhat)
. gen pres=(pop-mhat)/sqrt (mhat) . table years severity[iw=pres],format (%6.2f
. table years severity[iw=pop],format (%6.2f)

| severity
| severity years | 1 2 3 4 5
years | 1 2 3 4 5
1] -0.93 -1.82 -1.01 0.82 2.23
11 1.00  6.00 11.00 12.00 2 | -2.27 -4.66 -2.00 2.97 3.94
2| 5.00 37.00 114.00 165.00 136.00 3] 0.38 -0.35 1.12 0.06 -1.21
3] 29.00 155.00 299.00 268.00 181.00 4| 3.07 1.65 0.20 -1.71 -0.86
4] 11.00 35.00 48.00 33.00 28.00 51 0.36 9.32 1.09 -4.52 -4.54
51 4.00 61.00 41.00 7.00  2.00

Note that the residuals in the first 3 columns of rows 1 and 2 are negative (i.e. the actual values are lower than predicted
by the model of additive row and column effects), while the actual values are higher than predicted for the last 2 columns
in both of these rows. In rows 4 and 5 this pattern is reversed: the last 2 columns have negative residuals while the first 3
columns have positive residuals.

The pattern in the residuals indicates that, when compared to the values expected under a model of “no association”,
there are relatively few “non-severe” attacks (those categorized as “sparse” and “very sparse”) for those who were vaccinated
within the last 25 years. Also, it appears there are too many “severe” attacks (“Haemorrhagic”, “confluent” and “abundant”)
in the 0-10 and 10-25 “years-since-vaccination” groups when compared to the values predicted by the model of no association.
The deviation from the expected is more extreme for those in the 10-25 “years since vaccination group”. The deviation from
the expected number of attacks increases with time since vaccination for those within 25 years since vaccination and in general
underpredicts for those within 25 years with the 2 categories of least severity and overpredicts for those in the categories
of greatest severity. This pattern for those more than 25 years since vaccination is reversed: the “no association” model
underpredicts for those of greatest severity and overpredicts for those of least severity. If there really were no association
between years since vaccination and severity of attack, we would not expect to see a systematic pattern in the residuals from
fitting the model of “no association”.
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c. [3 points]

From the above table, the Stata’s predicted values of cell (2, 2) and cell (2, 4) are 78.20 and 130.96, correspondingly. If we
use the coefficients estimated from the Poisson regression, we get the mg o = p(—-1388743+2.723486+1.774606) — 78 19594, and
Mo4 = e(—-1388743+2.723486+2.290265) — 130 958. The difference only lies in the precision of rounding, since both procedures
follow the underlying equation of log(1;;) = p + a; + 5.

d. [3 points]

. tab year severe[freq=pop],all

| severe . predict lmhat
year | 1 2 3 4 5| Total . gen mhat=exp(lmhat)
. gen pres=(pop-mhat)/sqrt (mhat)
11 0 1 6 11 12 | 30 . table year severe [iw=pop], format(%6.2f)
21 5 37 114 165 136 | 457
Total | 5 38 120 176 148 | 487 | severe
year | 1 2 3 4 5

Pearson chi2(4) 2.4001 Pr = 0.663

likelihood-ratio chi2(4) = . 11 1.00 6.00 11.00 12.00
Cramer’s V = 0.0702 2| 5.00 37.00 114.00 165.00 136.00

gamma = -0.2209 ASE = 0.141

Kendall’s tau-b = -0.0620 ASE = 0.040

. table year severe [iw=mhat], format(%6.2f)
. xi:poisson pop i.year i.severe

i.year Iyear_1-2 (naturally coded; Iyear_1 omitted)
i.severe Isever_1-5 (naturally coded; Isever_1 omitted) | severe
year | 1 2 3 4 5
Poisson regression Number of obs = 10
Goodness-of-fit chi2(4) = 2.855 Model chi2(5) = 730.746 1 0.31 2.34 7.39 10.84 9.12
Prob > chi2 = 0.5824 Prob > chi2 = 0.0000 2| 4.69 35.66 112.61 165.16 138.88
Log Likelihood = -23.1563 Pseudo R2 = 0.9404
. table year severe [iw=pres], format(%6.2f)
pop | Coef. Std. Err. z P>zl [95% Conf. Intervall
Iyear_2 | 2.723486 .1884715 14.450 0.000 2.354089 3.092883 | severe

Isever_2 | 2.028148 4757266 4.263  0.000 1.095741 2.960555 year | 1 2 3 4 5
Isever_3 | 3.178054 4564355 6.963  0.000 2.283457 4.072651
Isever_4 | 3.561046 .4535216 7.852 0.000 2.67216 4.449932 11 -0.55 -0.88 -0.51 0.05 0.95
Isever_5 | 3.387774 .4547051 7.450 0.000 2.496569 4.27898 2| 0.14 0.22 0.13 -0.01 -0.24

cons | -1.177629 .4809157 -2.449 0.014 -2.120206 -.2350514

When only the first 2 rows are considered, a G? statistic of 2.855 and a 2 statistic of 2.4001 are obtained. Neither value
is significant when compared to a x? distribution with 4 d.f. Examination of residuals reveals no abnormality of deviance
from zero. This implies that we cannot reject the null hypothesis of “no association” between years since vaccination and
attack severity. This conclusion does differ from that of part (a). One possible reason for the difference is that the people
in these 2 rows are more homogeneous with respect to age. The confounding effect of age and years since vaccination is
minimized by excluding people of very different ages.

Exercise 4.2 [12 points]

a. [3 points]

. infile wais senility using wais.raw . logit senility wais
(54 observations read)
. tab wais senility Logit Estimates Number of obs = 54
chi2(1) = 10.79
| senility Prob > chi2 = 0.0010
wais | [ 11 Total Log Likelihood = -25.50869 Pseudo R2 = 0.1746
4| 1 1] 2
51 0 1] 1 senility | Coef. Std. Err. z P>|z| [95% Conf. Intervall
6 | 1 11 2
71 1 21 3 wais | -.3235304 .1139798 -2.838 0.005 -.5469266 -.1001342
8 | o 21 2 _cons | 2.404043 1.191835 2.017 0.044 .0680896 4.739997
9| 4 21 6
10 | 5 11 6
11 | 5 11 6 . logistic senility wais
12 | 2 01 2
13 | 5 1] 6 Logit Estimates Number of obs = 54
14 | 5 2| 7 chi2(1) = 10.79
15 | 3 (] 3 Prob > chi2 = 0.0010
16 | 4 ol 4 Log Likelihood = -25.50869 Pseudo R2 = 0.1746
17 | 1 01 1
18 | 1 01 1
19 | 1 01 1 senility | Odds Ratio Std. Err. z P>zl [95% Conf. Intervall
20 | 1 01 1
wais | . 72359 .0824746 -2.838 0.005 5787257 .904716

Total | 40 14 | 54
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. logit . predict pihat
. list wais pihat
Logit Estimates Number of obs = 54
chi2(1) = 10.79 wais pihat
Prob > chi2 = 0.0010 1 20 .0168475
Log Likelihood = -25.50869 Pseudo R2 = 0.1746 2 19 .0231343
3 18 .0316915
4. 17 .0432737
senility | Coef . Std. Err. z P>|z| [95% Conf. Intervall 5. 16 .0588316
6 15 .0795181
wais | -.3235304 .1139798 -2.838 0.005 -.5469266 -.1001342 7 14 .1066542
_cons | 2.404043 1.191835 2.017 0.044 .0680896 4.739997 8. 13 .1416258
9. 12 .1856811
10. 11 .2396151
. 1fit, group(lo) table 11. 10 .3033786
12. 9 .3757258
Logistic model for senility, goodness-of-fit test 13. 8 .4540798
(Table collapsed on quantiles of estimated probabilities) 14. 7 .5347764
15 6 .6136926
Note: Because of ties, there are only 9 distinct quantiles. 16. 5  .6870559
17. 4 .7521145
_Group _Prob _Obs_1 _Exp_1 _0bs_0 _Exp_0 _Total etc...
1 0.0588 0 0.4 8 7.6 8
2 0.0795 0 0.2 3 2.8 3 . plot pihat wais
3 0.1067 2 0.7 5 6.3 7
4 0.1416 1 0.8 5 5.2 6 .752115 +
5 0.2396 1 1.8 7 6.2 8 | *
7 0.3034 1 1.8 5 4.2 6
8 0.3757 2 2.3 4 3.7 6 | *
9 0.5348 4 2.5 1 2.5 5
10 0.7521 3 3.4 2 1.6 5 | *
|
number of observations = 54 | *
number of groups = 9 P
Hosmer-Lemeshow chi2(7) = 5.99 i | *
Prob > chi2 = 0.5411 h
a | *
. . t ‘
Using either logit or logistic command, you get the | *
same estimates for | *
| *
A .
logit(7t) = a + Bx | ..
016847 + X ok ox x
1.e. 4 wais 20
logit(7t) = 2.404 — .324z.
The command logistic gives the odds ratio as default. By From the estimated coefficients, we know logit(7) =

typing a following logit you could get the same result as if you 2.404 — .324z. When 7 = 0.5,log({%=) = log(+255) = 0.

had run the logit command.

1-0.5
Nevertheless, the command Solve 2.404 — .324x = 0,x = 7.420. That is, when the elderly

logistic gives the observed and fitted values for intervals of people scored less than 7.42 points in WAIS, their estimated
predictors (something we will need in part(c)), if you type a probability of senility would exceed 0.5. In this data set, it

following 1fit.

b. [3 points]

would be those who scored 4, 5, 6, and 7 in WAIS.

The odds ratio for 8 = —.3235304 is .72359 (from the command logistic output). It implies that for one unit change in
WALIS scores, there is a corresponding decrease in odds of senility. For testing =0, we can use the z-test as shown in the
output; or equivalently, use the Wald chi-squared test z? = 8.054 with df=1. Both tests reject the null hypothesis that 3 = 0.
That is, there is a statistically significant linear effect of the WAIS scores on the odds of senility, i.e. the higher they scored
on WAIS, the less likely they would be diagnosed of senility.

c. [3 points]

. input wais senility total

wais senility total wais total senility mhat diff res
1. 023 1. 0 3 2 2.226816 -.2258158 -.2979532
2.1819 2. 1 19 8 7.878181 .1218195 .0567274
3. 2424 3. 2 24 4 3.566191 .4338086 .2489584
4. 308 4. 3 8 0 .3298121 -.3298121 -.5865098
5. end
blogit senility total wais
Logit Estimates Number of obs = 54 Using the output shown in part (a), we can see for the ap-
) o o proximately equal size of intervals of WAIS, the observed val-
Log Likelihood = -26.065388 Pseudo B2 = 01565 ues and fitted values are very close to one another. Again, this
oueone ek S B 2 PP [95% Sont, Tnterval] is another indication of the model of logit(7) = 2.404 — .324x
i | -1.400881 .5161109 -2.714 0.007 -2.412439 -.3893219 : :
_::rlx: | 1.056069 .7820068 1.350 0.177 -.4766364 2.588774 ﬁts data adequately If you regroup da‘ta lnto Several lnterva']‘s

. predict lhat

. gen mhat=total*lhat

. gen diff=senility-mhat

. gen res=diff/sqrt(mhat*(i-mhat/total))
. list wais total senility mhat diff res

(e.g. 4 here), you can also examine the Pearson residuals. We
can see the four residuals center around zero and less than 2,
thus it indicates this model fits data well.
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d. [3 points]

. regress senility wais 11. 10 .3033786 3420726
12. 9 .3757258 .3928798
Source | Ss daf MS Number of obs = 54 13. 8 4540798 443687
F( 1, 52) = 11.52 14. 7 .5347764 .4944941
Model | 1.88115078 1 1.88115078 Prob > F = 0.0013 15. 6 .6136926 .5453013
Residual | 8.4892196 52 .163254223 R-squared = 0.1814 16. 5 6870559 .5961084
Adj R-squared = 0.1657 17. 4 .75621145 .6469156

Total | 10.3703704 53 .195667365 Root MSE = .40405 etc...

. plot ohat wais

senility | Coef. Std. Err. t P>It] [95% Conf. Interval]
.646916 +
wais | ~-.0507911 .0149626 -3.395 0.001 -.0808158 -.0207664 | *
_cons | .8471189 .1816976 4.662 0.000 .4825159 1.211722
| *
| *
. glm senility wais | *
| *
Residual df = 52 No. of obs = 54 | *
Pearson X2 = 8.48922 Deviance = 8.48922 o
Dispersion = .1632542 Dispersion = .1632542 h | *
a | *
Gaussian (normal) distribution, identity link t | *
| *
senility | Coef. Std. Err. t P>t [95% Conf. Intervall | *
|
wais | -.0507911 .0149626 -3.395  0.001 -.0808158  -.0207664 | *
_cons | .8471189 .1816976 4.662 0.000 4825159 1.211722 | *
| *
(Model is ordinary regression, use fit or regress instead) | *
| *
. glm senility wais, f(binomial) 1(identity) -.165999 + *
Residual df = 52 No. of obs = 54 4 wais 20
Pearson X2 = 43.77081 Deviance = 50.95689
Dispersion = .8417463 Dispersion = .9799402
. plot ohat pihat wais
Bernoulli distribution, identity link
.752115 +
senility | Coef. Std. Err. z P>z [95% Conf. Intervall | B
|
wais | -.0508072 .0115441 -4.401 0.000 -.0734332 -.0281811 | B
_cons | .8501443 .1788871 4.752 0.000 .499532 1.200757 | A B
| A
convergence not achieved. | A B
r(430); | A
| *
. predict ohat | *
. list wais pihat ohat | A
| B A
vais pihat ohat | B A
1. 20 .0168475 -.1659991 | B A
2. 19 .0231343 -.1151919 | B A
3. 18 .0316915 -.0643847 | B *
4. 17 .0432737 -.0135776 | * B B
5. 16 .0588316 .0372296 | A B B
6. 15 .0795181 .0880368 | A
7. 14 .1066542 1388439 | A
8. 13 .1416258 .1896511 -.165999 + A
9. 12 .1856811 2404583
10. 11 .2396151 .2912655 4 wais 20

I used three different ways to show you how to run a linear probability model. Although we get the same coefficient
estimates from these three approaches, you should notice by now that no. of observations is 54 instead of 17, which is the
correct one. The data were purposely entered using the raw data format, as shown in Agresti’s and usually how your data
assistant enters data for your research. By using the layout for weighted linear regression, or blogit and bprobit format,
you will obtain the correct d.f. = 15. It is essential to be aware of how and why the degrees of freedom “evolve” along the
course of your analysis.

Nevertheless, the estimated coefficients are unbiased in all cases, and can be used to obtain predicted probabilities. By
graph, you can see the linear probability model has poor predictions on the low and high ends of the WAIS scale — lower
predicted probabilities on the low end (toward score 4) and the high end (toward score 20), approaching the extreme values
(p=0 and p=1) too quickly.

Exercise 4.3 [6 points]

. tabi 1 11\13 53\16 42\15 27\7 11 . input change infil ntotal
| col change infil ntotal
row | 1 2 Total 1.1112
2. 2 13 66

11 1 11 | 12 3. 3 16 58
2| 13 53 | 66 4. 4 15 42
31 16 42 | 58 5. 57 18
4| 15 27 | 42 6. end
5 | 7 11 | 18

. replace change=change-1

Total 52 144 | 196 (5 real changes made)

Pearson chi2(4) = 6.8807 Pr = 0.142 . blogit infil ntotal change
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Logit Estimates Number of obs = 196
chi2(1) = 6.65 Probit Estimates Number of obs = 196
Prob > chi2 = 0.0099 chi2(1) = 6.73
Log Likelihood = -110.06697 Pseudo R2 = 0.0293 Prob > chi2 = 0.0095
Log Likelihood = -110.029 Pseudo R2 = 0.0297

_outcome | Coef.  Std. Err. z P>zl [95% Conf. Interval

_outcome | Coef. Std. Err. z P>zl [95% Conf. Intervall

change | .3896544 .1632464 2.543 0.011 .089297 .6900118
_cons |  -1.81401  .3667985 -4.946  0.000 -2.532922  -1.095098 change |  .2345331  .0912283 2.571  0.010 .0557289 .4133372
_cons | -1.101694  .2121698 -5.193  0.000 -1.517539  -.6858484

. test change=0
. test change=0
(1) change = 0.0
(1) change = 0.0
chi2( 1) =  6.47
Prob > chi2 =  0.0110 chi2( 1) =  6.61

Prob > chi2 =  0.0101

. bprobit infil ntotal change

In the logit model, the Wald test reveals a x? statistic 6.47, with 1 degree of freedom. We reject the null hypothesis
B = 0. Using the log likelihood ratio test, we found the LRT x? = 6.65, with 1 degree of freedom. This statistic is obtained
by 2 times the likelihood ratio difference between the current model and the constant model. We reject the null hypothesis
that the constant model is a better model, i.e. the current model (with the 8 coefficient) fits data better. The results are
similar to the trend test 22=6.67 from Agresti’s (p.102). It confirms that Pearson’s x> Goodness of Fit test, though useful, is
a conservative index of testing association. The trend test, model fitting, and more detailed tests (here, likelihood ratio test
and Wald x? test) are usually needed. Similarly, you could fit a probit model to reach the same conclusion. (In the probit
model, the Wald test reveals a 2 statistic 6.61, with 1 degree of freedom. We reject the null hypothesis 3 = 0. Using the
log likelihood ratio test, we found the LRT x? = 6.73, with 1 degree of freedom.)

Exercise 4.6 [10 points]

. tabi 400 1380\416 1823\188 1168, all Residual df = 1 No. of obs = 3
Pearson X2 = .569279 Deviance = .5686519
| col Dispersion = .569279 Dispersion = .5686519
row | 1 2| Total
Binomial (N=ntotal) distribution, logit link
1] 400 1380 | 1780
2| 416 1823 | 2239 yes | Coef. Std. Err. z P>|z| [95% Conf. Intervall
31 188 1168 | 1356
parent | 2866273 .0470443 6.093 0.000 .194422 3788325
Total | 1004 4371 | 5375 _cons | -1.795024 .0657553 -27.299 0.000 -1.923902 -1.666146
Pearson chi2(2) = 37.5663 Pr = 0.000
likelihood-ratio chi2(2) = 38.3658 Pr = 0.000 . test parent=0
Cramer’s V = 0.0836
gamma = 0.1770 ASE = 0.028 (1) parent = 0.0
Kendall’s tau-b = 0.0786 ASE = 0.013
chi2( 1) = 37.12
. input parent yes no Prob > chi2 =  0.0000
parent yes no . glmpred mu_log, mu
1. 2 400 1380 . glmpred xb_log, xb
2. 1 416 1823 . glmpred res_log, pearson
3. 0 188 1168 . gen pi_hat=mu_log/ntotal
4. end . list parent yes ntotal p mu_log xb_log res_log pi_log
. gen ntotal=yes+no parent yes ntotal p  mu_log xb_log  res_log  pi_log
. gen p=yes/ntotal 1. 2 400 1380 .2247191 405.1729 -1.221769 -.292414 .2276252
. glm yes parent, f(binomial ntotal) 2. 1 416 1823 .1857972 405.6542 -1.508397 .5676613 .1811765
3. 0 188 1168 .1386431 193.1729 -1.795024 -.4019126 .1424579

From Pearson’s GOF test (x? = 37.5663), we reject the null hypothesis that these 6 cells are independent Poisson counts.
From the Likelihood-ratio test (xy? = 38.3658), we reject the null hypothesis that the independence model can explain as
well as the saturated model. Therefore, there is evident information for us to model that the number of smoking parents can
explain the smoking habits of these Arizona high school students.

Most of you have done logit models successfully by using the commands logistic or logit. Here I tried to show you how
to reach the same conclusion by using glm. In addition, you can also fit the probit and complementary log-log models. They
have similar estimates and results as the logit model. Due to the parsimony in interpretation, the logit model is preferred.

By fitting the logit model, we found that the additive model logit(#) = a + Bz has little deviance (x? = .5686519) from
the saturated model (i.e. if you had run xi:glm yes i.parent). It is one of the indications that this model fits data well.
The Wald test (x? = 37.12) allows us to reject the null hypothesis that 3 = 0. By looking at the observed counts vs. the
fitted counts, the observed probabilities vs. the fitted probabilities, and the Pearson residuals (centered around zero and less
than 2), data have shown strong evidence that the number of parents who smoke has a linear effect on the odds of whether
their teens smoke. With a positive (3, the model shows that as the number of parents who smoke increases, the odds of
their teens have a smoking habit increases as well. For both-parent-smoke households, their teens have a probability of .225
to smoke; for one-parent-smoke households, their teens have a probability of .186 to smoke; and for neither-parent-smoke
households, their teens have a probability of .139 to smoke.



