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Abstract

The paper introduces a statistical concept of causality in filtered
probability spaces which links nonlinear Granger-causality to setwise
causality and to the concept of adapted distribution. The causality concept
is shown to be closely connected to extremality of martingale problems.

This is applied to the equation dxt = at(X)dt + dwt , and the results are
(2) (1)

) does not cause (nonlinearly) xt

when the solution (Xt) of the equation is of the form (xt(1),xt(2))

These criteria are similar to those which exist for linear causality for

used to derive criteria of when (Xt

time series.



1. Introduction

The purpose of this paper is threefold. We introduce a notion of
causality which unifies the nonlinear Granger causality with some related
concepts. We then show that this causality is very closely linked to the
concept of extremality of measure, and this will then be used to derive
testable criteria for noncausality for differential equations.

Linear Granger causality was introduced by Granger (1969), and has
since spawned a rich litterature, in particular Sims (1972), Pierce & Haugh
(1975), Granger (1980), Tjestheim (1981), Geweke (1982), Engle et al. (1983)
and Florens & Mouchart (1985). We shall study a nonlinear version of the
concept. Like the linear one, it defines that the process (Yt) does not
cause the process (Xt) if, for all t, the orthogonal projection of the
Lz-space representing XS, s>t , on the space representing Xs and Ys,
s<t , is contained in the space representing Xs » $<t. However, the
spéces representing stochastic variables are those over the o-field gene-
rated by these variables, while in the linear case they are the smallest
closed linear spaces containing the variables. The concept was first
suggested in Granger & Newbold (1977), ch. 7.4, and it has since been
studied by Chamberlain (1982) and Florens & Mouchart (1982). A similar
concept, "local dependence", has been Tooked into by Schweder (1970) and
Aalen et al. (1980). If (Xt,Yt) is a Markov process, then (Xt) is locally
independent of (Yt) ift (Xt) is Markov and is not caused by (Yt) in
the previously defined (nonlinear) sense (this can easily be seen from
Theorem 1 (p.402) in Schweder (1970)).

The study of Granger-causality has been mainly preoccupied with time
series. We shall instead concentrate on continuous time processes. Many

of the systems to which it is natural to apply tests of causality, take



place in continous time. For example, this is generally the case with

an economy. In this case, it may be difficult to capture relations of
causality in a discrete-time model, cf. the remarks in Bergstrom (1976),
ch. 1.1, 1.2 and 2.1, and the observed "causality" in a discrete-time
model may depend on the Tength of interval between each sampling, see
(inter alia) Granger & Hatanaka (1964), ch.7. Using a continous time
model may possibly only transfer this problem to the estimation side, but
there is reason to hope that it is possible to avoid it altogether by
constructing methods for testing causality involving sampling at
irregularly (or randomly) spaced times of observation. This might involve
something in the line of thinking from Shapiro & Silverman (1960), Beutler
(1970), Robinson (1980) and Jones (1981).

The plan of the paper is as follows. Section 2 presents the new
concept of causality, and discusses the relationship to nonlinear Granger
causality and to studies made in other areas. Section 3 looks at the
relationship between causality and martingale probiems, and Section 4
applies this to a concrete stochastic differential equation., The results
are used in Section 5 to derive testable criteria of noncausality in this

equation.

2. Causality and related concepts.

Let (2,F,P) be a probablity space. We fix a "time axis" T(c R)
for the space, so that whenever we speak of processes or filtrations,
their time parameter describes T. A filtration (Ft) is a family of
sub-o-fields of F which is nondecreasing as a function of t. (Gt)

is a subfiltration of (Ft) if Gt = Ft for all t € T. This will be



denoted (Gt) g(Ft) . F, 1s the smallest o-field containing all the
Fis (even if sup T<+w), If (Xt) is a process, Fi is the smallest
o-field making XS » St , measurable. (Xt) is (Ft)—adapted if
(Fp) < (F,) .

We define F° to be the set of A€F with P(A) =0 or 1. For
any o-field M, M= MvF® (the smallest g-field containing both M and
F). We say that M is the "smallest (P-a.s.)" o-field with a cer-
tain property if every other o-field M'(SF) with the same property
satisfies M'2M. In the same way, (Ft) is the smallest filtration with
a property if any other filtration (Gt) with the same property satisfies
(6,) 2 (F,) .

If (Fy), (6) and (H,) are filtrations, we define that (G,)

entirely causes (Ht) within (Ft) relative to P,
(Hy) < (Gy) 5 (F) 5P (2.1) ,

if (Gt) and (Ht) are subfiltrations of (Fi) and
vt vAeH, P(A|G,) = P(A|F,) (2.2} ,

the references to (Ft) and P being omitted if they are not necessary.
(2.2) is the same as saying that H_1is conditionally independent of Ft
given Gt for al1 t. For criteria of conditional independence, see
Chow & Teicher (1978), and for further theorems, see Mouchart & Rolin
(1979). The essence of (2.2) is that all information about (Ht) enters
the system (Ft) via (Gt)'

We also define that a filtration (Ht) is its own cause (within

(Ft)) (relative to P) if (Ht) < (Ht) s (F P. The definitions

£)
apply to stochastic processes as if we were talking about the corresponding



filtrations. E.g., (Xt) is its own cause within (F

(Fp) < (Fh 5 (F) s p .

t) iF

A process (Xt) which is its own cause is completely described
X
b

relative to (Ft) iff (Xt) is a Markov process (relative to (Fi))

by its behaviour relative to (F Ecliv., (Xt) is a Markov process

and the process is its own cause. Equivalently a process which is its

own cause is characterized by the probability measure on a function space.
For example, if Cd is the space of continous Rd-va1ued functions on
[0,t,;1, and if B(Cd) is the Borel-o-algebra on Cd (under the usual
sup-norm), a d-dimensional process (wt,Ft) is a Wiener-process iff (wt)
is its own cause within (Ft) and (wt) induces a Wiener-measure on B(Cd)
(see Sect.4).

The connection between nonlinear Granger causality and the concepts

defined above, is that (Yt) does not cause (xt) iff
(Fyvu) < (FAvu) (Fy*'vu) (2.3) ,

U being a o-field representing initial conditions (in the sense of
Florens & Mouchart (1982)).

"Entirely cause" is also connected to the setwise causality studied
by Suppes (1970). 1If (Ft) is a filtration, and M1 is a sub-og-field
of F_ , then at any given time t there is a smallest (P-a.s.) o-field

M, = F, so that

t
VAEM, NAH&)=FWMM2) (2.4) ,
the existence of such an M, being a corollary to Theorem 4.4 p.11-16

in Mouchart & Rolin (1979). It seems natural to define M2 as the "cause"

of M at time t. If M, = {A,A,0,8}, the "cause' M, is of a single -



event A, and for more complex M M, s the smallest (P-a.s.)

10
o-field containing all the "causes" of the elements of M, . Although
this is not exactly the same model as that studied by.Suppes, it is an
implementation of the same idea.

This model of causality is closely related to the Bayesian defi-
nition of sufficiency. In Bayesian terminology, (2.4) would define M,
as a sufficient o-algebra if Ft and M, had represented observations
and parameters respectively. For further details, see Florens & Mouchart
(1982) and Mouchart & Rolin (1979). We emphasize, however, that the above
definition of causality does not depend on Bayesianism as it involves
no c-algebras of parameters. The optimal estimates are of future events
rather than parameters.

The connection to "entirely cause" is now that (Ht) <(Gt) : (Ft)

iff Et contains the "cause" of Hoo at each time t. From the mini-

mality of M, it is also seen that there is a smallest (P-a.s.) filtra-

tion (Gél)) which entirely causes (Ht) within (Ft) . Also, for
rz1, one can define inductively (G£r+1) ) as the smallest (P-a.s.)

filtration which entirely causes (Gir)) , and if we set Géw) to be the
smallest o-field containing all the Gér)s (for all r), then (Gt(m))
becomes the smallest (P-a.s.) filtration which is its own cause and which
satisfy (H,) ﬁ(éém))-

The (Gir))s permit us to clarify the connection with the concepts
of "adapted distribution" and “synonymity", which in particular have been
studied by Aldous (1980), Hoover & Keisler (1984) and Hoover (1984). The
two concepts are relations between space/filtration/process-systems of the
type ¢ = (Q,F,P,Ft,xt) . To define them, let (G(r)) be defined as

t
above (with (Ht) = (Fi) - readers of Hoover & Keisler (1984) will note
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that (Gir)) = (Ftr ) whenever the latter is defined, see Definition

2.16 (p.168) of that paper). Also, let ¢ = (ﬁ,?,ﬁ,?t,it) be another
space/filtration/process-system, and with (Gir}) defined analoguously.
It is now easily seen fram Definition 2.6 (p.163) of Hoover & Keisler
(1984) that z and ' have the same adapted distribution iff
(Q,ﬁif),P,Egm),xt) and (Q,Eif),ﬁ;5§“>,2t) are equal up to null sets;

they have the same adapted distribution up to rank r iff (Q,Eir),P,Eir),Xt)
and (Q,Eir),ﬁ;ﬁir),it) are equal up to null sets. Synonymity is to have

the same adapted distribution up to rank 1.

To be precise, we also define thattwo systems (Q,6,,P,6,,X;) and

-~ o~ -

(Q,Gw,ﬁ,Gt,R ) are equal up to null sets if there is a bijection ¢ between
L'(G_,p) and L'(G_,P) (in the sense of equivalence classes of stochastic
variables) which is also a bijection between Ll(Gt,P) and Ll(Gt,ﬁ) for
all t, which preserves sums and products, which preserves the expectation
(E=E¢) , and which satisfies ¢(Xt) =ﬁt(ﬁ-a.s.) for all t.

Finally, it should be noted that "(Ht) is its own cause" sometimes
occurs as a useful assumption in the theory of martingales and stochastic
integration, see Brémand & Yor (1978), Yor (1979), and Strook & Yor (1980).
We shall see another example of this connection in the next section. In
this field, the concept is sometimes known as "Hypothesis (H)" . There is
also an "Hypothesis (H')" ; every (Ht)—martinga1e is an (Ft)-semimartinga1e.
For this, see in particular Jeulin (1980).

To end this section, we state two results which show some of the basic
properties of "entirely cause". They are easily deducted from (2.2), and

we have already used statement (i) of the first proposition.



Proposition 2.1.

Let (Ft) ’ (Gt) ; (Ht) and (I.) be filtrations on a probability

space (Q,F,P) . Assume that

(Gt) é(Ft) & (Ht) g(Ft) & (It)g (Ft)
Then, all expressions being " ;(Ft); P" ,
i) (H) <(6) = (H)) s (Gy)
and
i) (H) <(G) & (H)<(1,) = (Ht)g(EtnTt)

In particular, (i) together with Proposition 2.2 implies that < is

a partial ordering of completed (with F° ) filtrations.

Proposition 2.2 (alterations in the "framework" filtration).

Let (Ft) s (Gt) ; (Ht) and (It) be filtrations on a probability

space (Q,F,P) . Then the following statements are equivalent (being

5P
i) (TP <) s (6) & (TY<(G) s (F
) (TP <) s (F) & (H)s(6,) s (F)

3. Causality and martingale problems.

An extension of a probability space (Q,F,P) 1is a probability

space (Q,F,P) which satisfies that there is a measurable surjective
f

function

: (2,F) > (a,F) which satisfies Pf =P on F.



extention must also have the same time axis T as the original space.

By convention, if a filtration, say (Gt) s is difined on the original

space, (ét) is defined as
= -3
Gy = {f(A) :A €@ (3.1) .

The same applies to processes and sets of processes. There may, however
be processes or filtrations bearing the superscript -~ withouf having
been defined on the original space. Also, note that F o f"l(F).

On the space (Q,F,P), the process (Mt) is an (Ft,P)-martingale
if (Mt) is (Ft)-adapted and M_ = E(MtIFS) for all s2t. We then

have the following result:

Proposition 3.1.

Let (2,6_,P) be a probability space with a filtration (G Let

k-
H be a set of (Gt,P)—martinga1es. Then the following statements are

equivalent.

i) P is extremal in M , the set of probability measures Q on
G, which coincide with P on G _ = NG, and under which all elements

of H are (Gt,Q)- martingales.

ii) For any filtration (ﬁt) on an extension (ﬁ,ﬁ,ﬁ) of (Q,6,,P) ,
if (ﬁt) 2 (Gt) and if all the elements of H are (ﬁt,ﬁ)-martin-

gales, then
(Go) < (6) 5 (F) 5 (P) (3.2).

Note that the elements of H only have to be defined up to stochastic
equivalence under P . This is because P=a,P,+a,P  (a,,a,>0)

implies P, <X P 5



Proof.

(ii1) = (i) 1is obvious if P = a,P +a,P, (ai,a22>0) , SO that

P, and P, coincide on G__ and the elements of H are martingales

under P, , but so that P, = P, , then set
Q= ax{1,2} (3.3),
Fe={Ax{1} U Bx{2}: A,BE G, } (3.4)
and .
P(Ax{1} u Bx{2}) = a,P. (A) +a, P, (B) (3:5) .

The space (Q,F_,P) with filtration (?t) satisfies both the con-
ditions of (ii), but contradicts (3.2). Hence the result follows.

(i) = (i) .

Assume that there is an extension (Q,F,P) of (2,F,P) , with a
filtration (?t) z(ét) so that all the elements of H are (?t,ﬁ)-
martingales, and so that (3.2) is not satisfied. This means that there

is a lieém,a UET , and an AEI.TU for which

IAIRdP - fﬁE(IR]Gu]dP (3.6) .

Define, for n e L' (8,6 ,0) ,

6(n) = E(13E(n|G,) +Iﬁﬁ] (3.7),

A being the complement of A. ¢ is obviously linear, and by Jensen's

inequality it is bounded:
|¢(n)| s 2E!n] (3.8) .

As ¢(n) 20 for nz20, and as ¢(1) =1, ¢ 1is the expectation operator
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of a probability measure Q on G

vCeG, Q(C) = ¢(Ip) (3.9) .

-

Q=P on & since Q(K) =P(K) .

-~

Define R by P

30 +3R . By (3.8), R s a probability measure
on G_,and Q and R obviously coincide with P on G _. We

shall show that all elements of H are (Ft,ﬁ)—martingales. Hence they
are also (?t,ﬁ)-martinga1es. It follows (by an ordinary change-of-
variables formula, see, e.g., Royden (1968)s Theorem 15.1) that QOf '

and Rf™' ¢ M, hence P 1is not extremal in M. This reduces the

assumption that (ii) is not satisfied to absurdity, and the result is proved.

Let (Nt)el:l, let seT, let éeés. Let s<u. Since (!Qt) is
an (?t,ﬁ)—martinga1e,
BRIF,) = E(IG,) (3.10)

whence, as AEFU and BEGur:Fu .

LiE(IGN1G,) = E(IRIaN |F)) (3.11) .
Hence,
o(IgN,) = E(IN,) (3.12) .
Since (Nt) is an (?t,ﬁ)-martinga]e, and as BE{?S,
e(15h,) = E(14H,) (3.13) .

As NS is Gu—measurab1e,

(IgN,) = E(IgN,) (3.14) .



= i =

By combining (3.12) - (3.14),

o(IgN) = o(IgN) (3.15) .

Let s>u. Since (Nt) is an (ﬁt,ﬁ)-martinga1e, and as

3€Gscﬁs,
Ighg = E(TpR[F ) (3.16) ,
whence, as Guczﬁs,
E(IBﬁS|éu) = E(IGR_|6) (307 .
As Er1§ez?s and since (Nt) is a martingale
ECIFIENIF) = IRIgR (3.18) .

By combining (3.17)-(3.18), (3.15) also follows for s>u. This

proves that (ﬂt) is an (?t,Q)-martingale. (ged)

An important special case of the preceding result is when H is

of the form

H = {(P(AIH)): A€H_} (3.19) ,

where (H is a subfiltration of (Gt) . In this case, statement

¢)
(ii) of Proposition 3.1 reads that for any filtration (?t) on any

extension (Q,F,P) of (9.6 iP) 4 (Ft) ;(Gt) , we have
(He) <(Hy)s (F)s P—>(Gp) <(Gy)s (F)s P (3.20) .
This result can immediately be applied to solutions of stochastic

differential equations. Such an equation is "driven" by a process

(Yt) , and together with the equation itself, the specification of
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the probability distribution of (Yt) defines the stochastic differential
equation. E.g., the equation
t
Xt = Kt 4—J gs(x)dZS {3.21) »
where (Zt) is a semimartingale and g a predictable causal
functional (see, e.g., Jacod & Memin (1981) for a specification of
the equation and of the concepts involved), is driven by the process

(Yt) =(Zt,Kt) . A regular solution (to be called only "solution" until

further notice) of a differential equation is a system (Q,F,P Ft Xt Yt)

where (Xt) and (Yt) are (Ft)-adapted and satisfy the equation,

and where (Yt) is its own cause within (Ft) and has the previously
specified distribution.

The application of Proposition 3.1 to the case (3.19) now yields
that for the solution (Q,F,P, Fx Y oK ¥ t) P is extremal on Fi’y among

the measures Q for which (Q,F ,Q FX Y Xt,Y ) 1is a solution if and
only if every extension (Q,F,P) of (g, FX Y ,P) satisfies for every

(Ft) so that (Q,F,P,Ft,Xt,Yt) is a solution, that (X

own cause within (?t).

t,Yt) 1% 4ts

This can also be related to weak uniqueness of the solution,

which is that on every solution (Q,F,P,F Y ) there is no Q

t t’
Fi,Y FZ,Y

on , so that (Q, F ,Q F t t) is a solution.

, # P on
The solution is weakly unique iff the measure is extremal on every
solution, hence iff every solution (Q,F,P, Ft £ Yt) satisfies that

(Xt,Yt) is its own casue within Ft relative to P.

There are also other definitions of "solution" of a stochastic
differential equation. Like the one we have discussed above, most
reduce to a martingale problem, i.e. the problem of determining the

set of measures under which a certain set of processes are martingales
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(normally also with other conditions on the measures). The main
references on these subjects are Jacod (1979), Strook & Varadhan (1979),
Yor (1979), Jacod (1980a,b), Strook & Yor (1980),Jacod & Memin (1981)
and Lebedev (1983). 1In most cases, extremality can be used in the same
way as above to infer causality.

Extremality of the solution of a martingale problem is an important
concept in the theory of martingales. To explain its significance, we
need some additional definitions, which will not be used outside this
section. For pe[l,=), Hp(Gt,P) is the space of (Gt,P)-martinga1es
(M) which satisfy that [ ()] Zp = E(sup M |P) <=. A stable sub-
space of Hp(Gt,P) is a linear space which is closed in the ]!‘“Hp - topo-
logy, and which contains (IAMt) and (MtAT) whenever it contains (Mt)
and A€G _and 1 is a (Gt)-stopping time (a T-valued stochastic vari-
able which satisfy {tst} € G, for all t). Note that we here assume
that the time axis T 1is a Borel set.

Assume now that G__ 1is complete, that (Gt) and the elements of
H are right-continuous, and that H < Hl(Gt,P) . Then a small extension
of Theorem 11.2 (p.338) of Jacod (1979) yields that statement (i) of
(our) Proposition 3.1 holds if and only if Hl(Gt,P) is the smallest
stable subspace of Hl(Gt,P) which contains H and the constant mar-
tingale (1). If H< Hp(Gt,P) , then H' can be replaced by HP if
H is either finite, or if it consists of continuous martingales only,
or if it is of the form (3.19). The two first cases are contained in
Corollary 11.4 (p.340) of Jacod (1979), while the last can be found in
Mykland (1986).

Stable subspaces are very closely tied to the possibility of repre-
senting martingales as stochastic integrals. The relationship can be

found in Propositions 4.41 (p.131) and Theorem 4.60 (p.143) in Jacod (1979).
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The case p=2 is particularly interesting, and we now give an example
of its application. Let {(Mél)) ,[Méz)],...} be a set of orthogonal
square integrable (Ht,P)-martingales (i.e. they are elements of
Hz(Ht,P) , With [Méi)Méj)] as a martingale for i=j) so that Hz(Ht,P)
is the smallest stable subspace of Hz(Ht,P) containing them and (1).
Then, (3.20) holds if and only if all square integrable stochastic vari-
ables n on G_ can be represented

o

n=3 1 tPmD L gl ) (3.22),
1 = o]

(o] -

in the sense of predictable stochastic integrals, as defined in Jacod
(1979), ch. II-2, or Elliot (1982),ch. 11.

Representation results like 3.22 are interesting in the theories
of filtering and of optimal control of a stochastic process, see e.g.,
Liptser & Shiryayev (1977), ch. 8-10, and Elliot (1982), ch. 16-18. For
econometric work connected to this type of representation, see Harrison
& Pliska (1981) and Stricker (1984).

So far, we have been dealing with cases where a conclusion that (Gt)

is its own cause is asked for. To end, therefore, note that it is also

possible to deal with problems of the form "given a (regular) solution

| XsY

(Q,F00 ’P’Ft ’Xt’Yt) of an equation, when does it hold that any extension

-~ oA

(2,F,P) with filtration (Ft) " (ﬁt) 2 (Fi’Y ) , satisfies that (Xt)

-

is entirely caused by (Xt,?t) within (?t) relative to P ?" . The
conditions on the measure P become much less beautiful, but characteri-
zations in times of stability Tlook nicer. E.g., the answer to the
question above is that, for any given pe (1,») , this holds iff the

Y

t
martingales, also contains the martingales (E(ani’Y)] , where n describes

smallest stable subspace of Hp(Fi’Y,P) which contains the (F,)-adapted
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Lp(Fi,P) - A further discussion on these matters can be found in

Mykland (1984), and related results in Mykland (1986).

4. Application to a stochastic differential equation.

In Sections 4 and 5,

T=1[0,t,] (4.1)

d

cd is the space of all continuous functions T-R , Bt(Cd) is

the o-algebra on Cd making the functions €, " Cd-*R,
su(x) = %y (4.2) ,
measurable for ust,
8(c%) = B, (c%) (4.3),
0
B.,(¢Y) = n B, (4.4) .
u>t

A causal functional ay is a [Bt+(Cd)]—adapted process on Cd.
A (d-dimensional) stochastic process (Xt) which is a continuous (i.e.
whose sample-functions are continuous (P-a.s.)) induces a measure

Ly on B(Cd),
by (B) = P(X(w) €B) (4.5)

X(w) being the sample-function for given w. A Wiener process is
defined in the usual manner (see, e.g., Lipster & Shiryayev (1977),

ch. 4.1) and induces a "Wiener measure" on B(Cd) . Measurability of a
process is defined following Lipster & Shiryayev (1977)., p-21.

Let (Q,F,P) be a probability space, F complete, and let (X, ,F

t t)tET

be a continuous d-dimensional stochastic process, F,  complete. Let My
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and Uy be the measures induced by (Xt) and a d-dimensional Wiener-

process respectively. Consider the following statements:

a) Thereisa (d-dimensional) Wiener-process (wt,Ft) and a
measurable process (at,Ft) , satisfying
t

X¢ = i a ds +Wy (P-a.s.) for every teT (4.6) ,
0

t
Uj aglds < @ (P-a.s.) (4.7) ,

| +] being the Euclidean norm.

b) Hy K omy (4.8) ,

i.e. My is absolutely continuous with respect to My -

£

b)' [ lag? <= (P-a.s.) (4.9) .
0
c) (at) is of the form (P-a.s.)

ay = at(X) a.e. in T (4.10) ,

ay being a causal functional.

c)' (X;) 1is its own cause within (F,) .

Liptser & Shiryayev (1977) studies the relationship between statements
(a), (b), (b)" and (c) using Girsanov's theorem, see ch. 7.1-7.4 in this
book. The picture is completed by statement (c)' , as proposition 4.1

will show. First we define some new statements
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() N (b) & (c)'
(i) A (a) & (b) & ()
(ii); A (@ & ) & () (4.11) .
(ii1) & (a) & (b) & (c)
(i11)' & (a) & () & (c)

---I . 3 - -
For example, (iii) means: "There is a (d-dimensional) Wiener-process

(Nt,Ft) and a causal functional ay satisfying, for every teT,

t
Xy = J a (X)ds +W,  (P-a.s.) (4.12)

with

J 0laS(X)Izds <w  (P-a.s.) (4.13)."

Proposition 4.1.

The situation being as described at the beginning of the section,
the statements (i) - (iii)' are equivalent. If they apply, the repre-
sentation (4.6) is unique, i.e. if for every teT

t

Xe = [ Bds + W

(P-a.s.) (4-14) s
0 t

(ﬂt,Ft) being a Wiener-process and (Bt’Ft) a measurable process, then
P(W =W, for every t) =1 (4.15) and

P(at:=8t for almost every t) =1 (4.16) .
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Proof.

If, for every t,

t

J (B - ag)ds = wt-ﬂt (P-a.s.) (4.17)

the martingale property of W, -ﬂt implies (4.15) and (4.16), see

Lemma 7.1 (p.244) in Liptser & Shiryayev (1977) (this book will in the
rest of this proof be known as "LS"). The equivalence between (iii) and
(iii)' follows from Theorem 7.5 (p.242) and note 7.2.7 (p.255) in LS,
and the implication from (ii)' to (ii) follows from Theorem 7.4 (p.241)
in the same book. As (ii) implies (i) trivially, it remains to show

that (i) leads to (iii)' and that (iii)' implies (ii)' .

(i) = (iii)' . Assume first the existence of a (Ft)-adapted (d-dimen-
sional) Wiener-process. In the presence of (4.8), Theorem 7.11 (p.256)
in LS guarantees the representation (4.12) for d=1, with (wt,Fi)
as a Wiener-process. Going through the same proof, the references to
Theorems 5.7 and 6.2 replaced by references to the note at p.170 and to
Theorem 6.4 respectively, the same is proved in the multi-dimensional

X X
t t) t)

within (Ft) , (tht) is a Wiener-process, and the implication is proved

case. (W, ,F being a Wiener-process and (F being its own cause

in this case. In general, we extend the probability space and the frame-

work filtration to include a Wiener-process. As (wt) in the represen-
X
t)
work" filtration, the extension can be abandoned after finding (W

tation (6.12) is adapted to (F and therefore to the original "frame-

t)'
(i)' =>(ii)' . By Ch. 4.7.7 in Liptser & Shiryayev (1977), the

solution of (4.12) with side condition (4.13) is weakly unique (actually,

the result is only stated for one-dimensional equations, but the generali-

zation to the d-dimensional case is trivial). Hence, since (4.13) must
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be satisfied Q-a.s. if Q K P, P is extremal on Fi among the
solutions of (4.12). Hence, by the results of the previous section,

(Xt) is its own cause within (Ft).
(qed)

It may be of interest to note that like most other known properties
of the equation (4.12), the implication (iii)'=> (ii)' above can be
proved with the help of Girsanov's Theorem (see Theorem 6.4 (p.234)
in Liptser & Shiryayev (1977)). If Jt°|as(x)|2ds is bounded in

d

x €C, there is a measure P~P, with g; as Fi-—measurab]e, so that

(Xt) is an (Ft,ﬁ)—w1ener process, and hence its own cause within (Ft)
relative to P. However, it is easily seen that since Qﬁ- is Fi -
dpP

measurable, (Xt) is also its own cause within (Ft) relative to P.
If we only assume (4.13), we can create a new functional a(n)(x) =

t
7)1 (n)

(x) , where T is the (stopping) time when

¢ {tét(n)(x)}
la_(x) . It is easily seen that the solution (X(n)) of the
S 1

equation (4.12) with a(n) instead of a, is (Fi)—adapted, and since

(X&n)) converges to (Xt) in probability, the result follows.

5. Criteria of causality.

Given the equation

t
Xt =0J' aS(X)ds +Nt [6:1) .

(Xt) and (wt) being d - dimensional, we shall in this section find

criteria on a, for the d, first components of (X not to be

t)
caused (in the (4.8)-sense) by the remaining d -d1 components. This

is analogous to similar work done in the framework of Granger-causality,
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see in particular Tjestheim (1981), Sect. 2.1 -2.2.
In the following, we shall denote X&l) the d, first components

(1) (1)
£

of Xt , and x » a; ", etc., are defined similarly. Hy and My

are the measures induced by X and a Wiener-process respectively.

Proposition 5.1.

Let a probability space (Q,F,P), a filtration (Ft) , a Wiener-
process (wt,Ft) and a (Ft) - adapted continuous process (Xt) governed

by (5.1) be given; assume F and F, complete. If

My K Hy (5.2} »

then (X£1)) is its own cause within (Ft) if and only if there is a

(d -dimensional) causal functional C, satisfying

PiM ) = ¢, (x(*)) el in T) =1 (5.3) .
If furthermore
Hy ™~ Wy (5.4) ,
then (Xil)) is its own cause iff

(1))

@00 = 0, ) ave. in Ty < (5.5) .

Proof.

This is a corollary to Proposition 4.1 in view of

L G P ) 2
g 12 (X7ds < [ la (x| ds (5.6) .



- P =

Note the superiority of (5.5) over (5.3). In the latter, the com-
ponents are allowed to vary independently of one another. In essence,
this means that aél) is constant as a function of the d-d;, Tlast
arguments.

In the following we shall study a special case where this result can

be stated in a stronger form.

(definition)

The metric pd on Cd is given by

visyecd  od(x,y) = sup [ x¢-y | (5.7) 3
Ogsgt0
the space Kd is defined
4 - fsx € ¢ g x, = 0} (5.8) ;
a causal functional a; is p-continuous if, for XsXpseeeoX s .
at(xn) — at(x) a.e. in T (5.9)
when
X, — % uniformly on T (5.10) .

We need the following Temma.

Lemma 5.2.

In the probability space (Q,F,P), let the d-dimensional Wiener-

process (wt,Ft) be given. Then

vxekd ve>o  Plu:pd(x,H(w) <€) > 0 (5.11) .
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Abstract version:

Let uy be the measure induced on B(Cd) by a Wiener-process,

Tet AeB(cY), Tet

uw(A) = 1 (5.12)

Then Ar1Kd is dense in Kd under pd .

Proof.

This lemma is easily shown using

P( sup [U ] >C) s L

: for t<1 (5.13)
0<s<t C

(this follows from Lemma 4.6 (p.102) in Liptser & Shiryayev (1979) and
the technique often used in proving the Heine-Borel theorem (as e.g.,

in Royden (1968), Theorem 3.15 (p.42).)) (qged)

Proposition 5.3.

Let a probability space (Q,F,P), a filtration (Ft),

process (wt,Ft) and a (Ft)-adapted process (Xt) governed by (5.1)

a Wiener-

be given; Assume that F and F, are complete, that ay is p-con-

tinuous and that

My ~ Uy (5.14) .
(X£1)) is its own cause within (Ft) if and only if
VXJEKd x(” =y(n :éa(ﬂ(ﬂ =ah)W) (5.15) ,
x(l) being the d, first components of x, etc.

(This result is a corollary to Prop. 5.1 and Lemma 5.2.)
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To end on a less abstract note, consider the causal functional

on Cd :
t
a,(x) =my (x(t)) +-J m, (x(s))ds +...
(5.16)
t Sh-1
+ | 8y vew ds m (x(s))
0 0
ms i=0,...,n, being continuous functions Rd - Rd S is trivially
p-continuous, and furthermore
tD A
/ [as(x)| ds < (5.17)
0

for every x,ECd . By Theorem 7.7 (p.248) in Liptser & Shiryayev (1977),
the solution of (5.1) satisfies (5.4). Accordingly, the following result

is easily proved.

Proposition 5.4.

Let a probability space (Q,F,P), a filtration (Ft) , a Wiener-
process (wt,Ft) and a (Ft)-adapted process (Xt) governed by (5.1)

be given; assume that F and F, are complete and that 3y is of

the form (5.16). Then (Xél)) is its own cause within (F,) if and

+)
only if the d, first components of each of Myseeesm — CAN be expressed

as functions of the d, first arguments only.

(The proof is carried out in Appendix A.3 of Mykland (1984), where some

remarks on possible extentions are made.)
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