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The Development of the Concept of the Best Mean of a Set of Measurement
: 1/ )
from Antiquity to the Present Day

by
Churchill Eisenhart
Senior Research Fellow
Institute for Basic Standards
National Bureau of Standards
1. INTRODUCTION
Presidents of the American Statistical Association in their

presidential addresses commonly review the state of the Association or,
at least, of some particular aspect(s) of the Association at the time of
their presidencies, and then go on to prédict future trends. I shall
depart from this custom. I have chosen to talk not about the present
and the future, but rather about how we got to the presé;t from the past,
In particular, I shall consider a central problem of statistical inference,
the choice of the "best" mean of a set of measurements of a single quan-
tity, and shall review practice and theory in this regard,‘from the dim
past to the confused present. I am taking this opportunity to communicate

to you some of the findings of research that I have been pursuing as a

student of the history of statistics of measurement for a little over a decade,

In its simplest form the problem of choosing the "best" mean is
this:

Given a number of 'equally good" measurements of a single fixed
quantity, what mean of their values should be taken as the

best value of the unknown magnitude of this quantity afforded
by these measurements? .

2/ Presidential Address, 131st Annual Meeting of the American Statistical
Association, Colorado State University, Fort Collins, Colorado,
24 August 1971,



A more general problem is:

What mean should be taken when the measurements are NOT
all "equally good"?

I shall be concerned principally with the simpler, more restricted, of
these two questions; but will take up the broader problem from time to
time.

There is an odd peculiarity of much historical writing and speaking
that some of you may have noticed: The length of an historical account,
or the definiteness of an historical statement, often tend to be related

[ - + . > f
inversely to the amount of solid information available. / Thus,

I shall devote far more time and words to the early history of my topic
than to more recent developments. This is justified in this instance,
I believe, because many of you have participated in the'cfeation or
sharpening of the most recent developments, which are "well known" to
you and others today; whereas, as I have discovered, the early history

of my topic is not easy to come by, and requires care in interpretation

besides.



2, PRELIMINARY CONSIDERATIONS

2.1 Some General Remarks.

Before we begin our historical journey together, let me set the
stage, so to speak, by placing before you two quotations, the substance
of which we shall do well to keep in mind as we proceed. The first is
a statement by Professor Henry Guerlac of the Department of History,

Cornell University, on an irremediable shortcoming of man's historical

record:

To a greater extent than we often realise, what we can know

about the past is what our ancestors-—the participants in

events or those who came soon after--determined that we should
know. They placed in the intentional record--in annals, memoirs
and commemorative iInscriptions--those men and events which
appeared to them as exceptional, striking and wholly outside

the ordinary dull routine of private existence, In the main,

they singled out for preservation in the collective memory those
events which they saw to have markedly affected the.way of 1life,
the thoughts and actions, of the larger social groups and political
entities: a tribe, & city-state, a nation or an empire. So it is
that the main scaffolding and framework of our view of history
consists of those deeds, thoughts and productions which others
besides ourselves deemed worthy of preservation because of their
effect upon man in society.

— Henry GUERLAC [1963], p. 798

The second, attributed to George Bernard Shaw by a speaker at the
50th National Conference on Weights and Measures, elucidates a charac-

teristic of ourselves that handicaps our interpretation of man's

historical record:

The fashion in which we think changes like the fashion of our
clothes, and it is difficult, if not impossible, for most people
to think otherwise than in the fashion of their own period.

-- George Bernard Shaw (?)

_h
M. D. SMITH 1966}, p. 145, Thus far I have not succeeded in finding

the precise location of this statement in Shaw's writings, or in
verifying that Shaw is its author.



——

2.1-2

Efforts "to think otherwise than in the fashion" of our own time

are made all the more difficult by changes in the meanings and usages

of particular words. The etymologies of the terms "mean" and "average

which are especially relevant to our present hlstorlcal JOurney, prov1de

excellent illustrations. Today there is a tendency to use these

terms more or less interchangeably, but their original meanings were

very different.

Another obstacle to sure interpretation of European scientific and

technical writings up tq the 19th century 1is the lack of articles ("a"

and "the") in Latin. This often makes it impossible to decide for sure

whether a stated summary value is "a mean" or "the mean" of the corre~

sponding set of measurements or observations, which are described but

-

not given individually. If only "a mean", it may be simply some sub-
jectively chosen value between the extremes of the set, or it may be
some unspecified weighted mean of the individual observation; whereas,
if "the mean", it is likely, early in our historical journey, to be

"arithmetic mean'" between the extremes), or, in

the midrange (i.e., the

more recent times, the arithmetic mean of all of the observations.

One more general comment. Some wag has remarked: "History is

something that never happened, written by someone who was not there

This mischievous remark should, at least, remind us to beware of second—~

and third-hand accounts, In a study such as ours, we can in effect "be

there" when we are able to examine original documents (or facsimile

reproductions)., it there remain, of course, the possibility of

inaccuracy or incompleteness of the record; and of imputing a modern

meaning or insight long before its time.

o
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2.2 Means and Averages

The English economist and logician, William Stanley Jevons (1835-

1882), complained a century ago that "Much confusion exists in the

popular, or even the scientific employment of the terms mean and average,
and they are commonly taken as synonymous'" ([JEVONS], p. 360). He went
on to recommend (pp. 362-363) that in scientific work the term mean be
used when referring to an arithmetic mean of.a set of measurements of

a fixed quantity used as an approximation to the unknown value of this
quantity; and the word average, when referring to a "fictitious mean
such asb/ the arithmetic mean of the heights of the houses on a particular
street, which serves to gi&e an idea of their heights but may not be the
height of any particular house. 1In both of these cases the expression
"arithmetic mean' signifies, of course, the sum of the several individual
measurements or heights involved divided by their numbé;. In a few

moments I shall point out that this is a comparatively recent extension

of the original meaning of "arithmetic mean".

EJThis subsection should be skimmed or perhaps skipped on first reading.
It brings together in one place various facts about means and averages
mentioned only briefly or merely alluded to at various points in the
oral presentation, together with additional relevant information

needed to complete the story.

1
EjI am giving here the example used by Adolphe Quetelet (1796-1874) to

make the same distinction ([QUETELET 1849], p. 42), because it is
much simpler than Jevons's example involving the mean density of the
earth. Quetelet elected to reserve the word mean for the first case;
and to employ the full expression arithmetic mean in the second.
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Dictionaries today seem to be In general agreement that the

English word mean derived, through the Middle French meien and moien

(antecedent of the modern French moyen), from the Latin medianus ("that

is in the middle"), obvious ancestor of the English word, and statistical
term, median, As Jevons notes, the English words mean and medium are
equivalent. They were often used interchangeably in the 18th century.
Thus, James Bradley (1693-1762), the third Astronomer Royal of Great
Britain (ffom 1742), sometimes used "medium" (e.g., [BRAﬁLEY 1833 ,

pp. 151-163) and sometimes "mean'" (e.g., pp. 163-168) to designate the
arithmetic means of his sets of observations taken at Kew in 1725-1726 —-
observations that provided the basis of his discovery (1729) of the
aberration of light from stars due to the Earth's motion. The English
noun and adjective medium stem directly from the Latin mmedium, which is
both a noun ("the middle') and the neuter form of the adjective medius
("middle", "midmost"); and Greek and Latin dictionaries indicate that
medius is '"connected with'" the Greek adjective pegos (''middle", "in the
middle"), which in turn, Jevons says, "etymologists believe" is con-
nected with the preposition peta ("in the midst of", "among", '"between'),

ancestor "of the German mitte, and the true English mid or middle".

(Also derived from the Latin medius is the English word mediocre (from

the Latin mediocris, which is from medius, "middle", and ocris, '"peak"),

signifying initially simply "middle of the run", and hence moderate,

ordinary, commonplace; but acquiring ultimately a tinge of "sub—ordinary")
Jevons says little about the history of the English word average,

but the Oxford English Dictionary, the first section of which was pub-

lished two years after his death, gives "¢ 1500" as the date of
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its first appearance in English writings; states that its "derivation
is uncertain"; and traces its probable origin back to around 1200 A.D.

The corresponding word in French is avarie; in German, havarie; in

Spanish, Portugese, and Italian, avaria -—- with some variants of each
of these —-- all words which made their appearance in the maritime

commerce, ordinances, and records of the Mediterranean around 1200 A.D.,
to signify "a duty, tax, or dImpost charged upon goods; a customs-duty,
or the like"., By the time of Columbus's discovery of the New World,
these terms had taken on the signification of "any charge over and
above the freight incurred in the shipment of goods, and payable by

their owner'". (This sense is preserved today, in maritime law, in the

term petty average.) By the time of the coronation of Elizabeth I of
'England (1558), these terms (avarie, etc.) had taken oﬁ'the meaning of
Yany expense or loss to owners, arising from damage at sea to the ship
or cargo'; and by the time of her death (1603) these terms were used

also to refer to "the equitable distribution of expense or loss, when

of general incidence, among all parties concerned, in proportion to their

"By 1735 the

several interests" {emphasis added).//

continental terms and the English average had acquired the

transferred meaning: 'the distribution of the aggregate inequalities
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(in quantity, quality, intensity, etc.) of a series of things among
all members of the series, so as to equalize them, and-ascertain their
common Or mean quantity, etc., when so treated; a determination or

statement of an arithmetical mean; a medial estimate." (Emphasis added,)

And in Noah Webster's A Compendious Dictiohary of the English Language
(first edition, 1806; facsimile reproduction, Bounty Books, a Division
of Crown Publishers, Inc., New York 1970) we find the term average
defined as "a mean prdportion, a medium'"; and the term medium in turn
defined as '"a mean, a middle state or place, a kind of printing paper,
"average state".
Thus we see how it came to pass that "the average" in ordinary
usage commonly signifies the arithmetic mean. The signification of
an average ‘as a singlé number representing, summarizing, or typifying
a generally prevailing magnitude of a set of numbers of which it is a
function"—/—— and thus including the median and the mode of a frequency
distribution, terms coined by Francis Galton in 1883 and Karl Pearson
in 1894, respectively —-- is largely a development of the present century.
As further background for our historical study of "mean taking" it
will be well to review briefly the early history, and changes in the
concept of a mean in mathematics.

{(c. 580 - c. 497 B.C.)
In the classical Theory of Means of Pythagoras/and his followers,

an essential feature of a "mean" ("ueocotns') was intermediacy. But

—leenn James and Robert C. James, Mathematics Dictionary, 3rd edition.
Princeton, New Jersey: D. Van Nostrand Company, Inc., 1968.
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mere intermediacy was not the whole story: the middle term of a three-—
term series of numbers arranged in order of magnitude was called a
"mean" when, and only when, there was some equal relation between the
first two and the second two terms; and the precise form of this "equal
relation" characterized the mean involved. Thus, if a, b, and £ were
three positive numbers with a > b > ¢, the middle number b was said to

be the arithmetic mean between a and ¢, if and only if

(1) a-b=>5b~-c.

In this event the three numbers a, b, ¢ form a (descending)_arithmetic
progression. The Pythagoreans were well aware that (l).implies that

(2) b=%(a+C);

but (1), not (2), was the AEfinition of the arithmetic mean. Similarly,

for a > b > ¢ > 0, the geometric mean was defined by the relation

a
5 "o

olo

not by the formula b = ¥ ac ; and in this event the three numbers

a, b, ¢ form a (descending) geometric progression. (For documentation,

and for the original definition .of the harmonic mean, the third classical

mean, see [COHEN and DRABKIN], pﬁ. 6-7, or [HEATH 1963], pp. 51-52.)
Seven additional means were added to the first three by the
Pythagoreans from time to time —- three by Eudoxus (408-355 B.C.) or
his contemporaries, and four more by '"later" Pythagoreans -- making ten
in all. All ten can be defined by variants of a single equation, as
explained in [HEATH], pp. 52-53. The details of these additional means
are of no importance to us, inasmuch as only the original three have

survived to the present day. What is important is (a) that a fundamental
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characteristic of all of these early "means" is intermediacy between a

/

"leading” or "antecedent" term and a "following” or "consequent' term

of a numerical series -- the exact nature of the "intermediacy" defining
the particular "mean" involved ~~ and (b), that a "mean'" was NOT thought

of as being in any sense representative of, nor as a substitute for,

these other two numbers.,f

Sometime early in the 16th century —— perhaps earlier, but not much
earlier —- it was recognized that the explicit formula (2) for the

arithmetic mean can be extended readily to the case of n positive

numbers a1s By5 ves A (positive or negative) in a "natural" way, and

2’

the number m, defined by this extended definition,
. ' n
1 -1
(3) m == (al + a, + ... an) == g a,

was called the arithmetic mean OF the n numbers a seey @ . It.can be

l)

—/Their designation as "extremes' came later.

—l0—
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shown that

a a
min — A — max

where a ., and a denote the smallest and the largest of the a's,
min max

respectively, with the equalities holding only when the a's are all

equal. Thys intermediacy between the "extremes" is retained by this

/

generalization of the arithmetic mean; and in due course -- I do not

know just when —- m, came to be regarded as representing or typifying

the n numbers (usually not all equal) of which it is function, and

usable as a substitute for them, individually and collectively, in
further calculations. In other words, the generalized arithmetic
mean, m, defined by (3), became recoénized as an average in Ehe modern
(mathematical and statistical) sense of the term.

Although computations of the type embodied in (3)-are involved in
the theory of balances and levers and in determination of centers of
gravity (or, centers of mass), which date back to Archlmedes {c. 287~

and which are
212 B.C.) [., as Quetelet ([1849], p. 78 and Note, p. 270) and Jevons

({1958], p. 363) note, the archetype of representative or substitutive

means, I have never found the expression "arithmetic mean", or even

"mean" {or the Greek or Latin equivalents), associated with classical

—/But the intimate connection with arithmetic progressions has been lost.
Indeed, there is no longer any ''progression' involved, unless one
imagines the n given numbers a,, a,, ..., a_ replaced conceptually by
n new numbers ey a2, ey an In arithmetic

‘progression, with a, = a_, and ¢ = a __ . Such a construct is, however,
1 min n max

probably lurking in the background when one divides the elapsed time

between an initial occurrence and the nth recurrence of a periodic

phenomenon by n and terms the result (a determination of) the mean

period.

rh
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or medieval discussions of centers of gravity or related topics. On
the other hand, as we shall see presently, the expression "arithmetic(al)
mean' was certainly used in the generalized sense (3) early in the 17th
century, probably in the 16th century. That's why I said above that
this generalization (3) dates, I believe, from "sometime early in the
16th century -- perhaps earlier, but not much earlier".

As is well known, the classical explicit formulae for the geometric

mean and the reciprocal of the harmonic mean can be generalized similarly

to n positive numbers a1y e an; and these generalizations (mA, m., and
mH) of the classical arithmetic, geometric, and harmonic means likewise
conform to the inequalities

< a .

<m_<m, <mnm .
— G— A — max

qmin — "0
where a_, and a denote the smallest and the largest of the a's,
min max ~
respectively, with the equalities holding only when the a's are all equal.

Furthermore, for positive numbers 815 855 -vey 3, these three can be

shown to be special cases (m, = Ml’ M = lim Mb, mH = M_l) of the general

* P20 : 1/p
"power means', Mp(al, dgs +ers an) = [(ai + ag + ...+ ag)/n] ,
- which increase monotonically from M__ = a iq to M, = ama;{}'
Gauss studied [GAUSS 1816)] the statistical properties of the

absolute values of
power means, Mp(]ell, |e2|, ey Ienl), =1, 2, ..., 6}, o%(errors,

€19 €y -rrs € "7 €8, the mean absolute error {p = 1) and the

root-mean-square-error (p = 2) -- which, always being taken positive,

are no longer always intermediate between the extreme errors, one of

which will usually be positive and the other negative. These, therefore,

_/
See, e.g., [HARDY et all, Chapter II, a fact with which Carl Friedrich

Gauss (1777-1855) was evidently famili
4¢h para. ntly familiar ([GAUSS 1809], art. 186,

-2~
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constitute a further extension of the concept of a "mean". Accordingly,

the English mathematician and logician, Augustus De Morgan (1806-1871),

in his article '"Mean" in volume 15 (1839) of the Penny Cyclopaedia,

dropped the requirement of intermediacy and propeosed:

Generally, let there be a number of quantities

X)s Xys Xg, &c., and let ¢(x1, Xy Xq, &c.) be a

function of them which is symmetrical, that is,

which is not altered when any two of them are

interchanged; then if y be found from the.equation
o(y, v, ¥, &c.) = ¢(xl, Xys s &c.),

y may be called a species of mean.
—— Augustus De Morgan, [ 1, p. 35

To this the Italian mathematician, Oscar Chisini (1889- ) added

[CHISINI 1929] the "natural” requirement that ¢(y, v, v, &.}) =y -
"natural beéause, if our observations shpuld all, by luck, be exactly
equal to the "true" or "target' value, we would '"maturally" want whatever
"mean" we took to yield this same- value; and this requirement also insures
that the "qean" will be of the same dimensions as the x's. Edward L. Dodd
(1875-1943) has provided a convenient summary [DODD 1940] of developments
in the mathematical theory (to 1940) of the resulting class of

representative or substitutive means, which clearly includes all of the

customary statistical means or averages,

This brings the story of means and averages essentially up to the

present. Individuals who wish to pursue the matter further will find

all -- probably, more than -— they want to know in Le Medie [1958]

by the late Corrado Gini (1884-1965).

|3~



3. THE STATE OF AFFAIRS FROM ANTIQUITY TO THE 17TH CENTURY A.D.

The taking of some definite mean -- arithmetic mean, mode, median,
fixed )
midrange —- of several measurements of a singleAquantity to obtain a

better value for its magnitude than was afforded by one or ancother of
the individual measurements does not seem to have become a common
practice until the 17th century A.D., and first appears in the latter
half of the l6fh, when a number of examples of the use of the arithmetic
mean to this end can be found. Before the 17th century the picture is

very fragmentary.

3.1 Absence of '"mean taking" in ancient science and technology.

When I first began studying this matter, I expected to find a great
many examples in antiquity. I had been brought up on the view that.
"agtronomy [was]} the most importané force in the development of science
since its origin sometime around 500 B.C. to the days of. Laplace,
Lagrange, and Gauss"UNEUGEBAUER 195§L P. 2).‘ So I fully expected that
I would find some good examples of mean taking in ancient astronomy;
and, perhaps, also in ancient physics. I have not found any. And I now
believe that no such examples will be found in ancient science.

The reason is that guantitative science in antiquity was to 5
large extent mathematics, and resﬁed little on precise measurement.
Great attention was devoted to mathematical details, and by the Greeks
to mathematical elegance; but the observations involved were usually‘

—t

quite crude, though very adroitly chosen.

E/Footnote appears on page léa.

L



/ ' This important fact had some-

how escaped my attention in my earlier reading. Professors Aaboe and
it .
Price at Yale have brought out forcefully in a fascinating article

[AABOE and PRICE 1964] subtitled "The derivation of accurate parameters

from crude but crucial observations". They demonstrate how amazingly
accurate numerical values for astronomical parameters could be derived
from single crude but crucial observations corresponding to special

or extreme circumstances that were especilally favorable or decisive;
and point out that much ingenuity was employed in the choice of just
what to observe, in the application of the mathematical machinery, and

in the solution of the basically mathematical problems involwved.

— 'L{.a.—
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The general practice in antiquity was to deduce a lot from very
few data. For example, Professor Neugebauer has pointed out that
tables "for the phenomena of Jupiter" from the late Babylonian period,
say 240 to 40 B.C., which were computed several decades aﬁead, were
nonetheless '"based on a single observational element, the rest being
derived therefrom in a strictly mathematical fashion". "This," he adds,
"conforms to a conscious tendency of the ancients to reduce the
empirical data to the barest minimum, because they were well aware of
the great insecurity of direct observation, eépecially for such major
problems as the date of the first visible crescent or the reappearance
of planets. All these phenomena are located near the horizon, where
climatic and optical disturbances exercise a most pernicious influence"
([N‘EUGEBAUER 1954 p. 801) .

And in an earlier article on "Mathematical methods in ancient
astronomy” he remarks: "In short, we can say that kinematics and
spherical astronomy play a much greater role than empirical observa-
tiona. The ancient astronomers were fully aware of the fact that the
low accuracy of their instruments had to be supplemented by a mathe-

matical theory of the greatest possible refinement. Observations are

" more gqualitative than quantitative: 'when angles are equal' may be

—/Footnote appears on page 16.

— 5 -
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Such practices were not restricted to antiquity. The late Professor
Eva 6. R. Taylor (1880-1966) mentions &TAYLOR 1956 ], p. 136-137) a
tide-table for "Flod at London", dating from early in the 13th century
A.D. and associated with Matthew Paris (c. 1200-1259 A.D.), which -
states that "at new Moon high tide is said to be at 3 hours 48 minutes,
on the second day 4 hours 36 minutes, on the third 5 hours 24 minutes,
and so on". Miss Taylor comments: "It is in fact mechanically built
up from a single observation according to the rule accepted by astronomers
that the daily retardation was 48 minutes. It is a scholar's, not a
sailor's table. When John Flamsteed drew up his tide-table for London
Bridge in 1676 he found the figure highly variable, the retardation
sometimes under 30 minutes, sometimes an hour or more ... theory rather

than observation was still the rule in the learned world of Matthew

Paris's day."

-
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decided fairly well on an instrument but not 'how large' are the angles’,

says Ptolemy with respect to lunar and solar diameter (Almagest V, 14 ...).
Consequently, period relations over long intervals of time and lunar
eclipses are the main foundations so far as empirical material is concerned;

all the rest is mathematical theor&. ... this helds for Greek as well

as for Babylonian astronomy', (tNEUGEBAUER 19461 p. lOlﬂ

The procedure, just alluded to that Ptolemy (Claudius Ptolemaeus,

fl. ¢. 150 A.D.) employed to obtain accurate values for the "apparent

diameters™ of the sun and moon provides a helpful illustration of the

technique of supplementing crude observations with "mathematical theory

of the greatest possible refinement'. Ptolemy says:

But constructing ourself the four-cubit rod dioptra described
by Hipparchus [f1, 161~126 B.C.], and making observations

with it, we find the sun's diameter everywhere contained by
very nearly the same angle with no variation worthy of mention
resulting from its distances. But we find the moon's diameter
contained by the same angle as the sun's ... only when during
the full moons it iIs at its great distance from the earth ...
it was easy to see when each of the diameters subtends the

same angle ... But how large they were seemed very doubtful
to us ... But once the moon at its greatest distance appeared
to make an angle at the eye equal to the sun's, by means of
the lunar eclipses observed at that distance we calculatéd the
angle subtended by the moon, and immediately we had that of the

sun also.

— Almagest V, 14; English
trauslation from[fTOLEMY (151 )
1952, pp. 171-17Z .

In carrying out the step "by means of the lunar eclipses observed at
that distance we calculated", Ptolemy utilized Babylonian records of
lunar eclipses "at that distance' that took place several centuries
before his time and the whole intricate mathematical machinery of the

then-current theory of the moon's motion; and reached the conclusion

— 17~
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that

the whole diameter of the moon subtends an arc of a .
great circle amounting to 0°31 1/3' {op. cit., p. 173

This agrees remarkably well with what I was taught in college, namely,
that "the moon's apparent diameter ranges from 33'30", when nearest,
to 29'21", when most ;émote"([RUSSELL, DUGAN, and STEWART 1925L P. l6ﬂ'.

Ptolemy's Almagegi is the main scurce for our knowledge of ancient
astronomy. Ptolemy quotes observations of his own ranging from 127 to
151 A.D. and relies heavily on observations and methods of his prede-
cessors, especially Hipparchus, who flourished almost three centuries
before him, and whose works are lost, possibly partly the result of the
fact that Ptolemy's great book superseded them and made them superfluous.
([NEUGEBAUER 1945}, p. 1013; ESARTON l95lJ s P 41-42)

An extensive and intensive analysis of the quality of the solar
and lunar observations, and of the accuracy of parameters derived
therefrom, in ?tolemy's Almagest has been carried out by John Phillips
Britton under the guidance of Professors Asger Aaboe and Bernard R.
Goldstein of Yale University's Department of History of Science and

Medicine. His findings are reported in.detail in his doctoral

—/The original Greek title translates as Mathematical Syntaxis, or
Mathematical Collection. To distinguish it from lesser astronomical
treatises of other authors, later commentators dubbed it the "Great
Collection", which passed into Arabic as "Al-magisti", i.e., "The
greatest". In time this became "Almagest", by which name it has been
known ever since. ([HEATH (1931) 1963, pp. 402-403)
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dissertdfion [BRITTON 1967 ), which consists of five chapters and two
appendices,'plus a Preface and an extensive Bibliography. 1In the Preface
he remarks:'t-what is troublesome is that all of Ptolemy's lunar
parameters are quite accurate, while the observations from which he
derives them are often imprecise and inaccurately reduced. Thus we may
ask whether Ptolemy's lunar parameters were derived solely from the
observations which he reports or whether some other explanation for the
accuracy of these parameters must be found" (p. vii)jﬂjin Chapter III
he investigates the quality of the lunar observations that Ptolemy
repdrts and finds that: "On the whole the errors of the observa-
tions agreed well with what we would expect from careful observations

made with the techniques available in antiquity. Furthermore, the

~errors were well distributed with regard to sign and showed no systematic

-

deviation from the modern computations'. (pp. vii-viii) 1In Chapter IV
he compares the parameters of Ptolemy's lunar model with their modern
equivalents, to determine the errors in Ptolemy's values; and then
compares these errors with those that one would expect from the average
errors in Ptolemy's reductions of his observations and from the
procedures by which he derives his values of these parameters. ''For
each of the eight parameters so tested [he] found ... Ptolemy's value
[to be] significantly more accurate than we would expect”. (p. wvii)-.
Britton concludes from this '"that Ptolemy was not entirely candid in
describing the procedures by which he determined his pafameters"

(p. viii); that he "must have used more sophisticated analyses of
observations teo obtain his parameter than those which he describes”

(Abstract); and adds "the only plausible explanation for the accuracy
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of these parameters that I can think of is that they were the result of
some form of average of many determinations from a much larger number
of observations than Ptolemy describes" (p. ix).

In answer to the question of why Ptolemy described procedures for
determining his parameters that were 'less sound than those which he
actually employed", Britton comments: "... it is my feeling that the
Almagest was not intended to be an historical account, but is in many
places primarily pedagogic. Furthermore, Ptolemy generally takes
great care to make his demonstrations and determinations conform as
nearly as possible to the standards of logical rigor encountered in
Greek geometry. Hence he might reasonably have concluded that the
interests of clarity and rigor were better served by examples of how
his results were obtained than by a lengthy, and necessarily non-—
rigorous, discussion of his procedures for obtaining pafameteré from
discordant observations. One corollary to this conclusion is that
Ptolemy almost certainly selected the observatiéns which he reports
because they yielded just the values of parameters which he wished to
demonstrate. This is not to say that Ptolemy either tampered with the
reports of the observations or made intentional errors in their reduction
and analysis. Indeed, he wnuld have had-no need to do so, since among
a large number of determinations a few could be expected to illustrate
almost any desired value for a parameter, as long as this value was
approximately correct' (pp. ix-x).

In contrast to Britton's study of Ptelemy's lunar and solar
observations, where Ptolemy's values for parameters of lunar and solar

motion are found to be more accurate than can be accounted for by the
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data he resents, i1s the earlier critique by A. Pannekoek [ PANNEKOEK 1955]
of Ptolemy's discussion (Almagest VII, 3) of the precession of the
equinoxes, in which the full set of observations that Ptolemy presents
is shown to be more in keeping with the modern value of the precession
constant than with the value that Ptolemy gives. Pannekoek's comments
oﬁ this "problem of Ptolemy's value for the precession" are instructive.
He says: "... the question may be asked: when this set of observations
is so consistent with the modern true data, how could Ptolemy find
therein a confirmation‘of his far too small constant of precession? The
answer ig given by ... the six stars selected by Ptolemy. ... Theré can
be no doubt that Ptolemy selected these six stars because they were
favourable to his assumed value of the precéssion and could be quoted
as confirmations, and that the other stars were omitted because they
did not confirm his assumption. Yet we cannot speak of an attempt to
dece;ve his readers; he presents to them the full material with the
unfavourable cases also. It comes down to saying: 'my result is
confirmed by a number of data; the othér data which do not confirm it
do not count'."([PANNEKOEK 1955L P. 64)

Pannekoek proceeds to give another example of data selection by
Ptolemy, and then comments: ''Selection of data in this way is, of
course, strictly condemned by modern scientific standards. In condemning
Ptolemy we should not forget, ﬁowever, that tﬁe principle of selecting
data and rejecting deviating results as unreliable was followed up to
almost modern times; not until the seventeenth and eighteenth century
did it become habitual to derive.and use the average of all obserQed data.

Even in the nineteenth century, scientists felt themselves warranted
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in excluding strongly deviating values, and they established an exact
criterion [sic] for exclusion." (p. 65).

Britton evidently feels that in some instances Ptolemy used "some
form of average of many determinations from a larger number of obser-
vations", e.g., the arithmetic mean or midrange of soﬁe_ internal group
or "cluster" of observationé.' Whether he did, and if so, what he did,
we shall never know because he did not choose to tell us. My feeling
is that 1f in some igstances he did use a "mean" of soﬁe sort, this |
Ymean" was not the result of a formal computation such as I indicated
above, but rather of seiection of a favored value, perhaps, bﬁt not
necessarily, in the midst of the "bulk" or inner "core" of the obser-
vations, and not necessarily one of the observations of the set in hand,
and was a "mean" only in that it was between the extremes, and an

"ayerage" only in that it was considered to be "typical' or exemplary

in some sense.

To this point
the discussion has been exclusively in terms of astronomy. This con-
centration on ancient astronomy stems not from any predilection on my
part for astronomy, but simply from the fact that ancient astronomy is

where numerical data are to be found. In contrast, the records of

ancient physics that have come down to us are deveid of numerical
measurements or observations as such., There can be no doubt that the

Pythagoreans in the 6th and 5th centuries B.C. (and quite possibly the

: Babylonians beforerthem(ivan der WAERDEgL pPP. 94~95 ) experimented with

vibrating strings to establish the relationship between the lengths of

the strings and the pitches of the tones emitted by them; that Aristotle,
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in the 4th, and Archimedes, in the 3rd century B.C., experimented with
levers (and Archimedes, with objects floatiﬂg or sinking in water),
and so forth; but all that has come down to us is the resulting mathe-

matical theory -- see, e.g., the lengthy chapter on Physics (pp. 182-351)

in Cohen and Drabkin's Source Book in Greek Science [ 1.

At one time some historians of science thought there was a notable

exception: the values of the angles of refraction (r) corresponding

to angles of incidence (1), at ten-degree intervals from 10 to 80°, for

light passing from air to water, from air to glass, and from water to
glass, given in Book V of a treatise on Optics attributed (but not with
certainty) to the same Ptolemy. These were believed to be actual
experimental results. (See Sa rton [1927], p. 274; and his confession
of error, [SARTON 1959], p. 57.) But Gilbertc Govi, the editor of the
first printed edition (1885), noted in his "Introduzione" that the

second differences of the reported angles of refraction are constant

/

and equal to minus one-half degree in all three cases,

—/An annotated English translation (based on the Govi edition) of the
portions of Book V of interest to us here is available in [COHEN and

DRABKIN 19481, pp. 271-281.
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To summarize, it needs to be appreciated that observation and
theory were differently related to sach other in antiquity than they
are today. Theory, the creation of the mind, reigned supreme, and
observations were not understood as specifying "the facts' to which
theory must conform, but rafhe; as particular insﬁancés that were
useful as illustrative examples in the explanation of theory, or as
indicators serving as guideposts in the formulation of theory.
(Compare [PANNEKOEK 196, p. 150; and [SARTON 1959], p. 57.)

To repeat, I have not found in ancient science any example of the
computation of a mean of two or more measurements of a singie magnitude
to cbtain a more secure value; and I do not expect that any will be
found. Nor have I found any in the records that have come down to us

of day-to-day practical affairs.

—!Footnote appears on page 23.
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—!For a while I believed that one had been found. Julian Lowell
Coolidge (1873-1954), in his History of Geometrical Methods
[COOLIDGE 1940), refers, without precise identification, to a '"set"
of problems in a 1935 paper of Francois Thureau-Dangin (1872-1944)
and comments: '"Here a field is divided into rectangles, right

- triangles and rectangular trapezoids, as described above. The
total area is calculated from two different sets of measures, and
the divergent results averaged. It is interesting to note that the
Babylonians realized that there must be slight errors of observation,
and sought means to obviate them'" (p. 53). To date, however, I (and
a number of others much more expert in such matters than I) have
been unable to find any such case as he described. It 1s certainly
not in the paper he cited {[THUREAU-DANGIN 1935], which is entirely
about evaluation of "volumes'". Nor did we find it in Thureau-
Dangin's later book [THUREAU-DANGIN 1938]. We also searched without
success in the "MKT" and "MCT" collections of Professor Neugebauer
[NEUGEBAUER 1935-1937: NEUGEBAUER and SACHS 1945]. We found a number
of examples of the evaluation of quadrilateral areas from the product
of the mean lengths of opposite sides, i.e., from

] ; 1
[a ; a ; [b ; b , which is correct only in the case of a rectangle,
and in other cases gives a value in excess of the correct value; and
examples of obtaining a closer approximation to a quantity sought by
taking the arithmetic mean between an approximation that is manifestly
too large and another that is manifestly too small; but none that
seemed to fit Professor Coolidge's description. Professor Coolidge
may have been misled by some combination of the above-mentioned

procedures,
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3.2 An instance of use of the MODE in antiquity.

About 20 years ago Professor W. Allen Wallis
had the good fortune to discover an instance of the use of
the mode of repeated counts in a measurement situation in the Pelo-
ponnesian War between Athens énd Sparta (431-404 B.C;), as related by
Thucydides (c. 460~c. 400 B.C.), one of the Athenian commanders:-

During the same winter [428 B.C.] the Plataeans, who were
still being besieged by the Peloponnesians and the Boeotians,
began to be distressed by failure of their supply of food,

and since there was no hope of aid from Athens nor any other
means of safety in sight, they and the Athenians who were
besieged with them planned to leave the city and climb over
the enemy's walls in the hope that they might be able to

force a passage. ... They made ladders equal in height to

the enemy's wall, getting the measure by counting the layers
of bricks at a point where the enemy's wall on the side facing
Plataea happened not to have been whitewashed. Many counted
the layers at the same time, and while some were sure to make
a mistake, the majority were likely to hit the true count,
especially since they counted time and again, and, besides,
were at no great distance, and the part of the wall they wished
to see was easily visible. The measurement of the ladders,
then, they got at in this way, reckoning the measure from the
thickness of the bricks.

Thﬁcydides, History of the Peloponnesian War, Book III,
para. 20. English translation by Charles Forster Smith
[ ], pp. 31, 33; Greek text, pp. 30, 32.

In his elementary textbook written jointly with Professor Harry V.

Roberts [WALLIS and ROBERTS 1956] the Richard Crawley translation (1876)

_'W—mpf-this'péssage is ﬁﬁd;édi(ﬁ.VZIS) from the Modern Library edition _

(t 1, pp. 155-156), with the comment:

The everyday, contemporary version of this application of the
mode is in checking calculations. If a calculation is repeated
several times, the value accepted is that which occurs most
often, not the median, mean, or any other figure. Even in these
cases, a majority, or some more overwhelming preponderance,
rether than merely a mode, is usually required for a satisfactory

decision.
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I have quoteda different translation to facilitate comparison and

thereby reveal that the essential details are the same in both,

A
although worded slightly differently.

This remarkable passage not onlf describes the earliest known
jrstance of use of the mode of enumerations of the same aggregate by

different individuals, or of repeated enumerations by the same

individual(s), but also appears to be unique.

_/ Subsequent to my presentation (August 1971) of this address, a third
translation, from the Penguin edition (1954), was published (December
1971) by Ernest Rubin in his '"Quantitative commentary on Thucydides"

([RUBIN 1975, P 53); and he mentions additional translations. This
1s the fifth of a series of articles in The American Statistician in
which Dr. Rubin has scrutinized other famous works from the viewpoint
of a statistician: Adam Smith's Wealth of Nations (April 1959),
Malthus's Essay on Population (Feb. 1960), The Histories of Herodotus

. (Feb. 1968), and the first volume of Marx's Das Kapital (Apr. 1968).
It would be helpful if more classical and other famous works were
searched systematically this way for items of interest to statisticians,
and the findings in a particular volume or set of volumes published
together in a single article, as in these two cases, rather than
leaving such items to be discovered and published piecemeal only as
they are seen to be relevant to discussion of some particular topic.

97~
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During the remainder of 1963 and 1964, I dorresponded or talked
o/

with a great many individuals who might be aware of another (or, other)

recorded instance{s) in antiquity of multiple or repeated counting

followed by adoption of the mode. MNone could recall another instance,

‘except in connection with voting, which, of course, involves counting

b/

(and, occasionally, recounts) and adoption of the mode.

Ihere is thus the nagging inference thét this Peloponnesian War
instance of 'many" counting, and recounting, the layers of brick, and
adoption of the finding of the majority, i.e., the mode, may be an
instance of the application in an unusual situation of the then-

prevailing rules of conductin Athens and Sparta which "required that

eJPrt:ofessors Asger Aaboe (Yale University; ancient and medieval mathe-

matics and astronomy), A.Rupert Hall (Imperial College, London;

history of sclence and technology), A. H. M. Jones {Cambridge Univer-
sity; anclent history), Tom Bard Jones (University of Minnesotaj ancient
history), E. S. Kennedy (American University of Beirut; Arabic mathe-
matics and science), Samuel Noah Kramer (University of Pennsylvania;
Sumerian literature), Richard A. Parker (Brotm: University; Babylonian
and Egyptian history, science, and mathematics), David Pingree (Oriental
Institute, University of Chicago; mathematics and science in the Near
East and India), Derek J. de Solla Price (Yale University, ancient and
medieval science and technology), Chester G. Starr (University of
Illinois; military history)}, B. L. wvan der Waerden {(University of Zurich;
Babylonian, Egyptian, and Greek mathematics); and Harry Woolf (Johns
Hopkins University; history of sciencel

tyProfessor A. H. M. Jones commented that inasmuch as 'the Athenians
voted by a show of hands, ... there was not exactly a recount as
people could change their votes"; and he cited an instance of a second
vote taken in the Athenian Assembly in 406 B.C., described by
Xeonophon (c. 430 - c. 350 B.C.) in his Hellenica (Book I, Chapter
V1I, para. 34; szee, e.g., [ ], p. 83), in which the second vote,
which reversed the decision, was taken after an objection was made to
the legality of the motion adopted in the first vote, Perhaps some
reader will be able to send me an earlier and "cleaner" example.

-3 -



3.2-4%

/

almost every important act be directed by a formal vote". In this
connection, Professor Tom Bard Jones of the Department of History,
University of Minnesota, has drawn my attention to the accounts by
Polybius (c. 205 - 125 B.C.) and Livy (Titus Livius, 59B.C. - 17 A.D.)
of the decisive tactics of the Romans in taking Syracuse in 212 B.C.,
in which ladder-length for scaling the wall was determined from an
estimate of its height based on "counting the courses" -- but, while
Livy's account suggests that there may have bemmultiple or even

repeated counting, there is absolutely no mention of adoption of the

mode -- quite the contrary! In Polybius's account (Histories, Book
VIEI, 37; e.g., [ I, p. 537) it is the Roman‘general; Marcellus

» who "counted the
_courses', and later, on learning that the citizens of Syracuse were
‘drunk with wine from a three-day celebration of the feast of Artemis
(Diana), "recollected his estimate of the height of the wall at its

., M . .
lowest point; whereas, according to Livy:-

s+« As they came there repeatedly, one of the Romans, observing
the wall from near at hand, by counting the courses and making

V—AIn ancient Greece and Italy the institution of suffrage already
existed in a rudimentary form at the ocutset of the historical
period. In the primitive monarchies it was customary for the king
to invite pronouncements of his folk on matters in which it was
prudent to secure its assent beforehand. 1In these assemblies the
people recorded their opinion by clamouring (a method which survived
in Sparta as late as the 4th century B.C.), or by the clashing of
spears on shields. ... the word suffragium meaning literally a
responsive crash, ... in the days of their full political develop-
ment the communities of these countries [e.g., Athens in the Age of
Pericles, 443-429 B.C.] had firmly established the principle of
government according to the will of majorities, and their constitu-
tions required almost every important act to be directed by a formal

vote,"
——-Encycloﬂédia Brittanica, 11lth edition, "Vote and Voting",
vol. 28, p. 216.
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his own estimate of the height of each on its face, measured
the height of the wall as nearly as he could by guesswork. And
thinking it considerably lower than his own previous estimate
of it and that of all the rest, and that it could be scaled by
ladders even of moderate length, he reported to Marcellus. ...

— Livy, Annals of the Roman People, Book XXV, 23. English
translation by Frank Gardner Moore | 1, p. 431;
Latin text, p. 430.

The comment '"and that of all the rest" certainly implies that others
had made estimates of the wall's height too, but not necessarily "by
counting the courses"; and the word "that" certainly suggests a single
value agreed upon by "the rest", but not necessarily the mode of their

estimates —— maybe just a compromise value.

--I éﬁ.not sﬁre what we caﬁ conclﬁ&é from éil fhisrbéyond the
following: there may well have been other instances in antiquity of
multiple or repeated counting followed by taking the mode as the "trueﬁ‘
value; but, in view of Professor Guerlac's comments quoteq earlier, such
instances, if any, were not likely to be recorded for posterity unless
some gfeat good or evil ensued that made the event worthy of notice —-—

in the above two instances, the '"side" telling the story Mgucceeded" !
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3.3 The MIDRANGE as the predecessor to the arithmetic mean.
If there was a predecessor to the arithmetic mean as "best mean"

-— there certainly was no commonly employed predecessor -- but if there

was a predecessor at all, it must have been the

midrange.
Al-Biruni (1lth century A,D.}, Al—BIrﬁnI_(Abﬁ Rayhan Muhammud

ibn Ahmad al-Biruni, 973-1050+-A.D.), perhaps the greatest scientist
- a/
of his day, and one of the greatest of all time, refers to computation

of the midrange of a set of measurements as if this were the customary

"rule" in his day. In one instance he attributes this "rule" to

Ptolemy:——

In the first treatise of the Almagest, Ptolemy stated that,

for several years in succession, he observed [the sun's zenith
distance on the meridian at the times of the solstices] ....

At all times, he found it (the arc between the two solstices)
to be forty-seven degrees, and more than two thirds, but less
than three quarters of a degree. He assumed that this amounts
approximately to what Eratosthenes had said, which was accepted
by Hipparchus. He said that because the rule is - for such a
range with an upper limit and a lower one - to take the average
amount between them. Hence the amount (MS 78) given by Ptolemy
is 47;42,30°; its half is 23;51,15°, but he constructed the
tables of declination on the basis of 23;51,20°, in agreement
with that assumed by Hipparchus and Eratosthenes, for if their
third parts are rounded off, the declination comes to be this

amount.
~- al-Biruni, Tahdid ... al-Amakin, Chapter III (1018 A.D.);
translation by Jamil Ali { ], pp. 59-60.
Emphasis added.

Ptolemy did not mention any such rule, or 'give'" the value quoted.

All that Ptolemy said was:=--~

geodesy, mathematics, mechanics, mineralogy, and pharmaceclogy, among
For a full and interesting biography, see[ﬁ. S. KENNEDY 197@1

n{Al-BIanE ("The Master") wrote important treatises on astronomy,

others.
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Now from such observations [of the sun's zenith distance on
the meridian] and especially from those made by us over
several periods while the sun was near the tropics ... we
found the arc from the northermmost to the southernmost
limit ... to be always more than 47°40' but less than 47°45',
And with this results nearly the same ratio as that of
Eratosthenes and as that which Hipparchus used. For the arc
between the tropics turns out to be very nearly 11 of the

meridian's 83 parts.

-~ Ptolemy, Almagest I, 12; Taliaferro translation | 1,
p. 26.

Thus we see that al-Biruni "put words into the mouth" of Ptolemy that
the latter never uttereé%/

The midrange; or "average amount betweenﬁ the limits that Ptolemy
gives, is 47°42'30", as stated by al-Biruni. Also 11/83 of 360°, the
value of the double obliquity (2e) that Pto;emy says was given by
Eratosthenes (¢, 273 - 192 B.C.) and adopted by Hipparchus (c. 162 -
¢c. 127 B.C.), is equivalent to 47°42'39"2"'" = 2(23°51'19"31"'"); and
Ptolemy actually used 23°51'20" (one-half of the foregoing roundea up)
in the construction of his Table of Obliquity (Almagest I, 15; e.g.,

I 1, p- 31, entry in Table for 90°), thereby saying, in effect, that
P

by his own observations he has confirmed this esteemed or traditional

a/

" Professor Neugebauer told me
in the spring of 1966 that he knew of no edition of the Almagest that
contains the rule statement that al-~Biruni attributes to him; but
that it is possible that there once existed, and may still exist
somewhere, an Arabic version of the Almagest containing such a state-
ment, because the Arabic scribes and scientists were prone to "improving"
manuscripts they copied. Professor Neugebauer was quite positive that
there was no such 'rule" in use in Ptolemy's day., Inasmuch as it was
evidently in vogue, or at least recognized, in al~Birurni's time, an
interesting unresolved question is: when and where did this rule
originate during the intervening 900 years? I understand
that there are a number of extant Arabic manuscript copies of the
Almagest that date from this intermediate period, so a partial answer

to this question may be possible.
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value. Britton has provided a fresh translation of the above passage
([ 1, pp. l—Zj, and has subjected Ptolemy's determination of the
obliquity of the ecliptic to a detailed critique ({ 1, Chapter One).
Britton notes that Simon Newcomb's analysis (1895) of the decrease of
the obliquity from antiquity to moderﬁ times gives 23°40'40" as the
value of the obliquity (e) in Ptolemy's day, so that the value Ptolemy
used was too large by 21'20", and his error would have been reduced,
but only slightly (by only 5"), had he used one-half of the midrange
value for the double obliquity, namely, e = 23°51'15",

In Chapter V of his Tahdid,.. , al-Biruni again states the midrange
rule and explains its purpose:;m

As to the halving of the interval between the two times, it

1s a rule of procedure which has been adopted by calculators

for the purpose of minimizing errors of observation so that
the time calculated will be between the upper and lower bounds.

- pl—BIanI, Tahdid ..., Chapter V (before 1025 A.D.):
translation from [ 1, p- 168.

This statement constitutes al-Biruni's explanation of an instruction
in a work on determination of longitudes by Habash al-Hasib ('Habash
the Computer'), who flourished around 860 A.D.

Al-Biruni mentions the "rule'" again in Treatise VI, Chapter 2

af

of his astronomical encyclopedia, al-Qanun al-Masudi (Canon of Mas'ad),

so-called because al-Biruni dedicated it to Sultan Mas'ud of Ghazna (now

Ghazni, in east central Afghanistan) on his accession te the sultanate

j':/The Arabic text of the entire ganﬁn was published recently in three
volumes | ]. A German translation of Chapter 2 (of the 6th
Treatise) , by C. Schoy, appeared in 1923 (] }, pp. 56-64); and an
English translation by J. H. Kramers, in 1951 ({ ], pp. 179-185).
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in 1031 A.D. following the death of his father, Sultan Mahmud of

Ghazna (9717 - 1030), one of the greatest Muslim conquerors, and
founder of the Ghaznavid dynasty. In sections (8) - (10) of Chapter 2,
al-Biruni determines the longitude of Gﬁazna by traverse from Shiraz
(in southwestern Iran today); and in sections (10) - (13), by traverse
from "al-Jurjaniya in Khwarizm" (i.e., from the modern city of Kunya-
Urgench, northwest of Khiva, in Turkmen $.S.R.). He then says:--

So the longitude of Ghazna, according to this computation,

is 98°44'2". The result of the computation from the side

of Shiraz was 94°54'26". Half the sum of both these figures,
accordlng to the rule (rasm) of the arithmeticians, is

94°19'14"M.
~- al-Biruni, anﬁn VI, 2,'(13); English translation from
[ ], p. 182; corresponding German translation in
[ 1, p. 61.

Although computation of "half the sum of both these figures" would
usually be regarded today as evdluation of the arithmetic mean of the
two given values, we must not forget that the early.Greeks, and probably
also scientists of al-Biruni's day, thought of it as evaluation of the
arithmetic mean between the two given values , which, when there are
only two values given, are the "upper and lower bounds". The above
quotation from the Qégﬁg, and the second ("Chapter V") quotation from
the Tahdid, each by itself might easily be construed as evidence of
use of an arithmetic-mean rule in a degenerate case of only two
observations, but, taken in conjunction with the first ('Chapter III")
quotation from the Tahdid, must be interpreted, I believe, as additional

evidence for the existence of a MIDRANGE RULE in the 9th - 11lth centuries A.D.

i

.'-/I am deeply indebted to Professor E. S. Kennedy, American University _

of Beirut, for bringing to my_attention these two passages in al-Biruni's
Tahdid, and the one in his Quanun, for facilitating my acquisition of

a copy of the Engiish translation { ] of the Tahdid; and for_directing
me to the English translation of the relevant chapter of the Ganun. My
thanks also to Professor W. H. Kruskal, University of Chicago, for sending
me a copy of the article | ] containing the latter translation,

together with copies of other passages "of possible interest' from the

same volume, ' ' —3 b



3.3-5

Al-Biruni does not mention the "rule” in his treatise on specific
/
gravities of metals and precious stones, but it seems, from his

the
wording and/numerical values given that he did use midranges in

summarizing some but not all of his specific gravity determinatioms.

It will suffice to quote what he says for the first three metals only:--

First: Gold. I purified it by means of sharp drug agents five
times until its melting was difficult, its solidification faster,
and its adhesion to the touchstone was little. Then I probed it
ten times with different weights testing some according to others
by converting them [i.e., each one] to a single standard which

is one hundred mithgals. The check with water differed with

the highest precision in the work. All of them fell between

five mithqgals, one danlg, and one tasu], and five mlthgals, and
one danig and one tasuj and five-sixths of a tasu] and eone-half of
one-sixth of a tasﬁj. It was wisé, of necessity, that one be

guided between the two limits - five mithqals, one daniq and two
tasujes. Consideration is taken of the moisture, on the spout of

the instrument, which did not drip down.

—jMy interest in this treatise was aroused -- and I was introduced to
al-Biruni -- by the description of the apparatus used by al-Biruni and
the summary of results obtained therewith on pages 55-56 of the partial
English translation [al-KHAZINI 1865] of the "Book of the Balance of
Wisdom" (Kitdb mizan al-hikma) by al-Kh3zini of Merv, written in 1121-
1122 A.D,, to which my attention had been drawn by an article by
‘H. J. J. Winter [1956]. Professor E. S. Kennedy suggested that it
would_be a good idea to take a look at al-Biruni's Maquala fi'l-nisab
allati bayn al- filizzat wa 1—Jawah1r fi'l-hajm (Treatise on the ratios
between the volumes of metals and jewels), that is available to us
today only through photographs, made in 1912 of an Arabic manuscript
copy, which are now included in the Arabic Manuscript Collection MS 223
of the Bibliotheque Orientale, Université St. Joseph, Beirut, Lebanon.
With his assistance I was able to obtain a microfilm copy of the MS 223
collecticon, which also contains an incomplete Arabic manuscript copy
of al-Khdzini's "Book ...". A printed edition of the latter in Arabic,
with text collated from several manuscripts, was published in 1940 by
the Osmania Oriental Publications Bureau, Osmanid University, Hyderabad-
Dn., India. The late Professor Martin Levey (1913-1970) kindly pro-
vided me with an English translation of the relevant portions of the
Osmania edition of the al-Khazini "Book ..."; and a comparison_in
parallel columns of the corresponding portions of thé al- Biruni and
al-Khazini texts on the microfilm. I hope tec make more of this material

available in some later publication.

-——:?\fr"
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Second: Mercury, [He purified it by passing it through several
thicknesses of cloth.] Then I put it in the instrument several
times and I converted [i.e., adjusted] the quantities to one _
hundred. The first of_the bounds of its water was seven mithgals,
one daniq, and one tasuj and one—quarter of a tasuj. The last
was_seven mithqals, two danigs, two tasujes and five-sixths of a
tasuj. Most of them are agreeable as to seven mithqals, two
daniqs, and a tasuj. So we took it.

Third: Lead. [He describes how he purified it.] The first of
the bounds of the water for the hundred was eight mithgals, four
danigs and a tasuj, and the last, nine mithqals. So you take a
value between them which is eight mithqals and five danigs.

Using the.relation 1 mithqal = 6 daniqgs and 1 daniq = 4 tasujes,
the midranges in these three cases are found to be -~

gold: 5m, 1d, 133 ¢

mercury: 7m, 2d, %ZE

lead: 8m, 54, %E

In the cases of gold and lead, both the phraseclogy and the numbers indi-

cated seem to support the view that the result given is the
midrange. (In the gold case he gives his reason for rounding up.)
In contrast, the phraseology of the last sentence in the mercury case
suggests that a preponderance of the (unstated number of) results
clustered around the chosen summary value, which is NOT the midrange

of all, but may be the midrange of an inner cluster, or, perhaps, the

mode.

—-Bé.
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Assaying, to 1600.

/
i

LOﬁly single determinations are mentioned in the discussion of

coin assaying in the so-called Diaiqgus de Scaccario ([7-.:], pp. 36—
43), an account, by Richard Fitzneale (? - 1198), treasurer of England
and Bishop of London, of the procedures followed by the'Exchequer in his
day, in which he insists that the coin samples chosen for assay be well
mixed so that they may "answer to the weight''. Mention is made of

duplicate and triplicate assays in the recently published 13th century

English Mint Documents from the Red Book of the Exchequer(EORESME 1956],
PP 50—9&2 but no midrange or mean tékihg -- rather "judgement should
always be given for the assay which weighs the heaviest ... because
silver can easily be lost and can never be gained in the fire, so that
judgement must be given where most silver is found" (p. 82). No relevant
. details of assaying procedure are to be found in De Moneta [ -7 =],

the treatise on money and coinage by the great French philsopher and

scientist, Nicole Oresme (1323 ~ 1382). 1In the Probierbuchlein (l520+),

_ rrao
"the first printed work on any aspect of metallurgy" ([*2-2 1, p. 8),
it is recommended that assays always be run in duplicate or triplicate
"in order to be safe" ([,..: -]}, para 45) -- one assay may fail, or

W

even two, but hopefully not all three (cf. [Rgwicole-], p. 241)." In the
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Pyrotechnia (1540) of Vannoccio Biringuccio (1480-1539), the wording

([ I, p. 139) suggests that assays are to be made at least in
duplicate. But nothing is said in either of these works about what is
to be done if duplicate (or triplicate) results do not {all) agree.

The implication is that, if the assays are successfully carried out,
the resulting "beads" of pure silver will weigh exactly the same. This

i1s explicitly stated in De Re Metallica (1556) of Georgius Agricola

(Georg Bauer, 1494—1555):”If neither [bead] depresses the pan of the
balance in which it i placed, but their weight is equal, the assay has
been free from error; but if one bead depresses its pan, then there is
an error, for which reason the assay-mﬁst be repeated" ([AGRICOLA 1912],

P. 252).%Y A similar statement appears in the Beschreibung allerfiirnemsten

mineralischen Ertzt unnd Berckwercksarten (1574) of Lazarus Ercker

(? - 1593) -- see [ 1, p. 52 -~ who, except in a special circum-
stance to be noted later, advises against averaging: "If, however, one

of the aséays contained much of the thin [penny] pieces and the other

one much of the thick ones, the beads will not balance. ... Some assayers
do not consider this very important and when the beads do not balance

they use the average [mittel}.' It is better, however, to be careful

in weighing out the assays and to make an effort to have the beads
balance.nicely" (f 1, pp. 61-62). 1In short, except as just noted,

I have not found any evidence of a midrange (arithmgtic or median) practice

or rule in writings on assaying dating from the 12th through the 16th

centuries A.D.
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Astronomy, to 1600. To date I have not examined any European

works on astronomy prior to the great De Revolutionibus Orbium Coelestium

("On the Revolutions of the Celestial Orbs", 1543) by Nicolaus Copernicus
(1473-1543), canon of the cathedral at Frauenbefg in East Prussia (Poland),
which changed the course of astromomy. I have looked through the "Great
Books" English translation [{ /95a) severai times without finding any
instance or mention of taking a '"mean" of any kind (midrange, arithmetic
mean, etc.) of two or more determinations of a single quantity. At one
point in Book VI, Chapter 7 ([2 {7&(7—], p. 287) Copernicus does recommend
using the midvalue between the extremes of a variable astronomical quan-
tity, to minimize computational labqr and simplify exposition, ''where
indeed the extremes would not have made any manifest difference" ("ubi
enim extrema non fecerint apertam differentiam” [T .5.4], p. 430); but
this, of cou}se, is nof the same as taking the midrange of multiple
determinations of a single fixed quantity in order to obtain a more

o/

secure value.

jyln his calculation of the angle of obliquation of Venus (loc. cit.),
Copérnicus adopts Ptolemy's values (Almagest XITI, 4y [72. 4], p. 449)
for Venus's distances at apogee and perigee, but in transformed units,
so that "the greater distance, at apogee, is 10,208", "and the lesser,
at perigee, is 9792", "and also the mean distance is 1Q000" ("atque
inter has media partium 10,000"), and then comments ([' *-+], fol. 205
verso: with spelling clarified and punctuation added, [*..:], p. 430,
and [/ 5+ 1, p. 390):
... quam assumi in hanc demonstrationem placuit Ptolemaeo volenti
consulere difficultati et sectanti, quantum licit, compendia, ubi
enim extrema non fecerint apertam differentiam, tutius erat medium
sequil.

The "Great Books" English translation of this is ({=.:.<1, p. 827):

... which Ptolemy decided to assume in this demonstration, as he
wished to aveid labour and difficulty and to make an epitome,
for where the extremes do not cause any great difference, it is
better to use the mean.

(Footnote continued below text on next page.)
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Before leaving Copernicus, let me note that he also wrote

a treatise on coinage, Monete Cudende Ratio (1526:; first printed in

1816), at the invitation of the king of Poland to serve as a basis for
currency reform in the Prussian states of Poland. I have examined a
French translation [Z /$%%% ] and found nothing on assaying procedure

and no mention of "mean taking" of any kind.

To my great disappointment, I have not to date found in astronomical
writings any clear-cut (or even probable) examples of the use of the
midrange of more than two measurements of a single quantity as a more
secure value, from al-Biruni's day up to 1650 A.D., say, by ﬁhich time

the arithmetic mean was unquestionably in use. But I have found some

later (at least probable) examples:

While this is not a strictly accurate translation, it is in no way
misleading. In contrast, the Russian translation (Moscow, 1964)
quoted by O. B. Sheynin ([1965c¢] sec. 4, third para.; and [1966b],
third para.) renders "extrema" as "extreme limits of measurements"
("kraynimi predelami izmereniy'; emphasis added). This, especially
when read out of context, gives the mistaken impression that
Copernicus recommended use of midranges of measurements.

There is one more point of interest here: while Ptolemy uses the
middle value (60F in his units) in his "demonstration', he does so
without comment, The explanation is all Copernicus's own addition.

EJI am deferring to the next section discussion of the '"mean taking"
practices of Tycho Brahe (1546-1601), 'the prince of astronomical
observers" ({MORE], p. 270), because some of his data and
associated summary values that I have examined fall among the
ambiguous cases that I have come upon in the period 1550-1650 --
"ambiguous" because the arithmetic mean is NOT mentioned explicitly
and the summary value given, in consequence of being recorded more
coarsely than the individual observations, could be a rounded value

_of more than one of the simple "averages" (arithmetic mean, median,

midrange, or mode).
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a. 1671 (Flamsteed). Here is a statement by John Flamsteed

(1749-1719), written only a few years before he became the first

Astronomer Royal (1675-1719) of Great Britain:
.. by several observations made yesterday morn, and
the morning and night preceding, [the moon's] semidiameter
exceeded not 16'53", nor was less than 16'47", so that for
diverse very. good reasons, too many t¢ be rendered here,
I determine 16'50", which I intend to compare with ...
From letter dated Nov. 8, 1671 from John Flamsteed to
John Collins, secretary of the Royal Society (quoted
from [RIGAUD & RIGAUD], Vol. II, p. 125).
Francis Baily (1774~1844), Flamsteed's official biographer,
remarked that Flamsteed "does not appear to have taken the mean of
. several observations for a more correct result: since we find that,
wvhere more than one observation of a star has been reduced, he has
generally assumed that result which seemed to him most satisfactory at
the time, without regard to the rest" ([BAILY 1835], p. 376), and
, : o-f
went on to support this statement in great detail, Nonetheless, the
fact that 16'50" is exactly the midvalue between 16'47" and 16'53", and

» I believe,
his somewhat evasive wording, together indicate/that in this instance

Flamsteed adopted the value 16'50" because it is the midrange. On the
other hand, I cannot exclude the possibility that 16'50" may have been
one of the actual observations and that he selected it because it

"seemed to him [the] most satisfactory at the time'". The "evasive

cz/Baily is extremely positive about this, but Plackett ({[1958], p. 133)
has given an extract from Flamsteed's posthumously published Historia
‘Coelestis Britannica, Vol. 3 (1725), in which a result stated to be
the '"Media inter has Differentia' is exactly the arithmetic mean of
the three preceding observations. Unless it can be shown that the
"mean taking' is ascribable to the editors, this constitutes a clear-~
cut counter—example to Baily's '"general' dictum. -

-
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wording”" could also be construed to support this inference. If the

"several observations" mentioned but not given in the letter are extant,

~

the lack of a 16'50" among them would support my inference;
and confirm it, if neither the arithmetic mean, median, or mode is

equal to 16'50", Otherwise, the issue 1s irresolvable.

b. 1738 (Whiston). A similar example is provided by the following

excerpt from a book by William Whiston (1667-1752), who served as the
deputy of Sir Isaac Newton (1642-1727) in the Lucasian chair of mathe-

matics at Cambridge University from 1699, and in 1703 succeeded Newton

as Lucasian Professor.

Now if we suppose, with Mr. Flamsteed, and Sir Isaac
Newton formerly, that the Sun's Parallax is no more
than 10", the Earth's distance from the Sun will be
about 81,000,000 msasured Miles, and ... But if, with
Sir Isaac Newton at last, we take that Parallax to be
10 1/2" (which is the mean between Mr. Pound's many
and most accurate Observations, which always proved to
be between 9" and 12"), the Earth's distance from the

Sun will be but 77,000,000, and ...
Whiston, The Longitude Discovered (1738; [ 1, p. 16)

The wording here is not at all evasive, but rather quite specific: it

says to me that Mr. Whiston believes (or knows} that Sir Isaac in his
latest work adopted the value 10 1/2" because it is the midvalue between
f

the extremes of "Mr. Pound's many and most accurate Observations".

2:/"Mr. Pound" is the Reverend James Pound (1669-1724), rector of Wanstead
in Essex, and one of the best astrenomical observers of the time, who
in 1719, made "many ... accurate Observations'" with a long telescope
having an objective lens of 123-foot focal length loaned by the Royal
Society of London, and mounted in Wanstead Park on a maypole that Sir
Isaac had procured for this purpose. In the third edition (1726) of
. his Principia, Newton incorporated a number of revisions based on
Mr. Pound's many and most accurate Observations" -- see, e.g.,
[NEWTON 1934}, p. 637, Note 9, and p. 662, Hote 39,

g2
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Navigation to 1600. Practically everything that is known about
the history of navigation among Mediterranean and Western Eurcpean
peoples from antiquity to the close of the 18th century is contained

of
in The Haven-Finding Art [TAYLOR 1956] by the late E. G. R. Taylor,

"a history of navigation 'from Odysseus to Captain Cook', which in both
scope and authority is perhaps the most definitive book of its kind".

A useful adjunct is The Art of Navigation in Fngland in Elizabethan
. ef
and Early Stuart Times [WATERS 1958] by D. W. Waters, by virtue of its

e
precise notes and references, and detailed appendices. From a study

of the early chapters of these volumes it is clear that navigational
practices on the part of Mediterranean and Western European seamen were
completely non-numerical up to only a few years before Christopher
Columbus's first voyages to America. Consequently I consider it prac-
tically certain that no "mean taking' of any kind was used by these

seamen before the close of the 15th century.
It was the far-flung ocean voyages of the Portuguese in the 15th

century that focused attention on the need for dependable methods for

QJEva Germaine Rimington Taylor (1879-1966), Emeritus Professor of
Geography, University of London.

-jDavid Watkin Waters, Lt., Cdr., R.N., and British Admiralty Historian.

e:/A concise vet remarkably complete chronological summary of the prin-
cipal elements of the "Three Ages of Pilotry" ("primitive', "quanti-
tative", and "mathematical” navigation) in ''the western part of the
01d World" has been provided by Joseph Needham in Voluae 4, Part ITI

.of his monumental treatise Science and Civilization in China

(NEEDHAM 1971], pp. 554-560).

-\D -
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determining a ship's position at sea. The first step toward mathe-
matization of naéigation was astronomical but non-numerical. As the sea
captains of Portugal's Prince Henry the Navigator (1394-1460) sailed
south along the West Coast of Africa, they saw the North Star drop lower
and lower in the northern sky behind them and used its altitude as an
indication of their distance south of Lisbon. Prince Henry's learned
advisors formalized this procedure and introduced the new navigational
technique of instrumental observation of the altitude ("altura").of the

b/
North Star. "But ... .at first, as pilots did not know how to use a

scale of 'degrees', and had never thought in terms of 'latitude',
quadrants were marked with important place names against particular parts
of the scale, and the pilot could thus reccgnize his position by the

e/
fall of the plumb line alone.' ([TAYLOR lQSéL p. 159).

'qz/The exact location of a ship at sea is uniquely determined by its
latitude and longitude. TIts latitude is its angular distance north
or south of the terrestrial equator; its longitude, its angular
distance east or west of a prime meridian (or "zeroth' meridian)
through some particular place. As we shall =ee, the Portuguese
pioneers of the 15th century solved the "latitude problem"; but a
general solution to the technically much more difficult "longitude
problem'" was not found until the latter half of the 18th century --

see, e.g., [BROWN 1956].

b—-/The latitude (angular distance north or south of the equator) of a
place on the earth is equal to the altitude (angular distance above
the horizon) of the morthern, or southern, celestial pole as seen
by an observer at the place. Inasmuch as the North Star (Polaris,
o of the Lesser Bear) revolved arcund the northern celestial pole
in a circle of about 3.5 degrees in the late 15th century, the
latitude of a ship north of the equator was indicated to a very good
first approximation by the altitude of the North Star.

‘;jFor a sketch of a marine quadrant of 1492, and a vivid description of
the manner and difficulties of its use at sea, see [MORISON 1942],
p- 185.

- bt~
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It was the dropping cut of sight of the North Star as the
Portuguese seafarers approached and crossed the equator, and continued
thelr explorations southward, that forced the shift from place names

on quadrants to latitudes in degrees, and thus began the arithmetization

of navigation. The requisite Rules, or Regiment, of the Sun -— for

translating observed altitudes of the noonday sun (in degrees) into
{(degrees of) latitu&e north or south of the equator —— were prepared
about 1485 by a commission of astronomers and mathematicians appoinfed
by Prince Henry's grandnephew, King John II of Portugal. The commission
also simplified the astronomer's or astrologer's planispheric‘astrolabe,
fby leaving ou;!the parts not absolutely needed .and produced a plain

astrolabe of wood and iron" ([PRESTAGE], p. 319) for measuring the

altitude of the Sun or North Star, and provided a set of corrections

between +3.5° and -3.5° to permit more accurate translation of observed
altitudes of the North Star in degrees of latitude north of the equator.
A copy of these Rules for converting altitudes of the Sun or North Star
into degrees of latitude was apparently used by Christopher Columbus on
his voyages to America (1492-1304) and by Vasco da Gama on his voyage
to India around South Africa's Cape of Good Hope in 1497-1498.

The rolling and pitching motions of a ship made accurate measure-

ments of the altitude of the sun or a star with a quadrant or astrolabe
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difficult, and often impossible, on shipboard. Consequently, seamen
went ashore to take altitude observations, if possible. But when a
need for knowiedge of latitude arose at sea, especially when the safety
of the ship and cargo and every man aboard was in jeopardy, they
simply had to do as best they could. Therefore I ha& hoped to come
upon some l6th century instances of "mean taking' at sea in order to
make the best of a set of discordant observations. But, to my great
disappointment, I have not to date found any clear-cut examples of

"mean taking” of any kind in writings on navigation until the last

decade of the 16th century, where I have found two. The first consists

~

Q:/Thus Columbus, homeward bound on his first voyage to Amerlca, noted
in his Journal entry for 3 February 1493:

The North Star appeared very high, as on Cape St. Vincent; but
couldn't take the altitude with the astrolabe or quadrant,
because the rolling wouldn't permit it. ([MORISON 1963], p. 160)

And, "Master John of Galicia, a physician'" ([TAYLOR 1956], p. 166),
who served as astromomer on the voyage of Pedro Alvarez Cabral
(c. 1460 - ¢. 1526) to Brazil in 1500, wrote in a letter from Brazil

on 1 May 1500 to King Manuel of Portugal:

It seems to me almost impossible to take the height of any

star at sea, for I labour much at it and however little the ship
rolls, there are mistakes of 4 or 5 degrees, so that it can only
be done ashore. ... at sea it is better to be guided by the
height of the sun than by the stars, and it is better to use the
astrolabe than the quadrant or any other instruments. ([PRESTAGE],

p- 321)

The difficulties and errors of altitude measurement on shipboard were
not entirely overcome until the advent of the reflecting quadrant
(later, octant, and sextant), invented independently in 1730 by John
Hadley (1682~1744) in England and Thomas Godfrey (1704-1749) in
Philadelphia. (See, e.g., [COTTER], pp. 77-81, or [TAYLOR 1956],

pp. 256-258; and [TAYLOR 1966], Biographies 56 and 262.)
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of a set of recommendations w;itten by Thomas Harriot about 1595,

which Professor Taylor mentions but does not spell out in detail in

her book ([TAYLOR 1956], p. 220); and in a letter to me dated February 21,
1964, she remarked: '"Hariot is the first man I know to suggest taking
the mean of extensive swings of an instrument aboard ship to get a

b/

reading.” The second, by Edward Wright , published in 1599, I discovered

during my visit to the National Maritime Museum, Greenwich, during my

visit in September 1969.

nghomas Har(r)iot (1560-1621), "one of the founders of algebra as we
know the science today" ([SMITH 1928], p. 388), entered the service
of Sir Walter Raleigh in 1579 as mathematical and scientific advisor,
especially to solve mathematical problems arising in navigation and
to correct errors in current navigatiomal practice. By 1584 he had
written a new navigation manual, entitled Arcticon, unfortunately no
longer extant, which he seems to have used "for instructing Raleigh,
and the sea-captains and masters in Raleigh's service in the refine-
ments in the art of navigation resulting from his researches" ([WATERS],
p. 584). 1In 1585, he was sent by Raleigh to accompany Raleigh's

~colonists to Virginia under the command of Sir Richard Grenville,
"obtaining practical experience on the voyage ..., when he was able
to observe the seaman's difficulties and the errors to which he was
prone" ([TAYLOR 1952], p. 345); and "must have learned how wide a
gap there lay between [himself] and the practising sea-masters, a
difference not only in mathematical knowledge and capacity, but in

habit of mind" ([TAYLOR 19561, pp. 215-216). It seems that Raleigh
asked for a 'refresher course' before his departure for Guiana in
February 1595, and these "Instructions ...", teaching notes in

Harriot's own hand, lay neglected in the British Museum until

Professor E. G. R. Taylor examined them shortly after World War II,
leading to her account [TAYLOR 1952] of their coatent. A fuller account
[PEPPER 1967] by Jon V. Pepper of the Royal Naval Cocllege, Greenwich,
appeared in 1967, where references to other studies of Harriot's life

and unpublished papers are to be found.

éjEdward Wright (1558-1515) "was a Fellow (1587-96) of Caius College,

Cambridge, who was induced the the Earl of Cumberland about 1589 to apply
his mathematical studies particularly to navigation ... He designed,
described and made mathematical instruments of many types [and he] gave
William Gilbert (1540-1603)] considerable assistance in his great work

De Magnete [1600]. During the last few years of his life, he delivered
lectures on navigation on behalf of East India Company, and dedicated to
them his last book", an English translation, approved by John Napier
1550-1617), of Napier's original work on logarithms, together with a
graphical method of interpolation of his own design (also approved by
Napier). ([TAYLOR 1954], Biography 53; see also, pp. 45-48 of text.)

Ve P
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a. 1595 (Harriot). Thomas Harriot suggested in his YInstructions

for Raleigh's Voyage to Guiana, 1595", which date from late 1594 or

early 1595, that

when taking the altitude of the sun on shipboard with an astrolabe

e/
or sea ring, the midpoint between the extreme readings, i.e., the

midrange, be taken as the true reading. These recommendations are to

be found in a section captioned "Some remembrances of taking the

altitude of the sonne by the Astrolabe and Sea Ring" (British Museum,
b /
Additional Manuscript 6788, folio 485) . This is what he said with

respect to the astrolabe:

The Astrolabe hath ben most ancient & it is used comonly &

only for the sonne; and serveth the seamans turne most specially
when the sonne is hy ... And when the sea is rough it is very
hard to make any observation by it ...; because of his agitation
& unquiet hanging. But however when there is need you must do as
well as you may. And therefore when you have your Astrolabe
hanging as quietly as the time wil permit with his side toward
the sonne according to the usuall order, you are to fit the Index
by mouing it so long up & down till the somne shine thourcugh the
holes of both the sightes of the same. Or you finding by reason
of his agitation that the sonne will not passe iustly thourough
the lower sights but be sometime higher and sometime lower. When
you finde the light of the sighte to move as much over as under:
then your Index standeth as precisely as if the Astrolabe had hong
quietly; & sheweth the true altitude of the center of the sonne.

But if you doubt of the true hanging of the Astrolabe you may move
your Index quickly to the same degree on the other side & hold it
towarde the sonne. If you find the sonne shine thourough as
before your Astrolabe hangeth well. Otherwise you are also to
move the Index, till you have also the altitude on that side.
Which had, compare with the other, & note the difference. The
half of that difference adde to the lesse altitude or subtractz

from the greater; And you have the altitude of the sonme as
exacte as if your Astrolabe had hong truly upright.

gJSee, e.g., [COTTER]}, Fig. 2, p. 63.

Eyl am indebted to Jon V. Pepper (now Head of the Mathematics Department,

North East London Polytechnic) for providing me with a copy of a
"draft typed version'. Otherwise Harriot's actual wording of these
recommendations might never have surfaced, inasmuch as their

mathematical content is negligible.

-9 -
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And with respect to the sea ring: -

The other instrument called the sea Ring is of late yeares
in great use with the Portingalles & Spaniardes, the making
whereof & use they had about 40 yeares past of a contry man
of there owne a learned Mathematician called Petrus Nonius
[Pedro Nunes, 15¢2-1578] ... And is only for taking the
altitude of the sonne as the Astrolabe. But for ease and
speed it much excelleth it as also for exactnes. For the
degrees are as large agayne as in an Astrolabe of the same
bignes. And in the use, there is no troublesome moving up &
downe any Index as in an Astrolabe; but it hanging as the
Astrolabe, is that side which hath a small hole being holden
towardes the sonne; the light passing thourough presently
sheweth upon the degres noted within the ring the altitude
of the sonne you desire. You are to note that the middie of
the light be it round or long is your true marke; And if the
light play by reason of his unquiet hanging; then the middle
of the play is the sight.

A few special features of the midpoints or midranges involved in

these recommendations should be noticed. The sea-ring procedure calls

- for reading ''the middle of the play" directly; and the first of the

two astrolabe procedures calls for adjusting the Index ({.e., the

alidade) until the oscillation of the light spot (from the light through

‘the upper sight) is centered on the hole of the lower sight, and then

reading the location of the Index points on the scale., In both of

these cases the midpoint or midrange is 'observed" directly, without

computation from the values of the "extremes'. In contrast, the second
astrolabe procedure involves finding and reading the "extremes' and then

computing the midpoint or midrange. Finally, in all three cases, the

"sample size", i.e., the total number of "individual'' momentary positions

of the light spot or Index at least implicitly involved, is indefinite.

~ig-
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b. 1599 (Wright). Tnasmuch as Harriot's contributions to navi-
gation, developed "for the exclusive use of Raleigh's navigators”
([WATERS], p. 590), were never published, I was pleased to find a some-

what similar recommendation in Certaire Errors in Navigation ...

detected and corrected (1599) by Edward Wright, "the most influential

and oft-quoted treatise on nautical practice of the era" ([TAYLOR 1954],

pP. 45). The pronouncement of interest to us occurs in connection with

Wright's discussion of measurement of the variation of the compass as

/

a navigational tool.  If, as he believed, compass variation could be
used in combination with latitude determinations to indicate a ship's
postion at sea, by comparing observed with tabulated values, it was

clearly iﬁportant that determinations of compass variation on shipboard

be carried out as accurately as possible. Therefore, in order '"that

others that shall go about hereafter to observe the variation (at sea

especially} may bee the more circumspect to foresee and preuent all

causes of error herein', he advised:

Exact trueth amongst the vnconstant wawes of the sea is not
to. bee looked for, though good instruments bee neuer so well
applyed. Yet with heedfull diligence we may come sSo neare

the trueth as the nature of the sea, our sight and instruments

—jFootnote appears on p, 3.3-21%,
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/
During the 15th century it became recognized that a magnetic needle
does not, in general, point directly to the north, but deviates from
the true meridian by a small angle that varies from place to place.
This variation of the compass (as it was then called; or magnetic
declination, as it is now termed) was easterly over Western Europe.
Then '""the voyages to the Americas and to India between 1492 and 1500
brought ... [the news] that after a ship had passed [west of] the
Azores, or alternatively had rounded the south of Africa [to the east],
there was a change from 'morth-easting' to an increasing 'north-
westing'" ([TAYLOR 1956}, p. 173). This marked variation of the
variation led to the belief, found, e.g., in a manuscript by Jodo de
Lisboa dating from 1514 ([CRONE], p. 393), that measurement of compass
variation provided a means of solving or by-passing the longitude
problem; and in conjunction with determination of latitude would
enable a ship to determine its position at sea. Thus, the measurement
of compass variation and its use in combination with latitude deter-
minations to find any port or place at sea was the theme of.
De Havenvinding (1599) by the distinguished Dutch mathematician, Simon
Stevin (1548-1620), which was prescribed by Prince Maurice of Nasgsau
for use by all ships under his jurisdiction and published simultaneously
in Dutch, French, Latin and English. The English translation [STEVIN
1599b] was prepared by Wright, and its full title should be noted.
A fresh English translation [STEVIN 1961] has recently become available.
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will suffer vs. Neither if there be disagreement betwixt
obseruations, are they all by & by to be reilected; but as
when many arrows are shot at a marke, and the marke after-
wards taken away, hee may bee thought to worke according
to reason, who to find out the place where the marke stood,

shall seeke out the middle place amongst all the arrowes:
so amongst many different obser ations, the middlemost is

likest to come nearest the truth.
~- Edward Wright [1599], verso of ZNl.
Unfortunately, Wright does not give any numerical examples of
the application of this dictum in either his original (1599) or expanded
(1610) edition [WRIGHT 1657]}. Consequently, it is not possible to be
absolutely certain that he is recommending use of the median, as he
appears to be. However; his admoﬁition that "neither are [the observa-

tions] all by & by to be reiected" seems to me to support the inference

“that he is recommending the Ymiddlemost" observation, i.e., the median,

and not the "middle place'", i.e., the midrange: correct identification

of the median requires retention either of all of the observations, or

of sufficient central observations to be on the safe side as more

observations are taken and the number of outliers discarded in each

direction; whereas computation of the midrange requires knowledge of

only the largest and smallest observations throughout the period of

observation,

I did come upon a number of earlier possible instances of '"mean
taking" on 16th century voyages of discovery, but they were of a purely
conjectural nature. Thus, Admiral Samuel Eliot Morison, in his latest
Best seller tMORISON 1971], quotes, interprets, and comments on the

amazingly accurate determination of the latitude of Newport, Rhode
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Island, by Giovanni da Verrazzano in 1524, as follows:
"This land is situated in the parallel of Rome, in 41 degrees
and 2 terces", i.e. 41°40'N. The center of Newport is on
41°30'N, and the Vatican is on 41°54'N. ... He must have

"taken" the sun and Polaris frequently and averaged them;
Rome's latitude he could have obtained from any printed

Ptolemy or rutter.

i ~— [MORISON 19711, p. 307;
emphasis added.

And Commander Waters suggests ([WATERS], p. 310) that the large number
of sand-glasses -~ "18 hower glasses'" ([WATERS], Appendix 10) --
carried by Martin Frobisher on his first voyage to North America in
1576 (see, e.g., [MORISON 1971], Chapter XV) may probably be accounted
for as follows: 'in an effort to eliminate the various errors to which
the glasses were subject the prudent navigator turned two or three
simultaneously" and based the start of each new set on "a mean reading
. of several glasses'.

These ex&mples are, of course, conjectural, but I have a feeling
_that some clear-cut examples of '"mean taking' in navigational settings
-may well be lying "buried" in the logs and chronicles of one or another

of the 16th century voyages of exploration, awaiting discovery by alert

attuned eyes.
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4. THE RISE AND FALL OF THE PRINCIPLE OF THE ARITHMETIC MEAN

By far the best known statement of this Principle is that which
Gauss gave as the starting point of his derivation of the (Normal) Law

of Error in art. 177 of his great astronomical treatise, Theoria Motus

Corporum Coelestium ... (1809). What he said, in English translation,

was this:
It has been customary certainly to regard as an axiom the
hypothesis that if any quantity has been determined by several
direct observations, made under the same circumstances and with
equal care, the arithmetical mean of the observed values affords

the most probable value, if not rigorously, yet very n?arly at
least, so that it is always most safe to adhere to it~—

Gauss clearly makes no claim to having originated this "hypothesis"
thatrhe adopts as an "axiom'". Quite the contrary; he regards it as
traditional. And rightly so, because, as we shall see, the practice
~of adopting the arithmetic mean of a number of "equally good" measure-
ments of some quantity as the 'best" value of this quantity afforded by
these particular measurements certainly predétes Gauss's birth (April 30,

1777} certainly by more than one, and, perhaps, by as much as two centuries.

—jHis exact words were:

Axiomatis scilicet loco haberi solet hypothesis, si quae
quantitas per plures observationes immediatas, sub aequaldibus
circumstantiis aequalique cura institutas, determinata fuerit,
medium arithmeticum inter omnes valores observatos exhibere
valorem maxime probabilem, si non absoluto rigore, tamen
proxime saltem, ita ut semper tutissimum sit illi inhaerere.

[causS 1809}, art., 177,

The English translation ([GAUSS (1809) 1857], p. 258) is by Charles
Henry Davis (1807-1877), first Superintendent of the Anerican
.Ephemeris and Nautical Almanac Office (1849-1856), and twice
Superintendent of the U.S. Naval Observatory (1865-1867, 1874-1877).



4.1-1

4,1 From no mention of "mean taking' of any kind to explicit

"taking of the Arithmeticall meane' "for the true Variation”

in the 16th-17th-century writings on magnetic declination.
/

The detailed discussion by Gustav Hellmann of early geomagnetic

observations ([HELLMANN 1899]), together with his facsimile reproductions
of practically all of the important writings on geomagnetic phenomena
up to 1635 ([HELLMANN 1898], [GELLIBRAND 1635]), have enabled me to

trace the evolution of "mean taking" in writings on magnetic declination

(or variation of the compass), from no mention of "mean taking' of any
kind early in the 16th centﬁry, through seeming adoption (without
explicit mention) of the arithmetic mean toward the close of the 16th
century, to explicit mention of "takiné the Arithmeticall meane" in the
mid- and late 17th century. VTo date I have not succeeded in unfolding
the evolution of "mean taking” so neatly in any other area of science.

As I indicated earlier (in footnote ___, p. 51), the discovery
of marked differences in the obse?ved direction and-magnitude of the

variation of the compass (or magnetic declination) in different parts

of the world toward the close of the 15th century led to the hope early
in the 16th century that the isogonic (Greek isogonios, '"having or
pertaining to equal angles") lines of equal magnetic declinatiom over
the surface of the earth would exhibit a stable and orderly pattern

which, in conjunction with the parallels of latitude, would enable a

—/(Johann Georg) Gustav Hellmann (1854-1939), Professor of Meteorology
(from 1886) and Director (1907-1922) of the Meteorological Institute,

University of Berlinm.
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ship to determine its precise position at sea from observation of
declination and latitude alone, by-passing the need for direct deter-
mination of longitude. Therefore, measurement of magnetic.declination
.was pursued with diligence throughout the 16th and the early part of
the 17th centuries.

| Many of the early determinations of magnetic declimation, obtained
merely by noting the deviation of the magnetic needle from "north" as
détermined simply by sighting the North Star (Polaris) over the compass
dial, were subject to great uncertainty, especiall& in the case of
observations made on shipboard. '"That in this way no great accuracy
could be attained is self-evident. It is also to be questioned whether
Fhe movement of Polaris ... about the North Pole [in] a circle of about
5 degrees in diameter ... was alwaysrtaken into account™. ([HELLMANN
1899], p. 81) Indeea, declination values obtained by different pilots
at the same place not only agreed poorly withreach other in magnitude,
but often contradicted each other with respect to direction, so "that
doubts of the correctness of the magnetic declination arose everywhere
«o." (Qoc. eit.). Clearly a prerequisite to accurate measurement of
the deviation of a compass needle from the north at any particular
place is accurate knowledge of the direction of "north" at tﬁat place;

and this is what was lacking, especially on shipboard.

45 6-
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The customary procedure for finding the north-south direction or
meridian line at a particular place before the advent of the 'morth-
pointing'" magnetized needle was to bisect the angle between morning
and afternoon shadows of equal length cast by a gnomon:j In 1525,
Felipe Guillen, an apothecary of Seville, presented éo King John III
of Portugal a portable instrument ("bréijula de variacén”, i.e., "sea-

compass for variation') that he had devised for measuring the magnetic

declination at a particular place on land or at sea. It consisted of

a small sun-dial setup with a magnetic needle and an azimuth scale

raduated from 0° to 180° clockwise (from N. through E. to S.) and
g

counterclockwise (from N. through W. to S.). The first to provide a

~/It is described clearly, for example, by the Roman architect Vitruvius
{(c. 88 — c. 26 B.C.} in his De Architectura Libri Decem (first printed
at Rome c. 1486), in two places (Bk. I, Ch. 6, par. 6-7 and 12). Thus

Let A [be the locus of a gnomon at] the centre of a

[level] plane surface, and B the point to which the

shadow of the gnomon reaches in the morning. Taking A

as the centre, open the compasses to the point B, which

marks the shadow, and describe a circle. Put the

gnomon back where it was before and wait for the shadow

to lessen and grow again until in the afternoon it is

equal to its length in the morning, touching the cir-

cumference at the point C. Then from the points B and

C describe with the compasses two arcs intersecting at

D. Next draw a line from the point of intersection D

through the centre of the cirecle to the circumference and

call it EF. This line will show where the south and north

lie.

—— Vitruvius, De Architectura ...

Bk. I, Ch. 6, par. 12; English
translation by M. H. Morgan from
[V 1914], pp- 29-30.

- Commonly known as the Indian circles method, this procedure has been
traced back to an Indian astronomical work dating from about 400 B.C.
([KIELY], pp. 37, 61-62, 281-282). An older and more accurate method,
but requiring a wide and absolutely level horizon and accurate sight-
ing, is based on analogous bisection of the angle between the points
of rising and setting of some particular star; and was used by the
ancient Egyptians to fix the orientation of the temples and pyramids

([EDWARDS], pp. 258-260).

!
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printed description of the use of such an instrument to measure
magnetic declination was Francisco Falero, a Portuguese in the service
of the Spanish navy, in the chapter on "The northeasting of the
needles" {(reproduced in [HELLMANN 1898]; English translation [FALEROG])
in his treatise on navigation published in 1535. Faiero describes
three procedures for determining the magnetic declination at a given
place with such an instrument: (1) by observation of the azimuth of
the magnetic needle at noon, when the shadow coincides with the meridian,
(2) by observation of the shadow azimuths corresponding to equal alti-
tudes of the Sun at "oge hour, or two, or three, etc., before noon ...
and at similar £imes after noon ..."and (3) by observation of the
azimuths of the Sun at sunrise and sunset. Falerc favored procedure

(2) because "it is a very good principle ... being true ... also it

'may serve more times per day than the others and there may be no error

in it, if it is well observed" ([FALERO 19431, p. 83) -- but he says

nothing on how to choose a 'best value" when the values found are not

21l identical.

—jIn procedure (1) the instrument is held level with the 0°-180° axis
lying in the meridian indicated by the shadow, and the needle indicates
the declination directly on the graduated scale. In procedure (2) and
{3), the instrument is held level with the needle pointing to 0°:
following the reading of the second (shadow or Sun) azimuth, the mean
("el medio") of the two azimuths will be the exact meridian ("sera el
meridiano pciso'); and the angle that the needle then makes with this
direction will be the declination sought.

-
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In "The shadow instrument'" (1537; facsimile reproduction
[HELLMANN 198%c)]; English translation [NUNES 1943]), Pedro Nunes
(1502-1578), chief cosmographer to King John III of Portugal and tutor
to the royal princes ([SMITH 1928}, p. 349), describes (i) his improve-
ment of the Guillen instrument by addition of a device for measurement
of the altitude of the Sun, and (ii) a new method of determining latitude
at any hour of the day. The importance of Nunes' instrument stems from
the fact that King John's son, Prince Luiz, presented a copy of this
instrument to his friend and fellow pupil of Nunes, John de Castro
(1500-1548), chief pilot of the Portuguese India Fleet, and charged him
to thoroughly test the instrument as well as Nunes' new method of
latitude determination on his voyage from Lisbon to Goa on the west
coast of India in 1538 ([HELLMANN 1898], p. 83; [TAYLCR 1956], p. 183).
De Castro executed this assignment very faithfully, making numerous
determinations of magnetic declinmation -- often two, three or four in
a single day by the morning-afternoon shadows method, and occasionally
also one by the sunrise-sunset procedure -— on his voyage to India around
the Cape of Good Hope in 1538; on his subsequent voyage along the west
coast of India, 1538-1539; and again on his voyage through the Red Sea

/

to Suez in 1541.  The 43 values of magnetic declination recorded ranged

—jDe Castro's logbooks, or "Roteiros", for these voyages lay for three
centuries in the archives of Portugal practically unused until they
were brought to light and published in 1882, 1843, and 1833, respec~
tively -~ for particulars, see [HELLMANN 1899%9]), pp. 84-85, or p. 186
of the introduction to [CASTRO 1943]. Passages relating to geomagnetic
determinations were reproduced in facsimile by Hellmann [1898(d)].

A new edition of the complete texts of all three of these logbooks
(Roteiros de Jodo de Castro, 2nd edition, 3 vols., with preface and
annotations by Commander A. Fontoura da Costa. Lisbon: Divisdo de
Publica¢des e Biblioteca, Agencia Geral das Colédnias, 1940) was
utilized in preparing the English tramnslation of selected extracts

{CASTRO 1943].

+
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from the extreme of 19-1/2° or 20° E in the South Atlantic at Lat,
31-1/2° S to the north-north-west of the Tristan da Cunha Islands;
through 0° at the first promontory of Natal northeast of tﬁe southern-
most tip of Africa; to 11° W on the coast of India ([CASTRO 1943],

p. 189; and [TAYLOR 1956], p. 183). The precision of recorded replicate
determinations made on the same day by the morning-afterncon shadows
procedure was remarkable: '"the differences fluctuate only between 0

| and 3/4°" and reflect not only the errors of observation but also "those
real differences ... caused by the progress of the ship [which] could
not be taken into account" ([HELLMANN 1899], p. 85) However, in no
case (at least in the translated extracts [CASTRO 1943]) did de Castro
take any mean of, or otherwise select a "best' value from among,
replicate determinations made on the same day -- perhaps he considered

" any such action unnecessary in view of the very close agreement of
determinations made on the same day in comparison with the great range
of values of magnetic declination encountered in the course of his

travels. His 43 values were nonetheless quite sufficient for him to

*jDe Castro says that "if the ship sails firmly and smoothly, whoever
possesses good estimating power cannot err above 1/2°" in reading a
shadow's azimuth, but "if the ship rolls strongly, it will lead us
easily to an error as large as 2°" ([CASTRO 1943}, p. 188). Conse-
quently, azimuths of the style's morning and afternoon shadows at
equal altitudes of the Sun seem to have been recorded in the perma-
nent record only when they could be "estimated'to the nearest 1/2°,
and the derived value of the declination recorded to the nearest
1/4°. The largest "difference' between replicate determinations made
on the same day by the shadows method that I have found in the transla-
ted extracts [CASTRO 1943) is 1/2°, the range of the four determina-
tions given on p. 191. .
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conclude that "it is certain ... that there is no relation between
the variation of the compass and the longitude of a place", a finding
that seems to have discouraged further studies of magnetic declination
by the Portuguese ([CRONE 1961], pp. 395-396).

Skipping over the next four items (which I hgve designated "(e)"
through "(h)" in my reference entry for Hellmann's "Rara magnetica"
[HELLMANN 1898]), we come to the facsimile reproduction of the 1596
reprint of a 1581 work [BOROUGH 1581] by William Borough which contains
a set of replicate determinations and a pair of summary figures which

I feel probably are coarsely rounded values of the arithmetic mean.

—fNone of the four items skipped ~- the Hartmann letter of 1544 announcing
the discovery of magnetic dip, the Mercator letter of 1546 expressing
and substantiating the view that th: Earth has a magnetic pole, the
excerpt from Cortez's book of 1551 containing the earliest exact
description of a marine compass and its construction, or Norman's book
of 1581, the first printed work purely on geomagnetism —- contains any
multiple measurements of a single magnitude, and hence no opportunity
for "mean taking" of any kind. English translations of the first
three may be found in Terrestrial Magnetism and Atmospheric Electricity,

Vol. 48 (1943), pp. 128-130, 201-202, and 84-91, respectively. HNorman's
boock is in English.

i
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1581 (Borough). On October 16, 1580, William Borough
a;
(1536-1599) made 9 determinations of the magnetic declination at Lime-

house in Londog's East End, with a Guillen-Falero type instrument of
his own design:j using morning and afternoon shadows ;orresponding to
Sun altitudes 17, 18, ..., 24, and 25°. His shadow azimuth readings
(to the nearest minute) and the corresponding declination values (to

the nearest half-minute) are given in tabular form on the second page

of Chapter 3 of [BOROUGH 1581)] and [HELLMANN 1898(i)], and reproduced

on page 8 of [GELLIBRAND 1635]. The 9 declination values are 11 degrees

and 17-1/2, 11-1/2, 30, 22-1/2, 22-1/2, 15, 20, 17, 14 minutes E,

respectively.

... and conferring them altogether, I doe finde the true
variation of the Needle of Compas at Limehouse to be about
11 d. 1/4 or 11 d. 1/3, which is a point of the Compasse
just [360°/32 = 11 1/4°] or little more.

—-- BOROUGH [1581], Chapter 3, last

paragraph
For these 9 values I find:
mean = 11° 18 8/9! median = 11° 17 1/2'
midrange = 11° 20 3/4! mode = 11° 22 1/2!'

Clearly the operation of "conferring them altogether" is not unequi-

vocally identified by "about 11 d. 1/4 [= 11° 15'] or 11 d. 1/3

a.
—/Treasurer of the Queen's (i.e., Elizabeth's) Ships in 1582, and later

Comptroller of the Navy. Brief biographies of William Borough are to
be found toward the end of biographies of his older brother, Steven,

(or Stephen), in various editions of the Encyclopaedia Britannica.
For additional information, see [TAYLOR 1954], Biog. 26, Work 58, and

text pages 37-38.

_ijortrayed in a figure on the second page of Chapter 1 (of [BOROUGH 1581]

or [HELLMANN 1898(i)]), which is clearly reproduced in [CRONE 1961],
p. 383.
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[= 11° 20']". The median is exactly midway between these two summary
values; the other three are all closer to the "11 d. 1/3". These
facts certainly seem to favor the inference that the two summary figures

are rounded values of the median., Nonetheless, the unusual expression

"conferring them altogether", together with the explicit mention of
the "Arithmeticall meane! in the later related instance that I shall
spell out shortly, lead me to believe, albeit uneasily, that the two

summary figures are rounded values of the arithmetic mean.

Forty-two years later, Edmund Gunter (1581-1626), Professor of
_Astronomy at Gresham College, London, finding the magnetic declination
there by a new methéaj to "be only 6 gr. 15 m", i.e., nearly 53° less

than Borough's smallest value, he '"enquired after the place where

Mr. Borough observed, and went to Limehouse with some friends ... and
towards night the 13 of June 1622" made 8 determinations of the
“yariation" of the Needle (by the new method), which ranged from 5°40'
to 6°13' ([GUNTER 1673}, p. 279; his data table is reproduced in

[GELLIBRAND], p. 15, and in [WATERS], p. 422). Gunter did not choose

or deduce a "best" or summary value from his own data. And he refrained

—/Some years earlier, Gunter had developed computational procedures for
solving such problems as: Given the hour of the day in local time,
and the Sun's altitude and declination (angular distance north or
south of the celestial equator, as given in astronomical tables for
the day of the year concerned), to find the Sun's azimuth (angular
distance from the meridian). "Having these means to find the Sun's
Azimuth, we may compare it with the [Sun's] Magnetical Azimuth [angular
distance from the magnetic "north-south line' indicated by the compass
needle], to find the variation of Needle" ([GUNTER 1673], The Cross-
Staff, p. 278, where a worked example is given; see also [WATERS],
pp. 358, 421-422).

-3~
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from commenting on the large difference between his and Borough's values;

perhaps, in deference to the authoritative pronouncement of William

Gilbert (1540-1603) '"variatio uniscujusque loci constans est' ("variation

at any one place is constant'); or he may have regarded the difference

as casting doubt on the accuracy of Berough's values. |
Whatever may have been Gunter's view, his successor as Professor

of Astronomy at Gresham College, Henry Gellibrand (1597-1636), pursued

the matter furthér, discovering the non-constancy of magnetic declination

with respect to time at a given place, and incidentally providing us

with' the earliest explicit examples of "taking" the arithmetic mean

that I have come upon to date.

1635 (Gellibrand). As a check on the accuracy of the values that

Borough obtained in 1580, Gellibrand selects the particular set of

" observations corresponding to 20°0' morning and afternocon apparent

altitudes of the Sun. By an astronomical computation analogous to that

mentioned in the fottnote to p. , he calculates the Sun's azimuth at

each of these two instants; and from Borough's values of 45°0' and
20°15" for the angular deviations of the two shadows at these instants
"from the North of the Needle" "to the westwards" and "to the East-
ward", respectively ([GELLIBRAND], p. 8), he derives a declination of
11°0'0" from the morning data (p. 13), and 11°32'28" from the afternoon
data (p. 14), for comparison with Borough's single wvalue, 11°22'30",

He quite clearly viewed his two values as substantiating the approximate

—

*/The title of Chapter III of Book IV of Gilbert's great book,
De Magnete ..., (1600) -- see, for example, [GILBERT 1958], p. 240.
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correctness of Borough's value; but considered the mean of his two

values as closer to the truth:

So that if we take the Arithmeticall meane, we may probably
conclude the variation [i.e., declination] answerable to his
time to be about 11 gr. 16 min.

-- GELLIBRAND [ 1, p. 15;
emphasis added.

Note that the value stated is a rounded down value of the exact

.arithmetic mean, 11°16714",

Accepting Gunter's 8 determinations in 1622 at face value,
Gellibrand concluded: '"Thus have we prooved that for the Interstice
of 42 yeares, there hath beene an evident diminution of five degrees
variation" (pp. 15-16). He went on to confess: "... this great
discrepance moved some of us to be overhasty in casting an aspersion
of error on Mr. Burrows observations ... till an acquaintance of ours,
lately applying Mr., Guunters owne Needle ... could not finde the
variation go great as 6 gr. 15 min. [sic] forﬁerly found ..." (p. 16).
Confirming by a number of preliminary-observations of his own that the
Yyariation" had apparently decreased further, he 'went to Diepford ...
to the very same place where Mr. Gunter heretofore had made observatién
..." (p. 16) and made 11 definitive declination determinations on
12 June 1634 by the aforementioned procedure based on computation of
the Sun's azimuth from its observed altitude. The values obtained were
(pp. 17-18):

before noon: 4°6', 4°10', 4°1', 4°3' 3°55'" ;

: )
after noon: 4°77, 4°10', 4°12', 4°4', 4°0', 4°5' .

/ -

- 'arithmetic mean = 4°4 9/11'; median = 4°5";
midrange = 4°3 1/2'; mode = 4°10".

A
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He summarized these results thus:

These Concordant Observations can not produce a variation
greater than 4 gr. 12 min. nor less then [sic] 3 gr. 55 min.
the Arithmeticall meane limiting it to 4 gr. and about 4

minutes.

~= Gellibrand [ ], p. 18;
emphasis added.

In spite of the fact that the largest and smallest values are
stated explicitly and the midrange (4°3 1/2') is closer to 4°4' than
ig the arithmetic mean (4° 4 9/11'), I believe that in view of the date
(1635) of this statement we are justified in interpreting the words

"the Arithmeticall meane” here as signifying the arithmetic mean OF

all 11 values, and not, as in the case of the 1llth century al-Birumi

(sec. 3.3), as the arithmetic mean BETWEEN the extremes —-- see secs.

2.1-2.2. The fact that this interpretation involves a rounding down of
over 1/2 should not, I believe, cause us any concern because a similar

rounding down of over 1/2 occurs in the 1668 "D.B." example discussed
/ .

next, where the verdict is clear-cut.

w A month later, on 4 July 1634, Gellibrand made 13 additional
determinations at "Paul's Cray in Kent". The individual values
were (p. 19):
4°0', 3°55', 3°56', 3°55', 3°58', 3°58', 4°0', 3°58', 4°2', 4°0',
3°59', 3°59', 4°2°'.

mean = 3° 58 8/13'. median = 3°59'.
“midrange = 3°58 1/2'. Two modes (3 values) at 3°58' and 4°07.

This time he does not mention '"the Arithmeticall meane' at all, but
says simply: "So that its plaine, the observations made in this
place do all make the variation to fall neere upon 4 degrees'';

and then sums up with "Hence therefore we may conclude that for the
space of 54 yeares (the difference of time betweene Mr. Burrowes and
these last observations of ours) there hath beene a sensible

diminution of 7 degrees or better'" (p. 19).

(Footnote continues on p. (- )
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. {Footnote from p. ..~ , continued. )

Thus, Borough's (1581), Gunter's (1622), and Gellibrand's (1634)
observations together revealed unequivecally: '"that variation, far
from being immutable at any place, as hitherto believed, changes
with the passage of time. This discovery of 'the secular. change of
variation' was to give an added urgency to the problem of finding
longitude astronomically. Not only did it show all earlier obser-
vations of variation in all parts of the world to be thoroughly
unreliable for longitude-finding, but it showed how imperative it
was to check the steering-compass frequently for variation, either
by azimuth or amplitude observations [of the Sun]" ([WATERS], p. 153)

~(7-



4.1-13
Although Gellibrand's discovery of the non-constancy of magnetic
declination over time at a particular place destroyed the hope of using
measurement of "Qariation of the compass' as a substitute for longitude

measurement in navigation, Gilbert's De Magnete ... had launched the

study of geomagnetism as a scientific discipline in its own right; and
measurement of magnetic declination in various parts of the world
continued, and continues today. Searching through early issues of the

o/

Philosophical Transactions of the Royal Society, I came upon the follow-

ing clear-cut example of "taking' the arithmetic mean as the "best"
4 p g

approximation to the truth.

1668 (D.B.) The issue of the Philosophical Transactions, dated
"Monday, July 13, 1668", contains "An Extract of a Letter, written by
D. B. to the Publisher" [D.B. 1668] presenting a table of 5 magnetic

declination measurements made near Bristel on June 13, 1666, by

b/

Capt. Samuel Sturmy, "an experienced Seaman, and a Commander of a Merchant

¢!
Ship for many years,'" who took them "in the presence of Mr. Staynred,

an ancient Mathematician, and others."”

In this Table, he [Capt. Sturmy] notes the greatest ...
- difference to be 14 minutes; and so taking the mean for the
true Variation, he concludes it then and there to be just

1. deg. 27. min.
— D. B. [ 1, p. 726

ngublication of which began in 1665, at first partly as a private

profit-seeking venture of the Society's Secretary, Henry Oldenberg
(c. 1615 - 1677).

é-/21.633—1669. For further details see [TAYLOR 1954], Biog. 265a, Work 329.

o .
—jPhilip Staynred (Standridge), fl. c. 1621-1669. For further details
see [TAYLOR 1954], Biog. 145 and Work 328,



401_14
The 5 individual determinations "in this Table" are:
1°22', 17367, 1°34', 1°24°, 1°23°'.,

_The exact arithmetic mean of these 5 values is 1°27 4/5';

the median = 1°24' ; the midrange = 1°29' . The "mean" taken "for

the true Variation" was the arithmetic mean indubitably!




