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SUMMARY

When data composed of several categorical responses together with categorical or
continuous predictors are observed, the multivariate logistic transform introduced by
McCullagh and Nelder can be used to define a class of regression models that is, in many
applications, particularly suitable for relating the joint distribution of the responses to
predictors. In this paper we give a general definition of this class of models and study
their properties. A computational scheme for performing maximum likelihood estimation
for data sets of moderate size is described and a system of model formulae that succinctly
define particular models is introduced. Applications of these models to longitudinal
problems are illustrated by numerical examples.

Keywords: LOGISTIC REGRESSION; LONGITUDINAL DATA; MULTIVARIATE CATEGORICAL
DATA; POLYTOMOUS RESPONSES

1. INTRODUCTION

Consider two binary responses A and B, and let w; = pr(4 =i, B =j). The
bivariate logistic transform was defined by McCullagh and Nelder (1989) by the
mapping * = 7 = (15, My, 1) Where
. . T
Mo = logit(m,),  mp =logit(wy), e = log(“—”),

T2
the dot subscript denoting summation. When bivariate binary data are observed
under different observational or experimental conditions as encoded in the predictor
variable x, we can consider a class of models that relate « to x by

Na = Bzxas Ny = 6be9 Nap = szxab’

where x,, x, and x,, are subsets of x and 3,, 8, and S, are parameters to be
estimated. Such models are called bivariate logistic regression models.

The primary motivation for considering these models is best explained by con-
trasting them with the more familiar log-linear regression models. In particular,
if we consider the transformation

11 11 Ty T2
A, = logl—1, Ay = logl—1, Anp = logl——=],
¢ & (Wzl) b & (‘ﬂ' 12) ab & (’Flz Wzl)

then a model of the form
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Aa = /33Xa, Ab = 6gxb’ Aab = szxab (l)

is called a log-linear regression model.
Suppose initially that only the single binary response A is observed. A natural
class of models to consider in this case is the linear logistic models,

IOgit(W) = 6Ixa9

where m = pr(4 = 1) = 7, .. When the second response B is added to the problem,
both the bivariate logistic and the log-linear regression models can be seen as
generalizations of the univariate logistic regression model. A serious objection to
the log-linear model (1) is that it is incompatible with the univariate model that it
seeks to generalize, i.e., given model (1), the marginal relationship between 4 and
X is in general not linear on the logistic scale. Furthermore, if a third response C
were recorded, the log-linear model that generalizes model (1) would be similarly
inconsistent with both the univariate logistic model and the bivariate log-linear
model.

Thus within the family of log-linear regression models the way that the marginal
relationship between A and x is modelled depends on the number of response
variables considered. By contrast, the bivariate logistic regression model implies
univariate logistic models for both A and B marginally. It is this property, termed
‘upward compatibility’ by McCullagh (1989) or ‘reproducibility’ by Liang et al.
(1992), that makes the bivariate logistic model preferable to the log-linear model
for many applications. In cases where both responses arise on an equal footing and
the objective of the analysis is to study how the joint distribution of A and B varies
with x, as opposed to trying to predict A from B or vice versa, it is difficult to see
why the parameters A, and A,, which represent conditional logits in the log-linear
decomposition of =, would be of interest. By contrast, the parameters 7, and 7,
of the bivariate logistic model are the marginal logits that would be considered in
the univariate analyses and therefore have a natural and useful interpretation that
is independent of other observed response variables.

In this light, it would seem that the log-linear approach has gained wide accep-
tance largely because of its convenient theoretical properties and the relative
ease with which models can be specified and maximum likelihood calculations
performed. To restore the balance, we define the class of multivariate logistic
regression models in a way that leads to a computational scheme that is feasible
for problems of moderate size. Various theoretical aspects of these models are
also addressed.

2. MULTIVARIATE LOGISTIC TRANSFORM

The multivariate logistic transform as described for two binary variables in
Section 1 can be extended to an arbitrary number of discrete response variables of
either nominal or ordinal type. The general form of the transformation is

1 = CTlog(Lx), ()

where L and C are tensor products of suitably chosen marginal indicator and
contrast matrices respectively. An explicit description of their construction is given
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in Glonek and McCullagh (1994). McCullagh and Nelder (1989), p. 219, illustrated
this formulation of the multivariate logistic transform for three binary variables.
Other models based on equation (2) have previously been considered by Grizzle
et al. (1969).

When the transformation is applied in the general case with response variables
A, Ay, ..., A; having r, ry, ..., ry levels respectively, the components of
CTlog(L7) are response contrasts denoted symbolically by

7= (¢, Ay, A;, A 1Ay, A;, A1As, A)A;, AjAYA;, ..., AjA; ... Ay,

where ¢ represents the null contrast log(X =) = 0. Although ¢ is strictly superfluous,
it is convenient to retain it as a means of ensuring that the mapping = ~ g is of
full rank and also expressing the requirement that Z« = 1.
The derivative matrix (d7,/dw;) can be seen, from the chain rule, to be

(a—n) = CT™D-'L

o
where D = diag(Lw), as was stated in Grizzle et al. (1969). Glonek and McCullagh
(1994) prove, for the class of matrices C and L defined there, the following result.

Theorem 1. The matrix CTD~!L is non-singular provided that = > 0.

3. INVERTING LOGISTIC TRANSFORM

One way to fit marginal models is to maximize a Poisson likelihood kernel subject
to constraints implied by the model (Balagtas et al., 1995). In the more common
direct method described here, the key step is the calculation of the inverse mapping
and its derivative matrix, i.e. for given g it is necessary to invert the equation
n = CTlog(Lx) to obtain x in terms of 5. The derivative matrix is then given by
(0w/dn) = (C™D~'L)~!, where D = diag(Lx).

In inverting equation (2), it is also necessary to ensure that x > 0 and, to do so, we
work with » = log x, i.e. we seek to solve for » in the equation = CTlog(L exp »).
Excluding the special cases d = 1 or d = 2 with r; = r, = 2 as discussed in Palmgren
(1989), no explicit solution is available, so an iterative method must be used. In
particular, the Newton-Raphson iterations can be easily applied as described below.

(a) Begin with an initial approximation »,.
(b) Then take
vo =9, — {C"'D;L,Ldiag(v,_,)} ' {C"log(Lexpw,_,) — n},
where D, _; = diag(L expw,_,), and iterate until convergence.

Although theorem 1 shows that the mapping x — % is invertible, it must be kept
in mind that the range of the mapping is usually a proper subset of R¥, where
k =1I;r;. Thus, for certain values of %, no positive solution = to equation (2)
exists. This may occur for at least two reasons.

First, when ordinal variables are involved, certain monotonicity requirements are
placed on 5. For example, with a single ordinal variable having three levels, we find

n = (log, logit(m,), logit(m, + m,))T
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and since m, > 0 we must have n; = 1,.

Second, if there are more than two variables it can also happen that no solution
exists because of incompatibility of the lower dimensional marginals. For example,
the requirement that the variance matrix of the d categorical variables be non-
negative definite places certain restrictions on the one- and two-dimensional
marginal probabilities which, in turn, imply restrictions on the first- and second-
order logistic contrasts. In fact, the restrictions on the marginal probabilities do not
arise solely from moment considerations and a detailed discussion may be found
in Darroch (1962) or Glonek et al. (1988). Unfortunately, no readily computable
criterion, for determining whether a particular ¢ is valid, is available.

4, MULTIVARIATE LOGISTIC REGRESSION MODELS

Multivariate logistic regression models are now defined to be those of the form
71 =XB 3)

where X is a kK X p matrix of constants and B8 is a p-dimensional vector of unknown
parameters. With the preceding definition of the multivariate logistic transform, »,
is always 0 and therefore we assume that the elements of the first row of X are also
0. In practice it is more convenient simply to omit »; and the corresponding rows
of (dw/0dn) and X.

Preliminary to fitting a multivariate logistic regression model to a given set of
data, it is necessary to compute x as a function of 8 and also to evaluate the
derivative matrix (dw/d8) = (CTD~'L)~'X. Given the method of computing =
from 75, the computation of x from B is straightforward.

Consider a table of multinomial frequencies y; ~ M (n;, x;), where CTlog(Lx;) =
X;B. The log-likelihood is

[(B; y;) =y logx;,

the score vector is
. _(om\T .. -1
s(B; y:) = (%) diag(=;) ~'y;

and the information matrix is

T 0w
Zi(B) =n; (66) diag (=) 1(66)

Given m independent observations (y;, 7y, X1), (Y2, 2, X3)5 <« s (¥Yms> Bms Xm)
the log-likelihood is /(B) = L /(B;y;), the score vector is s(8) = £s(8, y;) and the
information matrix is _#Z(B8) = L_#,(B). Using these formulae, 8 can be estimated
by using the Fisher scoring algorithm.

Observations with incomplete responses can readily be incorporated into the
analySIS In particular, if some subset of the response variables 4;, 4,, ..., 4;,
is recorded for a particular unit, then the probability distribution on that d,-
dimensional marginal table is multinomial and, by upward compatibility, a multi-
variate logistic regression model applies to the table of probabilities. Furthermore,
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the design matrix relating the marginal probabilities to 8 is constructed by selecting
the appropriate rows of the full design matrix that would be used if complete data
were available for that unit.

5. MODEL SPECIFICATION AND RESTRICTIONS

Although the formulation = X8 is completely general, the explicit construction
of X can be tedious. It is therefore useful to consider a symbolic specification of
common subclasses of models.

When no structure is assumed on the responses A4, 4,, ..., A, it is natural to
consider models based on a notion of interaction analogous to that used in the
analysis of factorial experiments. However, simple model formulae of the type
introduced by Wilkinson and Rogers (1973) are not suitable. For this reason, we
use the syntax of McCullagh and Nelder (1989), pages 222-223, where the linear
predictor for each component of the multivariate logistic transform is specified
separately using conventional notation.

To illustrate, consider two ordinal variables A and B with r and s levels respectively
and let y; = pr(4 < i, B<J). In this situation we might consider the regression
model

) . (L= Yis — v + i)
M: 10 1t is) = 01' + B'irx’ IOglt( r') = d’ + ﬂTxy 10 {‘YJ : Z =
git(rs) L Bl (v — 100 — 70
4)

This model is most naturally thought of as the conjunction of three separate models:
one for the marginal distribution of A4, one for the marginal distribution of B and
one for the set of global odds ratios; Dale (1986). This is made explicit in the
symbolic representation

A: A+ Ax; B: B + x; A.B;. )

The fact that the components of 9 are not variation independent introduces some
restrictions on the interpretation of the models. In particular, it is pertinent to ask
whether there are model formulae for which no table of positive probabilities =
exists for any possible value of the parameters. For nominal variables, no such
model exists because setting all parameters to 0 yields uniform probabilities across
the cells of the contingency table. However, when ordinal variables are involved
there are models for which this can occur. For example, with an ordinal variable A4,
the null model

logit(y;) =6, i=12,...,r—1,

implies that m, = m3=...=m,._, =0, irrespective of 6. For this reason it is
sensible to require that the minimal model for a single ordinal variable A be 4: A.
When A,, A,, ..., A, are ordinal the minimal model is

Al: A]; Az: Az; .oy Ado: Ado;°

Additional constraints on the log-odds ratios and higher order interactions are not
required because setting all those quantities to 0 yields the independence model.
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Even with this restriction, it will be the case, for many useful models, that
no table of probabilities x satisfying n = CTlog(L«) exists for certain values of
X and B. This can complicate the interpretation of such models when used for
prediction because it may then happen that certain values of the predictor variable
do not produce valid values of 5. The first component of model (4) provides a simple
example of this. On the numerical side, it may also happen that intermediate values
of B chosen by the Fisher scoring algorithm lead to inconsistent values for 5 thus
preventing completion of the calculations. However, we have not observed this with
the data sets that we have studied. We surmise that it is very unlikely when a well
fitting model is applied to adequate data with good initial estimates.

An important application of multivariate logistic models is to longitudinal
categorical data. Suppose now that 4,, A4,, ..., A, are repeated measurements of
the same variable A taken at times ¢, < t, < ... < t;. Assume for simplicity that
A is dichotomous. For any /-tuple i = (i, i, ..., ) of (1, 2, ..., d) let x; denote
the /-dimensional marginal table of probabilities for A4;, 4;,, ..., 4; and then let

Ny, = logit {‘ll','l ( 1 )} N

.. =1 Tiliz(l’ 1) 7ri1iz(0’ 0)
1’!112 g Wiliz(l, 0) 7l",-l,~2(0, 1) 9

—_ lo rilizig(l’ 1’ 1) 1‘.1'11'21'3(1’ 0’ 0) 7ri1i2i3(0’ 1’ O) Wi]izig(o’ 0! 1)
Wiy = SO rilizig(l’ 1, 0) m;, (1, 0, 1) 7ri1i2i3(0’ 1, 1) Wi,izi,(o, 0,0))’

and so on. In this context, it is of interest to consider models such as
m, = o; + BT
Nii, = ’Y(|ti, - ti2|)a (6)
Nisiis = 05

and so on. Such models fall into the general class of multivariate logistic regression
models (3) but cannot be specified by using model formulae of the form (5). Often
the models that are appropriate for longitudinal data have the following properties.

(@) The parametric form of the model for #;, . ; depends only on /.
(b) The parametric form of the model for »;;, . ;is symmetric in (i, &, .. ., i;).
(c) Considering all /-dimensional terms, the parameters can vary in one of the
following ways:
(i) [c]—the parameter values are constant over all terms »;, with i} < i, <
e < ll;
(ii) [s]—the parameter values are the same in »; and »;- if (4, ¢, ..., &) =
(4, +c, t, +c, ..., t, + c) for some c;
(iii) [¢] —the parameter values are unrestricted.

A class of models that satisfy these criteria can be specified by model formulae of
the form

L fis 20 /3 s K fygs
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where each f; is the model formula for all of the /-dimensional terms, 7;;, . ;.
The f, themselves can include external factors and covariates in the same way as
a standard Wilkinson-Rogers-type formula together with the symbols [c], [s], [«]
and numbers indicating the highest order ‘interaction’ terms between 4;,, 4,,, .. .,
A; that would appear if that part of the model were specified in the notation of
expression (5).

For example, model (6) is expressed in this notation as

1: [u] + x; 2: [s]; 3: [c];.

To provide a fuller illustration, suppose that A4 is polytomous and that we wish to
consider a model

7, (1) = o, (1) + Bx,
'rliliz(jl’jZ) =Yty -t U1s J2)s
Nisigis 15 J25 J3) = 012(J15 J2) + 01315 J3) + 623 (2, J3) for iy < i, <ij
and so on. This model can be expressed equivalently by the model formula
1: [u].1 + [c]l.x; 2: [s].2; 3: [c].2;.

It is worth making some further remarks on the interpretation of the symbols [c],
[s] and [#]. These can be thought of as representing multilevel factors across the space
of ‘units’ {i: |i| = /}. In this case, [c] represents the vector of 1s, [s] represents the
levels defined by the equivalence relation i ~ i’ if 4 = . + ¢ and [u] represents the
case where each iis a distinct level. Finally, we note that the use of the three symbols
[c], [s] and [«] introduces some redundancy in the sense that any two are sufficient
if it is agreed that the third is to be the default. In what follows we adopt the con-
vention that [c] is implicit in any expression where [s] and [«] are absent.

6. INFORMATION MATRIX

For two binary variables, McCullagh and Nelder (1989) gave the form of the
information matrix as

V,/A A,/A 0
F(Mas Mps M) =M|{A_ /A V,/A 0
0 0 Vy

where

V,=m.m V, v, ! + : + 1 + L)”
= =T, B P A
a 1.702, b AT 2, ab T T2 T2 22 ’
V,V, — A2
Ay =TTy — T A=—= -
- 12721 117225 v, V,

If several units are observed and the multivariate logistic regression model

Ne = XBa» 7 = XBs, Nap = XBas
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is considered then the information matrix takes the form

X'D,X X'™Dp,X O
i(ﬁaa ﬁb, Bab) = XTD12X XTD2X 0
0 0 XD, X,

where D, = diag(mV,/A), D, = diag(mV,/A), D,, = diag(mA,/A) and D;=
diag(mV,).

One question raised by the multivariate logistic regression model concerns the
potential gains in efficiency that they offer when compared with the marginal
estimates of the same parameters. As was noted by McCullagh and Nelder (1989),
the parameter B8,, is orthogonal to the marginal regression parameters (8,, 8;) and
has the same variance as the log-linear estimate irrespective of (8,, 8;). Moreover,
this is true irrespective of the form of the linear models that 8, and 8, are assumed
to satisfy.

However, B, and B, are not orthogonal and therefore there is scope for gains in
efficiency in estimating these parameters. The previously mentioned orthogonality
shows that the estimation of 8,, has no bearing on the asymptotic variance matrix
of (8,, B,). Consider now the parameter 8, with estimates based on the full likeli-
hood and the marginal likelihood. The asymptotic variance matrices of these two
estimates are respectively

{XT(D, — D, X(X"D, X)'X™D;;) X} ! and (X"D,X)~!,

where D, = diag(mV,) = D, — D,,D;'D,,. Unfortunately these matrices cannot be
inverted explicitly so an analytical comparison cannot be performed.

In the case of two binary responses, bounds on the gain in efficiency can be
obtained by observing that the matrix (X™D,;X)~! is a lower bound for the asymp-
totic variance matrix of the estimate of 8, based on the multivariate logistic model.
Thus the possible gain in efficiency is limited by A. Bounds for A in a single 2 x 2
contingency table « = {x;} can be found as follows. Taking m = min(m, , 7,),
w, = max(m, , 7,), T = min(m, , 7,) and T, = max(m,_, 7,) it can be shown that

A1- max{(1 f’m)/(l f“wu)’ (1 jﬁq-r.)/<1 fuv-ru)}'

This shows, as might be expected, that large gains in efficiency cannot occur unless
the marginals are such that most of the probability is concentrated either in the
diagonal or in the counter-diagonal cells of the table. The potential for variance
reduction also depends on the strength of the association between 4 and B and if
Y = 0y, T/ W12y then it can be shown that A > 44/y/(1 + V)2 However, practical
experience is that the bounds given above tend to be very generous and actual
improvements are usually very small. This is particularly so for regression models
of the form ‘A: x; B: x; A.B: x;’, which suggests that the potential gain in
efficiency may be bounded in that situation. In fact, this is not the case. An example
of such a regression model where the potential gain in efficiency is not theoretically
bounded is constructed in Glonek and McCullagh (1994). However, in that example
the gains in efficiency are negligible for values of the log-odds ratios that are
typically found in practice.
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The analysis for two binary responses is greatly simplified by the block diagonal
form of the information matrix. Unfortunately, the generalization to higher dimen-
sions and polytomous variables is less useful. The following result is proved in
Glonek and McCullagh (1994).

Theorem 2. Suppose that A, A,, ..., A, are nominal variables with r,, r,,
..., Iy levels respectively. Then the information matrix, for a single observation,
has the form

1 0 0
Z={0 B, 0]
0 0 B

where B, has dimension (k — k; — 1) x (k — k; — 1) and B, has dimension k; x k;
with £k =1II;r; and &k, = II;(r; — 1).

In fact, the matrix ¥ = _#~! contains other zero entries corresponding to ‘orthog-
onality’ between each other interaction term and all subordinate interactions and
main effects. This can be seen by noting that V is just the large sample variance
matrix of the multivariate logistic transform of a table of multinomial proportions
and applying the previous result to all the lower dimensional marginal tables to
verify this claim. However, those other entries do not produce a finer block diagonal
structure in ¥ than that prescribed by theorem 2 and do not produce any other zero
entries in the information matrix. Consequently, they do not have an obvious effect
on the structure of the large sample variance matrix for the parameter estimates
in a multivariate regression problem. For example if A, B and C are binary variables
we can consider, as previously, a bivariate logistic model for 4 and B,

A:x; B:x; A.B:x;, @)
and also a trivariate logistic model,
A:x; B:x; AB:x; C:x; A.C:x; B.C:x; A.B.C:x;. ®)

Now, model (8) implies model (7), and, as has been discussed previously, the
estimates of B8, and B, are asymptotically uncorrelated with the estimate 8,, when
model (7) is fitted. However, if model (8) is fitted then B, is asymptotically
uncorrelated with all other parameter estimates, but, excluding special cases such
as X = 1, estimates of (8,, 8,) and B,, are correlated.

When some of the variables are ordinal, theorem 2 does not hold although the
information matrix can be seen to have the form

1 0
7= s b)
Because the multivariate logistic transform for ordinal variables can be derived by
applying the multivariate logistic transform for nominal variables to tables formed
by dichotomizing the ordinal variables at various cutpoints, theorem 2 can be used
to show that the inverse information matrix has other zero entries. However, these

entries do not imply a block diagonal structure and thus appear to have little
significance.
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7. EXAMPLES

7.1. Six Cities Data

We consider the subset of the data from the six cities study on the health effects
of air pollution by Ware et al. (1984) that has subsequently been analysed by Zeger
etal. (1988), and more recently by Fitzmaurice and Laird (1993). These data consist
of an annual binary response indicating the presence or absence of wheeze at ages
7, 8, 9 and 10 years for each of 537 children from Stuebenville, Ohio. The only
explanatory variable is a binary indicator variable for the mother’s smoking habits
during the first year of the study. The data are given in Table 1 of Fitzmaurice and
Laird (1993).

A sequence of multivariate logistic models was fitted to the data, beginning with
the saturated model and subsequently eliminating the highest order non-significant
interaction terms. In the model formulae in Table 1, the symbol 1 refers to the
marginal log-odds for wheeze, the symbol 2 refers to bivariate marginal log-odds
ratios, 3 refers to trivariate logistic contrasts, and so on. Thus, in the model ‘(1; 2):
[t].S; 3:8;’, the fourth-order logistic contrast is 0, the third-order contrasts depend
on the mother’s smoking habits and the lower order contrasts are unrestricted. In
the final model, the third- and fourth-order contrasts are 0, the log-odds ratios are
constant for each pair of time points and the log-odds for wheeze has a time-
dependent intercept with a constant effect of mother’s smoking habit.

The fitted parameters from the final model, ‘1: [¥] + S; 2;’, are given in Table
2. The positive coefficient of ‘1: S(2)’ means that the estimated odds for wheeze is
higher by a factor of exp 0.27 = 1.31 for children of smoking mothers (S = 2) than
for children of non-smoking mothers (S = 1). The deviance for this model is
17.27 on 24 degrees of freedom and the positive coefficient for maternal smoking,
although not statistically significant, is in broad agreement with the previous
analyses of Zeger et al. (1988) and Fitzmaurice and Laird (1993).

To make a closer comparison with those analyses we also fitted the model,
‘1: AGE*S; 2; where AGE is the age in years since the child’s ninth birthday.
The deviance for this model is 16.76 on 25 degrees of freedom and the parameter
estimates with their standard errors are given in Table 3. The parameter estimates
and standard errors of the one-dimensional marginal parameters agree, for all
practical purposes, with those given by Fitzmaurice and Laird (1993) but the

TABLE 1
Deviances for a sequence of models

Model Incremental deviance Degrees of freedom

(1; 2; 3; 4): [ul.S; —_
(15 2; 3): [u].S; 4: [ul; 0.008

1
(15 2; 3): [u].S; 0.41 1
(1; 2): [u]l.S; 3:S; 2.73 4
(1; 2): [ul.S; 0.40 4
1: [u].S; 2: [ul; 0.66 6
1: [u].S;  2: [s]; 2.19 3
1: [u].S; 2; 3.96 2
1: [u] +S; 2; 1.77 3
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TABLE 2
Parameter estimates in the model 1: [u] + S; 2;
Order Parameter Estimate Standard error
1: [u](1) -1.76 0.136
[11(2) -1.62 0.133
[41(3) -1.76 0.136
[u1(4) -2.12 0.150
S2) 0.271 0.178
2: (Intercept) 2.05 0.173
TABLE 3
Parameter estimates in the model 1: AGE *S; 2;
Order Parameter Estimate Standard error
1: (Intercept) -1.894 0.116
AGE -0.131 0.056
S 0.306 0.186
AGE.S 0.062 0.088
2: (Intercept) 2.032 0.173

marginal log-odds ratio used here is not directly comparable with the conditional
log-odds ratio given in that paper. The parameter estimates obtained by Zeger et al.
(1988) are likewise similar and, although their model of exchangeable marginal
correlations is not the same as the model of exchangeable log-odds ratios, the
values obtained are consistent. In particular, the common marginal correlation was
estimated to be 0.346 in Zeger ef al. (1988) and the marginal correlation for each
two-way marginal table can also be calculated from the parameters of the common
log-odds ratio model used here. For example, in the 2 x 2 cross-tabulation of
response at ages 7 and 8 years without exposure to maternal smoking, we calculate
the correlation to be 0.357.

Ordinarily, in longitudinal data of this sort, we might expect that the marginal
association or correlation between observations at times #, and ¢, would decrease
with |#, — t,]. However, the fitted log-odds ratios in the models 2: [«] and 2: [s]
show no evidence of such a pattern. The second model shows that the incidence
declines with age at an estimated annual rate of 12%. The high value for the
log-odds ratio (2.05) indicates that wheeze is strongly persistent over this age range,
i.e. that the variability between children is much greater than the variability between
time points for the same child. To say the same thing in another way, individual
susceptibilities are highly variable but they decline slowly over time in an essentially
deterministic way.

7.2. Clinical Trial for Skin Disorder
Koch et al. (1991) presented data from a certain clinical trial which, for con-
fidentiality, was fictitiously described as pertaining to the treatment of a skin
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disorder. The study comprised 72 subjects of whom 36 received the treatment and
36 received a placebo. An ordinal response variable (0 = excellent, 1 = good,
2 = fair, 3 = poor) was recorded for each subject on four occasions, 3 days
after treatment, 7 days after treatment, 10 days after treatment and 14 days
after treatment. The data are given in Koch ez al. (1991), Table 9-2, p. 228. Because
response category 3 was observed only twice, the adjacent categories 2 and 3 were
amalgamated to form a response variable with three ordered categories (0, 1, > 2).

When the data are represented as two 34 contingency tables the cell frequencies
are very small. In fact, 128 of the 162 cells are empty. For this reason it is not
possible to model the higher order interaction terms and so ‘1: 1.[u].X; 2: 2;,
with X indicating treatment, is the most complicated model considered. Since the
response categories are ordered, the marginal logits are cumulative. Consequently
all bivariate contrasts are of the global type as in Dale (1986) or Plackett (1965).
The term 2: 2;’ in the model formula implies that the four global cross-ratios are
the same for all the two-dimensional marginal tables, and the term ‘1: 1.[u].X;’
implies that the one-dimensional marginal probabilities are unrestricted. This
initial model was simplified by the elimination of the highest order non-significant
interaction terms as summarized in Table 4. The first simplification is the reduction
in the global cross-ratio term to 2;> which signifies that the four global cross-ratios
are equal, essentially a Plackett distribution with constant cross-ratio.

Although the incremental deviance for the final model is marginally significant
(p = 0.041) we adopted it on account of its simple interpretation. The parameter
estimates for that model are given in Table 5. The two parameters, 1(1) and 1(2),

TABLE 4
Deviances for a sequence of models
Model Incremental deviance Degrees of freedom
1: Lul.X; 2:2; — -
1: 1.[u]l.X; 2; 1.62 3
1: L.[u] + 1L.X + [ul.X; 2 2.64 3
1: L[u] + L.X; 2 1.36 3
1: 1.[u] + X; 2 0.63 3
101+ [u] + X; 2 8.25 3
TABLE 5
Parameter estimates in the model 1: 1 + [u] + X; 2;
Order Parameter Estimate Standard error
1: 1(1) -3.236 0.377
12) -0.419 0.287
[u](2) 1.353 0.279
[u1(3) 1.376 0.280
[ul(4) 2.443 0.313
X 1.242 0.343
2: (Intercept) 1.485 0.286
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Fig. 1. Diagram of the final fitted model: (a) controls; (b) treatment (OJ, fair-poor; 3, good; [,
excellent)

give the base-line logits, for day 3 with no treatment, of scoring 0 and 1 or less
respectively. The parameters [¢](2), [#](3) and [u](4) show the increase in both of
these logits over time. The parameter X shows the change in these logits resulting
from the treatment which in this case is positive and highly statistically significant.
The additive nature of the model for the marginal probabilities is illustrated in
Fig. 1. The common global cross-ratio parameter indicates a fairly strong positive
association between the responses at different times.

7.3. Computations
All computations were programmed in C. At the time of writing the models
described in Section 5 had not been fully implemented but it is envisaged that the
computer programs will be available from the first author.
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